PaO2 target CPR 2015 : - routinely > 60 mmHg - ALI - ARDS - chronic hypercapnia - paraquat intoxication 55 - 80 mmHg ~ 50 mmHg ~ 40 mmHg (lactate) - acute myoc. infarction - acute brain injury 80 - 100 mmHg 80 - 100 mmHg how much oxygen ? Serge Brimioulle Department of Intensive Care ir is Erasme Hospital, Brussels, Belgium O2 pressure Cell respiration in ai re s Oxygenation (mmHg) - atmospheric - alveolar - arterial - capillary - muscle (rest) - muscle (work) - mitochondrial 160 100 97 … 40 4 1 100 Alv. Gnaiger, AEMB 2003 Wagner, ERJ 2008 Art. - at rest, PcO2 40 mmHg (Mb sat. 100%), PmO2 2 - at work, PcO2 4 mmHg (Mb sat. 50%), PmO2 0.3 Cap. 75 50 Mus. rest 25 Mus. work Mit. se m 0 Advantages of low PcO2 - optimal : maximal mitoch. energy production prevents excessive ROS production - maximal RBC - cell gradient (diffusion limitation) - arteriolar vasodilation (tissue autoregulation) - HIF-stimulated VEGF and angiogenesis Oxygen is good Falkowski, Science 2005 Hypoxia - HIF Smith, BJH 2008 - HIF = transcription factors (hundreds of genes) - continuous HIF production and degradation normal : PHD-modified, VHL-bound, metabolized hypoxia : PHD inhibition At organ level - ventilation - HPV - erythropoiesis - cardiac output At cell level - energy metabolism - vasomotor regulation - angiogenesis (VEGF) - cell growth & apoptosis Hypoxia West, AAS 1990 - Everest 1981, Everest-II 1986 Hypoxia - brain ischemia Miyamoto, Neurology 2000 - rats, ischemia < transient MCA occlusion - blood gases: 7.65 - 8 - 30 and 7.56 - 11 - 30 - left shift of ODC, quicker pulm. oxygen loading PaO2 - hypoxia - normoxia - hyperoxia - preserved contractility and hemodynamics - (relatively) preserved exercise capacity 46 ± 1 120 ± 4 214 ± 6 % necrosis hemisph. cortex 24 ± 5 * 13 ± 3 * 17 ± 7 8±5 8±2* 1±1* ir is - impairment of cognitive function - persistence for more than 12 months Hypoxia - brain trauma Hypoxia - stroke in ai re s Diringer, COCC 2008 - mitochondrial dysfunction, low PbO2 - secondary brain injury due to ischemia - many animal studies, often hyperbaric - may be effective in selected conditions - hyperbaric oxygen well-known toxicity - pulmonary, ocular, … and cerebral - 3 clinical studies on hyperbaric oxygen - Anderson, Stroke 1991 - Nighoghossian, Stroke 1995 - Rusyniak, Stroke 2003 - no evident clinical benefit - questionable trials design se m - normobaric oxygen - animal and clinical studies - better ICP, PbO2, microdialysis data - no clinical or PET benefit Singhal, IJS 2006 Oxygen holocaust Oxygen holocaust - anaerobic reactions and unicellular organisms - photosystem (CO2 + H2S) : green & purple bacteria - photosystem (CO2 + H2O) : cyanobacteria - photosynthesis by plants < chloroplasts (~ cyanob.) - sea – air – land poisoning by oxygen - death of most oxygen-sensitive organisms cyanobacteria 25 O2 atm (%) De Duve, 2002 20 15 10 5 0 -4 -3 -2 -1 time (billions years) 0 - integration of oxygen-using bacteria : mitochondrias - energy-efficient (ATP) aerobic cell respiration - multicellular animals, land invasion Oxygen is bad Nathan, BMB 1999 - oxidative phosphorylation in mitochondrias (COX) - glucose + O2 + ADP ==> H2O + CO2 + ATP - production of ROS : O2-, OH•, H2O2 Nathan, BMB 1999 - production of ROS : O2-, OH•, H2O2 - antioxidative protective mechanisms If imbalance - hypoxia or ischemia : "reductive" stress - hyperoxia or reperfusion : "oxidative" stress - intramitochondrial dysfunction (Ca++, Fe++) - mitochondrial permeabilization and swelling - cellular toxicity … ir is Antioxidative protective mechanisms - superoxide dismutase - GSH - glutathione peroxidase - NADPH - glutathione reductase - vitamin C - NAD(P) transhydrogenase - vitamin E Oxygen is bad Chalhoub, AAS 2011 Huet, CCM 2011 Hyperoxia - surgery in ai re s ROS production - Proxi trial, n = 1386 perop 80 vs 30% O2 - no diff. in infection - MLR predictor (OR 1.3) 2-yr mortality, % * 20 10 0 NO2 HO2 se m Surgery - 32 pts after low- and intermediate-risk surgery - perfusion of serum on endothelial cells - unchanged cytokines production - ROS production, related to surgery "magnitude" Cardiac arrest - 12 pts after cardiac arrest (vs septic shock) - ROS production, antioxidant activity - impaired mitochondrial chain activity - increased anaerobic metabolism Meyhoff, AA 2012 Hyperoxia - cardiac arrest Pilcher, Resusc 2012 Hyperoxia - cardiac arrest - extrahosp CA (Finland) witnessed, VF, ROSC, n = 28 (± hypothermia) survival 20 / 28 - FiO2 100 vs 30% (1 hr) maintain SpO2 95% - suppl. O2 in 5 / 14 Animal studies - hyperoxia vs normoxia - effect on mortality Kuisma, Resusc 2006 30 100 PaO2 - 10' 158 ± 30 373 ± 42* PaO2 - 60' 109 ± 7 349 ± 47* NSE - 24h 11 ± 2 13 ± 2 NSE - 48h 14 ± 5 19 ± 5 S100 - 24h 21 ± 4 73 ± 30 S100 - 48h 23 ± 5 49 ± 16 Hyperoxia - cardiac arrest - 120 US hospitals, 5 yrs - nontraumatic CA first PaO2 in 24 h n = 6326 - hypoxia < 60 mmHg - hyperoxia > 300 mmHg - MLR predictor (OR 1.8) Kilgannon, JAMA 2010 hosp. mortality, % * * 60 Hyperoxia - cardiac arrest - 125 ICUs, Aust-NZ n = 12108 worst PaO2 in 24 h 20 - MLR predictor (OR 1.2) Cox non-predictor 0 NO2 * * 40 20 0 HO2 hO2 NO2 HO2 ir is hO2 hosp. mortality, % 60 - hypoxia < 60 mmHg - hyperoxia > 300 mmHg 40 Bellomo, CC 2011 Hyperoxia - cardiac arrest Hyperoxia - cardiac arrest in ai re s Ferguson, Circ 2012 - PICAnet, 2003-2010 n = 1875 PaO2 in 1 hr ICU mortality, % 40 * * - MLR predictor (OR 1.3) - Aust-NZ, 2007-2011 CA < VF, n = 584 most aN PaO2 in 24 h - hypoxia < 60 mmHg - hyperoxia > 300 mmHg 20 Ihle, CCR 2012 hosp. mortality, % 60 40 20 - MLR : no effect 0 NO2 HO2 0 hO2 NO2 HO2 se m hO2 Hyperoxia - cardiac arrest Guerra-Wallace, PCCM 2013 - PICU, 2004-2008 surv > 48 h, n = 74 PaO2 in 24 hr 6-mo mortality, % 20 - hypoxia < 60 mmHg - hyperoxia > 300 mmHg 10 - no difference 0 hO2 NO2 HO2 Hyperoxia - cardiac arrest Wang, Resusc 2014 Hyperoxia - cardiac arrest Wang, Resusc 2014 Hyperoxia - cardiac arrest Elmer, ICM 2015 - Pittsburgh, 2008-2010 surv > 24 h, n = 184 PaO2 exposure (h) - hypoxia < 60 mmHg - hyperoxia > 300 mmHg ir is - 1-hr HO2 ind. predictor of survival (OR 0.83) Hyperoxia - brain trauma Hyperoxia - stroke in ai re s Rincon, JNNP 2013 - 61 US hospitals, 5 yrs n = 12121 PaO2 in 24 h hosp. mortality, % - 84 US hospitals, 5 yrs n = 2894 PaO2 in 24 h * 40 - hypoxia < 60 mmHg - hyperoxia > 300 mmHg * - hypoxia < 60 mmHg - hyperoxia > 300 mmHg 20 - MLR predictor (OR 1.5) Rincon, CCM 2014 hosp. mortality, % 60 * * 40 20 - MLR predictor (OR 1.2) 0 NO2 HO2 0 hO2 NO2 se m hO2 Hyperoxia - cardiac arrest - 120 US hospitals, 5 yrs - same as before highest PaO2 in 24 h n = 4459 (excl. hO2) - continuous trend - MLR indep. predictor (OR 1.24 / 100 mmHg) Kilgannon, Circ 2011 PaO2 target - routinely > 60 mmHg - ALI - ARDS - chronic hypercapnia - paraquat intoxication 55 - 80 mmHg ~ 50 mmHg ~ 40 mmHg (lactate) - acute myoc. infarction - acute brain injury 80 - 100 mmHg 80 - 100 mmHg HO2
© Copyright 2026 Paperzz