Ex 6030: Thermionic emission of electrons Submitted by: Dotan Davidovich The problem: A piece of metal (”Cathode”) is placed inside a vacuum metal tube (”Anode”). The cathode has a work function W and surface A and is held at temperature T . Calculate the saturation current Is (V → ∞) . a)For T W b)For T W The solution: a) Under the assumption that the electron gas inside the metal is in a state of quasi-static thermal equilibrium we use the velocity distribution: F(v) = 2 · L3 · ( m 3 1 ) · f ( mv 2 − µ) · d3 v 2π 2 (1) Now, understanding qthat only incident electrons with kinetic energy larger than the potential barrier will escape (Vz ≥ 2·(Wm+µF ) ) and using the incident flux on a wall perpendicular to the Z axis , we get: Z Z ∞ Z ∞ F(v) m 3 2πV 0 dV 0 J = 2 · 3 · Vz = 2 · ( ) · Vz dVz · (2) 1 1 2 02 L 2π VZ 0 e−β( 2 mvz −µ) · eβ 2 mv + 1 min Integrating over the x − y velocities and using a dimensionless variable x = βW : J =2· m2 · 2π · T · (2π)3 Z ∞ 1 2 ln(1 + e−β( 2 mvz −µ) )Vz dVz = VZmin 4πm · T2 · (2π)3 Z ∞ ln(1 + e−x )dx (3) βW For T W we use ln(1 + e−x ) ≈ e−x : J= 4πmT 2 −βW ·e (2π)3 (4) The current density is : e · J , and for the saturation current all emitted electrons make it to the Anode : Is = e · J · A = e · A · 4πmT 2 −βW ·e (2π)3 (5) 1 b) For T W , realizing we are now in the classical regime : µ = T ln(n · λ3 ) (6) Subsituting into (4) we get : J =n·( T 1 −β 1 mvz2 )2 · e 2 2πm (7) 2
© Copyright 2026 Paperzz