Infrared Spectra of K+(Tryptamine)(H2O)n and K+(Tryptamine)(H2O)nAr Cluster Ions Amy L. Nicely and James M. Lisy OSU International Symposium on Molecular Spectroscopy June 16, 2008 Outline Motivation Apparatus and formation of cluster ions Supporting calculations K+(Tryptamine)(H2O)n vs K+(Tryptamine)(H2O)nAr experimental and calculated IR spectra Motivation Extension of previous studies K+(H2O)n K+(Indole)(H2O)n Biological significance Neurotransmitters (serotonin) Amino acids (tryptophan) Triple quadrupole mass spectrometer LaserVision OPO/A Tunable: 1.35-10 µm Neutral clusters are formed via a Nd3+:YAG Laser (1064 nm) supersonic expansion 10 Hz, 10 ns pulse width Tryptamine in sample heater (~115 °C) Fully expanded neutral clusters collide with alkali cations produced via thermionic emission MS-MS method: select ion cluster, dissociate with IR laser, detect fragment ion Evaporative Cooling En [K+(Tryp)(H2O)n] En [K+(Tryp)(H2O)2Arn] ΔE ≈ BE Ar ΔE ≈ BE H2O Energy ● Cooling efficiency determined by the evaporating ligands’ binding energy Most weakly bound ligand evaporates to cool cluster, removes both mass and energy Energy ● Efinal [K+(Tryp)(H2O)2] 0- 0- Efinal [K+(Tryp)(H2O)2Ar] H2O evap. = larger energy loss Ar evap. = smaller energy loss Terminal temperature ~300-400 K Terminal temperature ~40-100 K Calculation details Preliminary structures generated using SPARTAN 02 Geometries optimized, frequencies and energies calculated at B3LYP/6-31+G* level with GAUSSIAN 03 SWIZARD used to apply Gaussian lineshape with 5100 cm-1 peak width to scaled calculated frequencies Thermodynamics data obtained using THERMO.PL perl script Hydrated Biomolecules Tryptamine has nine conformers which differ in side chain orientation and lone pair position Favored conformer in neutral gas-phase experiments Not observed in neutral gas-phase experiments Zwier, T.S., et. al., Science 2004, 303, 1169-1173. K+(Tryptamine) spectra NH AGph(in) AGph(in) NH2 asym NH2 sym In the presence of K+, the two lowest-energy K+(Tryptamine) isomers are built from those not seen in neutral experiments AGpy(in) Simulated K+(Tryp)Ar3 3250 AGpy(in) 3350 Experimental 3450 3550 -1 Frequency (cm ) 3650 Experimental spectrum shows presence of both isomers, in good agreement with the calculated spectra Temperature Dependence “Tagging” the cluster ions with an argon atom reduces the internal energy K+(Tryp)(H2O)1 "warm" By changing the effective temperature of the cluster ions, different isomers may be thermodynamically favored, resulting in different spectral features K+(Tryp)(H2O)1Ar "cold" 2800 3000 3200 3400 3600 -1 Frequency (cm ) 3800 Identifying the OH and NH features Gas-phase H 2 O sym 3657 cm K+(Tryp)(H2O) -1 asym 3756 cm-1 NH + K (H 2O)Ar sym 3636 cm-1 asym 3710 cm-1 OH νasym OH νsym Vaden, T.D., Weinheimer, C.J. and Lisy, J.M., J. Chem. Phys. 2004, 121, 3102-3107. NH2 asym 3250 3350 3450 3550 Frequency (cm-1) 3650 3750 Identifying the OH and NH features K+(Tryp)(H2O) NH OH νasym/ νfree OH νsym 3350 3450 3550 3650 3750 Frequency (cm-1) Miller, D.J., Lisy, J.M., J. Chem. Phys. 2006, 124, 184301. 3250 NH2 asym 3350 3450 OH πhydrogen bond 3550 Frequency (cm-1) 3650 3750 Identifying the OH and NH features K+(Tryp)(H2O)Ar ??? NH OH πhydrogen bond 3250 3350 3450 3550 Frequency (cm-1) OH νasym OH νsym 3650 OH νfree 3750 38 Relative Free Energies Relative Free Energies (kJ/mol) 25 20 15 10 5 0 0 50 100 150 200 250 300 Temperature (K) 1A 1B 1C 1D 1E 350 400 1E 1E 1B 1B 1A 1C 1A 1D 1C K+(Tryp)(H2O)Ar K+(Tryp)(H2O) 2700 2900 3100 3300 Frequency (cm-1) 3500 3700 3900 1D 00 Simulated Spectra K+(Tryp)(H2O) 1D K+(Tryp)(H2O)Ar 1A ~87% ~50% 1E ~35% 1C ~13% 1C ~15% 2900 3100 3300 3500 -1 Frequency (cm ) 3700 2700 3900 2900 3100 3300 3500 -1 Frequency (cm ) 3700 3900 K+(Tryp)(H2O)2 Spectra K+(Tryp)(H2O)2 "warm" Significant differences observed again between the warm and cold spectra K+(Tryp)(H2O)2Ar "cold" 2800 3000 3200 3400 3600 -1 Frequency (cm ) 3800 No new features compared with n=1 spectra, but there is some additional splitting and broadening K+(Tryp)(H2O)2 2A 2B ~43% ~30% 2C ~27% 2800 3000 3200 3400 Frequency (cm-1) 3600 3800 K+(Tryp)(H2O)2Ar 2A 2B ~37% ~37% 2E 2F ~7% 2800 3000 3200 3400 Frequency (cm-1) 3600 3800 ~3% 2G ~17% Conclusions K+ stabilizes the high-energy tryptamine conformers K+…Tryp and K+…OH2 interactions favored over Tryp…OH2 interactions Temperature dependence temperatures favors “free” water molecules and π-hydrogen bonds Low temperatures favors hydrogen-bonded water molecules, traps higher-energy isomers High Acknowledgements Dr. Jim Lisy Dr. Dotti Miller Lisy Group Members Mr. Jason Rodriguez Mr. Jordan Beck Mr. Oscar Rodriguez, Jr. Mr. Brian E. Nicely Funding NSF CHE-0415859 NSF CRIF-0541659 UIUC Department of Chemistry UIUC Graduate College Block Grant Competition between interactions vs. K+(Tryptamine) (Tryptamine)(H2O) Meerts, W.L., et. al., J. Am. Chem. Soc. 2005, 127, 10356-10364. K+(Tryptamine)(H2O) structure maximizes potassium interactions K+Tryptamine(H2O)2 Relative Free Energies (kJ/mol) 20 10 0 0 50 100 150 200 250 300 Temperature (K) 2A 2B 2C 2D 2E 2F 2G 350 400 2700 2900 3100 3300 3500 -1 Frequency (cm ) 3700 3900
© Copyright 2026 Paperzz