Chapter 4 Continuous Random Variables
§ 4.1 Continuous Sample Space
n
The range of a discrete random variable is a countable set of numbers.
P[X=x] >= 0
(Probability Mass Function)
The range of a continuous random variable is an uncountable set of numbers.
There are infinite numbers between two limits
n
P[X=x] = 0
(Probability Mass Function)
When X is continuous, it is impossible to define a probability mass function PX(x).
1
§ 4.2 The Cumulative Distribution Function
The CDF FX(x) is a probability model for any random variable. The CDF FX(x) is a
continuous function if and only if X is a continuous random variable.
n
Definition 4.1 Cumulative Distribution Function (CDF)
FX(x)=P[X <=x]
Theorem 4.1
ForanyrandomvariableX.
ππΏ ββ = π
ππΏ β = π
π· ππ < πΏ < ππ = ππΏ ππ β ππΏ ππ
ForanyrandomvariableX
X isacontinuousrandomvariableiftheCDFFX(x) isacontinuousfunction.
2
§ 4.3 Probability Density Function
n
The slope at any point x indicates the probability that X is near x.
P[x1 < X β€ x1 + Ξ] =
FX (x1 + Ξ) β FX (x1 )
Ξ
Ξ
Definition4.3ProbabilityDensityFunction(PDF)
f X (x) =
dFX (x)
dx
3
§ 4.3 Probability Density Function
Example4.5
β§
βͺ
βͺβͺ
TheCDFofYis FY (y) = β¨
βͺ
βͺ
βͺβ©
0
y<0
y3 0 β€ y β€ 1
FindthePDFofYandprobabilitythatYis
between1/4and3/4
1 y >1
β§
dFY (y) βͺ
f
(y)
=
=β¨
Solution: Y
dy
βͺ
β©
3y 2
0 < y β€1
0 otherwise
P[1 / 4 < Y β€ 3 / 4] = FY (3 / 4) β FY (1 / 4) = (3 / 4)3 β (1 / 4)3 = 13 / 32
3/4
P[1 / 4 < Y β€ 3 / 4] =
β«
1/4
3/4
fY (y)dy =
β« 3y2 dy = 13 / 32
1/4
4
§ 4.3 Probability Density Function
Theorem4.2
ForacontinuousrandomvariableX withPDF f X (x)
(a) f X (x) β₯ 0 forallx
t
(b) FX (x) =
β«
f X (x)
ββ
(c)
β
β«
f X (x) = 1
ββ
Theorem4.3
x2
P[x1 < X β€ x2 ] =
β« fX (x)dx
x1
5
§ 4.4 Expected Values
n
The expected value of a continuous random variable X is
0
π¬ πΏ = - πππ π π
π
10
Example 4.6
FindtheexpectedvalueofX,thePDFofXisgivenas
ππΏ π = 2
0
π, π β€ π < π
π, πππππππππ
π
π¬ πΏ = - πππ π π
π = - ππ
π = π/π
10
π
6
§ 4.4 Expected Values
Theorem 4.4
The expected value of a function, g(X), of a random variable X is
0
π¬ π(πΏ) = - π(π)ππ π π
π
10
Example 4.8
1, 0 β€ π₯ < 1
π? π₯ = 2
LetXbeauniformrandomvariablewithPDFLetW=g(X)=0,ifX<=1/2,and
W=g(X)=1,
0, ππ‘βπππ€ππ π
IfX>½.Findtheexpectedvalueofg(X).
0
Q
πΈ π(π) = - π(π₯)π? π₯ ππ₯ = - π₯ππ₯
10
Q/R
7
§ 4.4 Expected Values
Theorem 4.5
For any random variable X:
π π¬ πΏ β ππΏ = π
Linearpropertiesofexpectedvalue
π π¬ ππΏ + π = ππ¬ πΏ + π
π π½ππ πΏ = π¬ πΏπ β πππΏ
0
E π R = β«10 π₯ R π? π₯ ππ₯
0
π π½ππ ππΏ + π = ππ π¬ πΏπ
Var π = β«10 (π₯ β π? )R π? π₯ ππ₯
8
§ 4.5 Families of Continuous Random Variables
Definition 4.5 Uniform Random Variable
X is a uniform (a,b) random variable if the PDF of X is
ππΏ π = 2
π/(π β π), π β€ π < π
π,
πππππππππ
Theorem 4.6
If X is a uniform (a,b) random variable
π π»πππͺπ«ππππΏππ:
ππΏ π =
π,
πβπ
,
πβπ
π,
πβ€π
π<πβ€π
π>π
π π»ππππππππππ
ππππππππΏππ: π¬ πΏ = (π + π)/π
π π»πππππππππππππΏππ: Var πΏ = (π β π)π /ππ
9
§ 4.5 Families of Continuous Random Variables
Example 4.11
The phase angle, Ξ, of the signal at the input to a modem is uniformly distributed between 0 and.
2Ο
Radians. What are the PDF, CDF, expected value, and variance of Ξ
πβπππ·πΉπππππ : π{ π = 2
1/2π, 0 β€ π₯ < 2π
0, ππ‘βπππ€ππ π
0,
πβππΆπ·πΉπππππ : πΉ} π =
πβπππ₯ππππ‘πππ£πππ’ππππππ :
πβππ£ππππππππππππ :
π₯β€0
π
, 0 < π₯ β€ 2π
2π
1, π₯ > 2π
πΈ π =
Var π =
2π + 0
=π
2
t1u
QR
v
= π w /3
10
§ 4.5 Families of Continuous Random Variables
Definition 4.6 Exponential Random Variable
X is an exponential (π) random variable if the PDF of X is
ππΏ π = 2
ππ1ππ , π β₯ π
π, πππππππππ
Theorem 4.8
If X is a exponential (π) random variable
1ππ
π π»πππͺπ«ππππΏππ: ππΏ π = 2π β π , π β₯ π
π, πππππππππ
π π»ππππππππππ
ππππππππΏππ: π¬ πΏ = π/π
π π»πππππππππππππΏππ: Var πΏ = π/ππ
11
§ 4.5 Families of Continuous Random Variables
Example 4.12
The probability that a telephone call lasts no more than t minutes is often modeled as an
exponential CDF.
1 β π 1β/w , π‘ β₯ 0
πΉβ’ π‘ = 2
0, ππ‘βπππ€ππ π
What is the PDF of the duration in minutes of a telephone conversation? What is the probability
that a conversation will last between 2 and 4 minutes?
ππΉβ’ (π‘)
(1/3)π 1β/w , π‘ β₯ 0
πβ’ π‘ =
=2
ππ‘
0, ππ‘βπππ€ππ π
π 2 β€ π β€ 4 = πΉβ’ 4 β πΉβ’ 2 = (1 β π
1
β
w)
β (1 β π
1
β
w)
= 0.250
12
§ 4.5 Families of Continuous Random Variables
Definition 4.7 Erlang Random Variable
X is an Erlang (n, π) random variable if the PDF of X is
ππΏ
ππ ππ1π π1ππ
πβ₯π
π =β‘ πβπ ! ,
πππππππππ
π,
Wheretheparameterπ > π, πππ
ππππππππ β₯ π
Theorem 4.8
If X is a Erlang (n, π) random variable
π1π (ππ)π π1ππ
, πβ₯π
π π»πππͺπ«ππππΏππ: ππΏ π = β‘π β β° πβΉπ
π!
π, πππππππππ
π π»ππππππππππ
ππππππππΏππ: π¬ πΏ = π/π
π π»πππππππππππππΏππ: Var πΏ = π/ππ
13
§ 4.6 Gaussian Random Variables
Definition 4.8 Gaussian Random Variable
X is an Gaussian (π, π) random variable if the PDF of X is
ππΏ π =
π
ππ
ππ
π1
π1π
π /ππ π
Wheretheparameterπ canbeanyrealnumber,andtheparameterπ > π,
14
§ 4.6 Gaussian Random Variables
Theorem 4.12
If X is a Gaussian (π, π) random variable
π π»ππππππππππ
ππππππππΏππ: π¬ πΏ = π
π π»πππππππππππππΏππ: Var πΏ = ππ
Theorem 4.13
If X is a Gaussian (π, π) random variable, Y = aX + b is a Gaussian (ππ+b, aπ)
15
§ 4.6 Gaussian Random Variables
Definition 4.9 Standard Normal Random Variable
The standard normal random variable Z is the Gaussian (π, π) random variable
π»ππππππππππ
ππππππππππ: π¬ π = π
π»πππππππππππππππ: Var π = π
Definition 4.10 Standard Normal CDF
The CDF of the standard normal random variable Z is
π π =
π
ππ
π
- π1π
π /π
π
π
10
16
§ 4.6 Gaussian Random Variables
Theorem 4.14
If X is a Gaussian (π, π) random variable, the CDF of X is
ππΏ π = π
πβπ
π
The probability that X is in the interval (a, b] is:
π·π<πΏβ€π =π
πβπ
πβπ
βπ
π
π
Usingthistheorem,wetransformvaluesofaGaussianrandomvariable,X,toequivalentvaluesofthestandard
normalrandomvariable,Z.Forasamplevaluex oftherandomvariableX,thecorrespondingsamplevalueofZ is
π=
πβπ
π
17
§ 4.6 Gaussian Random Variables
Example 4.15
Suppose your score on a test is x = 46, a sample value of the Gaussian (61, 10) random
variable. Express your test score as a sample value of the standard normal random variable, Z.
π=
π=
πβπ
π
ππ1ππ
ππ
=-1.5
18
§ 4.6 Gaussian Random Variables
Theorem 4.15
π βπ = π β π π
Example 4.16
If X is a Gaussian (61, 10) random variable, what is P[X<=46]?
ApproachI:
BasedonTheorem4.14:π π β€ π = Ο
t1β’
Ε‘
=Ο
ββΊ1βΊQ
QΕ
= Ο β1.5 = 1 β Ο 1.5 = 1 β 0.933 = 0.067
ApproachII:
BasedonTheorem4.1:π π₯Q < π < π₯R = πΉ? π₯R β πΉ? π₯Q = πΉ? 46 =
ββΊ
Q
β«10
RΕΈQΕ v
π
1
¡¢£ v
vβ£¥ v
ππ₯ = 0.067
19
§ 4.6 Gaussian Random Variables
Definition 4.11 Standard Normal Complementary CDF
The standard normal complementary CDF is
πΈ π =π·π>π =
π
ππ
0
- π1π
π /π
π
π = π β π½(π)
π
20
§ 4.6 Gaussian Random Variables
Quiz 4.6
X is the Gaussian (0,1) random variable and Y is the Gaussian (0, 2) random variable. Sketch
the PDFs fX(x) and fY(y) on the same axes and find:
(a)P[-1<X<=1]
(b)P[-1<Y<=1]
(c)P[X>3.5]
(d)P[Y>3.5]
21
§ 4.7 Delta Functions, Mixed Random Variables
Definition 4.12 Unit impulse (Delta) function
π¨ π₯ = 2
1/π
βπ/2 β€ π₯ β€ π/2
0 ππ‘βπππ€ππ π
Theunitimpulsefunctionis πΏ π₯ = lim π¨ (π₯)
¨βΕ
Theorem 4.16 (sifting property)
0
- π π₯ πΏ π₯ β π₯Ε ππ₯ = π(π₯Ε )
10
22
§ 4.7 Delta Functions, Mixed Random Variables
Definition 4.13 Unit step function
u π₯ =2
0
1
π₯<0
π₯β₯0
Theorem 4.17 (construct unit step function from delta function)
¯
- πΏ π₯ ππ₯ = π’(π₯)
10
πΏ π₯ =
ππ’(π₯)
ππ₯
23
© Copyright 2026 Paperzz