Joint Spectrum Sensing and Direction of Arrival Recovery from sub

Uniform Linear Array based Spectrum Sensing
from sub-Nyquist Samples
Or Yair, Shahar Stein
Supervised by Deborah Cohen and Prof. Yonina C. Eldar
December 7, 2015
Signal Model
โ€ข Multiband sparse signal
โ€ข Each transmission ๐‘ ๐‘– corresponds to a carrier frequency, ๐‘“๐‘–
โ€ข Each transmission ๐‘ ๐‘– is narrow band of maximum bandwidth ๐ต
โ€ข All transmissions are assumed to have identical and known angle of arrival ๐œƒ โ‰ 
90๐‘œ
2
Goal: Perfect blind signal reconstruction from subNyquist samples
Proposed Algorithm
โ€ข We suggest a ULA based system
โ€ข Each sensor of the array, followed by one branch of the MWC with the same
periodic function
โ€ข Each sampler is of rate ๐ต
โ€ข From the samples we can form a classic DOA
equation ๐’™ = ๐‘จ๐’˜ and use known techniques
to obtain ๐’˜
3
We show that the a sufficient condition is ๐‘ด + ๐Ÿ
samplers
System Description
โ€ข The received signal at the ๐‘›โ€™th sensor:
๐‘ข๐‘› ๐‘ก โ‰ˆ
๐‘€
๐‘–=1 ๐‘ ๐‘–
๐‘ก ๐‘’ ๐‘—2๐œ‹๐‘“๐‘– (๐‘ก+๐œ๐‘›)
๐‘†1 (๐‘“ โˆ’ ๐‘“1 )
๐‘†3 (๐‘“ โˆ’ ๐‘“3 )
0
๐‘†2 (๐‘“ โˆ’ ๐‘“2 )
๐ต
โ€ข The mixed signal after multiplying with periodic function:
๐‘Œ๐‘› ๐‘“ =
โˆž
๐‘™=โˆ’โˆž ๐‘๐‘™
๐‘€
๐‘–=1 ๐‘†๐‘–
0
4
๐‘“ โˆ’ ๐‘“๐‘– โˆ’ ๐‘™๐‘“๐‘ ๐‘’ ๐‘—2๐œ‹๐‘“๐‘– ๐œ๐‘›
System Description
โ€ข The filtered signal at the baseband:
๐‘Œ๐‘› ๐‘“ =
๐‘€
๐‘†๐‘–
๐‘–=1
๐ฟ
๐‘“ ๐‘’ ๐‘—2๐œ‹๐‘“๐‘– ๐œ๐‘› ,
0
๐‘†๐‘– ๐‘“ =
๐‘๐‘™ ๐‘†๐‘– ๐‘“ โˆ’ ๐‘“๐‘– โˆ’ ๐‘™๐‘“๐‘
๐‘™=โˆ’๐ฟ0
0
โ€ข The sampled signal:
๐‘€
๐‘‹๐‘› ๐‘’ ๐‘—2๐œ‹๐‘“๐‘‡๐‘  =
๐‘Š๐‘– ๐‘’ ๐‘—2๐œ‹๐‘“๐‘‡๐‘  ๐‘’ ๐‘—2๐œ‹๐‘“๐‘– ๐œ๐‘›
๐‘–=1
๐‘ค๐‘– ๐‘˜ = ๐‘ ๐‘– (๐‘˜๐‘‡๐‘  )
The unknown frequencies are held at the relative
accumulated phase
5
Sampling Scheme
โ€ข Modified MWC sampling chain.
โ€ข All sensors use the same periodic function with period ๐‘“๐‘
โ€ข Single sensor output:
Sufficient condition on ๐’‡๐’” , ๐’‡๐’‘ :
๐’‡๐’” โ‰ฅ ๐’‡๐’‘ โ‰ฅ ๐‘ฉ
6
Sampling Scheme
โ€ข Our measurements
The sampling scheme is simpler than the MWC, since
the same sequence can be used in all cannels
7
Basic Equation
โ€ข Similar to classic DOA equation
โ€ข Source Signal vector is scaled and cyclic-shifted
0
0
0
0
๐‘ฟ ๐‘’ ๐‘—2๐œ‹๐‘“๐‘‡๐‘ 
8
|
๐’‚ ๐‘“1
|
|
๐’‚ ๐‘“2
|
๐‘จ๐‘×๐‘€
|
๐’‚ ๐‘“3
|
0
0
0
๐‘พ ๐‘’ ๐‘—2๐œ‹๐‘“๐‘‡๐‘ 
Goal: estimate ๐’‡ and ๐’˜
Reconstruction Steps
1. Estimate all frequencies ๐‘“๐‘– .
2. Reconstruct the steering matrix ๐‘จ ๐’‡ .
3. Calculate ๐’˜ = ๐‘จโ€  ๐’™
4. Uniquely recover ๐’” from ๐’˜.
9
Theorem
โ€ข For multiband signal (as presented),
โ€ข If the following conditions hold:
โ€ข Minimal number of sensors: ๐‘€ + 1
โ€ข ๐‘“๐‘ = ๐‘“๐‘  > ๐ต
๐‘
โ€ข ๐‘‘<
๐‘“๐‘๐‘Œ๐‘„
โˆž
2๐œ‹๐‘™๐‘“๐‘ ๐‘ก
๐‘
๐‘’
๐‘™=โˆ’โˆž ๐‘™
โ€ข p ๐‘ก =
โ€ข Then: ๐‘“๐‘– , ๐‘ ๐‘– ๐‘“
, ๐‘๐‘™ โ‰  0, โˆ€๐‘™: ๐‘™๐‘“๐‘ โ‰ค
๐‘“๐‘๐‘Œ๐‘„
2
can be perfectly reconstructed
Achievable sampling rate: ๐‘ด + ๐Ÿ ๐‘ฉ
10
Simulations
โ€ข For the ULA based system 2 reconstruction methods were tested:
โ€ข ESPRIT โ€“ analytic method based on SVD
โ€ข MMV โ€“ CS method based on OMP algorithm
โ€ข The performance were compared against the MWC
โ€ข Both systems used the same amount of samplers
โ€ข At the ULA based system โ€“ the number of sensors
โ€ข At the MWC โ€“ the number of branches
11
Simulations
โ€ข Performance against different number of sensors
โ€ข For the MWC system: the amount of branches
12
SNR
10dB
Number of
Snapshots
400
Number of
Signals
3
๐‘ฉ
๐Ÿ“๐ŸŽ๐‘ด๐‘ฏ๐’›
๐’‡๐‘ต๐’€๐‘ธ
๐Ÿ๐ŸŽ๐‘ฎ๐‘ฏ๐’›
๐’‡๐’”
๐Ÿ“๐ŸŽ๐‘ด๐‘ฏ๐’›
Simulations
โ€ข Performance against different SNR
Number of
Sensors
10
Number of
Snapshots
400
Number of
Signals
3
๐‘ฉ
๐Ÿ“๐ŸŽ๐‘ด๐‘ฏ๐’›
๐’‡๐‘ต๐’€๐‘ธ
๐Ÿ๐ŸŽ๐‘ฎ๐‘ฏ๐’›
๐’‡๐’”
๐Ÿ“๐ŸŽ๐‘ด๐‘ฏ๐’›
โ‡“
13
Sampling Rate:
๐Ÿ“๐ŸŽ๐ŸŽ๐‘ด๐‘ฏ๐’›
Summary
โ€ข We suggest an ULA based system for the spectrum sensing
problem
โ€ข In each sensor of the array, we sample using one branch of the
MWC with the same periodic function
โ€ข We relate the unknown parameter and signal to the sub-Nyquist
samples
โ€ข We show that a sufficient condition for perfect recovery are ๐‘ด + ๐Ÿ
sensors, each sampling at rate ๐‘ฉ
โ€ข We perform parameter estimation out of the DOA equation
14
Questions?
โ€ข Thank you for listening
15