VYTAUTAS MAGNUS UNIVERSITY LITHUANIAN FOREST RESEARCH INSTITUTE Kristina Dėdelienė SINGLE AND INTEGRATED IMPACT OF OZONE AND UV-B RADIATION ON SPRING BARLEY (Hordeum vulgare L.) Summary of Doctoral Dissertation Biomedical Sciences, Ecology and Environmental Sciences (03 B) Kaunas, 2007 The right of doctoral studies was granted to Vytautas Magnus University jointly with Lithuanian Forest Research Institute on July 15, 2003, by the decision No. 926 of the Government of the Republic of Lithuania. Dissertation was performed at Vytautas Magnus University in 2003-2007. Scientific Supervisor: prof. habil. dr. Romualdas Juknys (Vytautas Magnus University, Biomedical Sciences, Ecology and Environmental Sciences 03 B). Council of defence of the doctoral dissertation: Chairman: prof. habil. dr. Vida Stravinskienė (Vytautas Magnus University, Biomedical Sciences, Ecology and Environmental Sciences 03 B). Members: doc. dr. Natalija Burbulis (Lithuanian University of Agriculture, Biomedical Sciences, Agronomy 06 B); prof. habil. dr. Remigijus Ozolinčius (Lithuanian Forest Research Institute, Biomedical Sciences, Ecology and Environmental Sciences 03 B); dr. Vida Rančelienė (Institute of Botany, Biomedical Sciences, Botany 04 B); doc. dr. Jonė Venclovienė (Vytautas Magnus University, Biomedical Sciences, Ecology and Environmental Sciences 03 B). Oponents: dr. Danguolė Raklevičienė (Institute of Botany, Biomedical Sciences, Botany 04 B); dr. Vidas Stakėnas (Lithuanian Forest Research Institute, Biomedical Sciences, Ecology and Environmental Sciences 03 B). The official defence of the dissertation will be held at 2 p.m. on November 30, 2007 at a public meeting in the 605 hall at Vileikos st. 8. Address: Vileikos st. 8, LT-44404, Kaunas, Lithuania Phone: (+37037327904) Summary of doctoral dissertation was sent out on October 2007. The dissertation is available at M. Mažvydas National Library of Lithuania and the libraries of Vytautas Magnus University and Lithuanian Forest Research Institute. 2 VYTAUTO DIDŽIOJO UNIVERSITETAS LIETUVOS MIŠKŲ INSTITUTAS Kristina Dėdelienė PRIEŽEMIO OZONO IR UV-B SPINDULIUOTĖS DIFERENCIJUOTAS IR KOMPLEKSINIS POVEIKIS VASARINIAMS MIEŽIAMS (Hordeum vulgare L.) Daktaro disertacijos santrauka Biomedicinos mokslai, ekologija ir aplinkotyra (03 B) Kaunas, 2007 3 Doktorantūros ir daktaro mokslų laipsnių teikimo teisė suteikta Vytauto Didžiojo universitetui kartu su Lietuvos miškų institutu 2003 m. liepos mėn. 15 d. Lietuvos Respublikos Vyriausybės nutarimu Nr. 926. Disertacija rengta 2003-2007 metais Vytauto Didžiojo universitete. Mokslinis vadovas: prof. habil. dr. Romualdas Juknys (Vytauto Didžiojo universitetas, biomedicinos mokslai, ekologija ir aplinkotyra 03 B) Disertacijos gynimo taryba: Pirmininkė: prof. habil. dr. Vida Stravinskienė (Vytauto Didžiojo universitetas, biomedicinos mokslai, ekologija ir aplinkotyra 03 B). Nariai: doc. dr. Natalija Burbulis (Lietuvos žemės ūkio universitetas, biomedicinos mokslai, agronomija 06 B); prof. habil. dr. Remigijus Ozolinčius (Lietuvos miškų institutas, biomedicinos mokslai, ekologija ir aplinkotyra 03 B); dr. Vida Rančelienė (Botanikos institutas, biomedicinos mokslai, botanika 04 B); doc. dr. Jonė Venclovienė (Vytauto Didžiojo universitetas, biomedicinos mokslai, ekologija ir aplinkotyra 03 B). Oponentai dr. Danguolė Raklevičienė (Botanikos institutas, biomedicinos mokslai, botanika 04 B); dr. Vidas Stakėnas (Lietuvos miškų institutas, biomedicinos mokslai, ekologija ir aplinkotyra 03 B). Disertacija bus ginama viešame Ekologijos ir aplinkotyros mokslo krypties tarybos posėdyje 2007 m. lapkričio 30 d. 14 val. Vytauto Didžiojo universiteto II rūmuose, Vinco Čepinskio tiksliųjų mokslų skaitykloje, Vileikos g. 8-605. Adresas: Vileikos g. 8, LT-44404, Kaunas, tel. (faksas) +370 37 327904. Disertacijos santrauka išsiųsta 2007 m. spalio mėn. d. Su disertacija galima susipažinti Lietuvos nacionalinėje M. Mažvydo bibliotekoje ir Vytauto Didžiojo universiteto bei Lietuvos Miškų instituto bibliotekose. 4 Introduction Ever more urgent have become environmental problems related to changes in the concentrations of ozone in the stratosphere and troposphere. Since the beginning of 1980s a quite rapid depletion of the stratospheric ozone layer and the increase of the ultraviolet radiation intensity have been observed (Krizek et al., 1998). Based on the data of different institutions, the stratospheric ozone layer since the beginning of 1980s has significantly depleted, and in 1997-2001 average ozone layer in the world was by 3 % thinner than in 1980 (WMO, 2003). Ozone layer in Europe over the same period has depleted by about 7 % (EEA, 2003). The stratospheric ozone layer protects life on the Earth from the sun's harmful ultraviolet (UV) rays. Reductions in atmospheric ozone are expected to result in higher amounts of ultraviolet-B (UV-B) radiation reaching the Earth's surface (Cicerone, 1987). Another problem related to ozone is increasing tropospheric ozone level. Solar UV drives photolysis of NO2, as a main precursor of ozone, and leads to the production of O3 in the troposphere (Thompson et al., 1991; Wayne, 2000). During more than 20 years of monitoring an obvious annual increase of the mean ground level ozone concentrations has been observed: 0.9 µg m-3 (Girgždienė, Girgždys, 2003). The diurnal mean ozone concentrations for the growing season are rather often higher as compared with the target value of 65 µg m-3. Concentrations of the surface ozone also exceeded the levels affecting human health. Mean daily value of UV-B radiation in Lithuania on sunny days may comprise 2,5 kJ m-2 d-1 (Chadyšienė et al., 2005), while in other latitudes the intensity of UV-B radiation increase up to 11 kJ m-2 d-1 (Frederick et al., 2000). Studies conducted by different authors show that the impact of UV-B on plants is versatile. UV-B radiation causes a reduction in plant height, fresh and dry biomass, amounts of chlorophylls and carotenoids (Ambasht, Agrawal, 1997, 1998; Correia et al., 1999a; Mazza et al., 1999; Nasser, 2001). Studies have shown that UV-B radiation significantly affected the growth parameters of barley plants, such as plant length, tiller number, leaf area, fresh and dry weight of plants (Nasser, 2001). Crepis capillaris plants were irradiated by UV-B doses in the range of 0-9 kJ m-2d-1. A significant effect on plant growth (expressed in fresh and dry plant weight, leaf area), superoxide dismutase (SOD) activity and protein content in the leaves was exerted by irradiation with even the lowest (1 kJ m-2 d-1) UV-B dose (Rančelienė et al., 2005). Ozone experiments with trees and plants have shown that elevated tropospheric ozone concentrations induced external lesion of plants, had a negative impact on growth and photosynthetic apparatus (Skärby, 1994; Küppers et al., 1994; Miller et al., 1994; Fiscus et al.,1994; Fiscus and Booker, 1995). Ozone, as one of the most powerful agents of oxidative stress, forms free radicals and may result in a wide range of physiological changes, such as alteration of membranes, reduction in the amount and activity of Rubisco, acceleration of leaf senescence (Ludwikow et al., 2004). Normally, under natural conditions, organisms and ecosystems are subjected to the influence of many different stress factors. Increasing levels of ozone and UV-B radiation have negative impact on plant vegetation, cause morphological and physiological alterations of all plant organisms (Runeckles and Krupa, 1994; Caldwell et al., 1995). However, there data showing that even a small amount of UV-B radiation 5 may have an adverse effect on the stress tolerance of plants. For instance, data indicate that UV-B radiation, applied together with O3, ameliorates the detrimental effects of O3 (Schnitzler et al., 1999). Adaptation possibilities of plants to environmental and climatic changes are becoming as a one of the most topical scientific issues and have an indubitable practical value. The increase of tropospheric ozone concentration and UV-B radiation in nature has lead to the investigations of the vegetation of spring barley plants under controlled environmental conditions. Despite a large number of studies on the single effect of UV-B radiation and ozone on plant organism, an integrated impact of the present factors and possibilities of cross adaptation has been investigated on a relatively rare. In Lithuania such investigations have been carried out since 2003, as a part of the project “Integrated impact of anthropogenic climatic and environmental changes to the vegetation of forest and agro-ecosystems”, financed by the Lithuanian State Science and Studies Foundation. Objective of the research The objective of this research was to investigate the impact of tropospheric ozone and UV-B radiation on spring barley (Hordeum vulgare L.) and adaptation possibilities of barley to single and integrated impact of these factors. The research was based on the following hypothesis: spring barley plants adapted to one stressor have higher capacity for physiological acclimation not only to the same factor, but also acquires resistance to other negative environmental factors. Main tasks of the research: 1. To determine the limits of spring barley tolerance to the impact of UV-B radiation. 2. To determine the limits of spring barley tolerance to the impact of ozone. 3. To investigate the response of different barley cultivars to elevated UV-B radiation. 4. To investigate the response of different barley cultivars to elevated tropospheric ozone concentration. 5. To estimate the effect of UV-B radiation on spring barley under different amount of photosynthetically active radiation (PAR). 6. To investigate single and integrated impact of tropospheric ozone and UV-B radiation on spring barley plants and barley adaptation possibilities to the impact of these factors. Scientific novelty It was first time in Lithuania investigated the impact of elevated ozone and UV-B radiation on different cultivars of spring barley. Adaptation possibilities to single and integrated impact of ozone and UV-B radiation on spring barley were investigated and the limits of barley tolerance to these factors were established. 6 Materials and methods Spring barley (Hordeum vulgare L.), as one of the most widely grown cereal crops in Lithuania, has been chosen as the object of this study. Experiments were carried out in growth chambers of controlled environment at Vytautas Magnus University (VMU) and in the Lithuanian Institute of Horticulture (LIH) during 2003-2007, as a part of the national scientific project “Integrated impact of anthropogenic climatic and environmental changes to the vegetation of forest and agroecosystems”. Fig. 1. Spring barley in phytotron chambers of controlled environment at Vytautas Magnus University (VMU) and in the Lithuanian Institute of Horticulture (LIH) Plants were sown and grown in peat substrate (pH 6,0-6,5). A photoperiod of 16 h was used and air temperature of 21/17oC (day/night) was maintained in phytotron chambers throughout the experiment. The impact of tropospheric ozone and UV-B radiation on plants were investigated. Ozone concentration was generated using ozone generator OSR-8 (Ozone Solutions, Inc.). UV-B radiation was generated using UV-B lamps (TL 40W/12 RS UV-B Medical, Philips). The UV-B doses were measured with a VLX-3 radiometer (Vilber-Lourmat, France). The concentration of carotenoids and chlorophylls a and b was determined in 100 % acetone by the method of D.Wettstein with a spectrophotometer at 662, 644 and 440.5 nm for chlorophyll a, chlorophyll b and carotenoids, respectively (Brazaitytė, 1998). Glutathione concentration was extract by the method of J.V.Gronwald et al. (1987). 25 barley plants were sown and grown in 3 l pots in VMU and in 5 l pots in LIH. Each investigated variant was repeated three times. Impact of ultraviolet (UV-B) radiation on the morphological and physiological indices of spring barley In order to determine the limits of tolerance to ultraviolet-B radiation, the effect of different UV-B doses on morphological and physiological indices of spring barley were investigated. Investigations were carried out at the phytotron complex of the Lithuanian Institute of Horticulture. Spring barley cultivar ‘Aura’ was chosen as the object. Plants were exposed to 0 (reference treatment), 1, 3, 5, 7 and 9 kJ m-2 d-1 UV-B radiation doses for five days. 7 Impact of ozone (O3) to the morphological and physiological indices of spring barley The impact of ozone on spring barley was investigated in the phytotron complex of the Lithuanian Institute of Horticulture. The cultivar of spring barley ‘Aura’ was analysed. Different ozone concentrations were maintained as follows: 0 (reference treatment), 120, 240 and 360 g m-3. Plants were treated with the following ozone concentrations 7 h per day, 5 days per week. Impact of elevated UV-B radiation on different spring barley cultivars Seven cultivars of spring barley: ‘Aura’, ‘Annabell’, ‘Henni’, ‘Tolar’, ‘Jersey’, ‘Scarlet’ and ‘Barke’ were grown under controlled conditions in the growth chambers at the Vytautas Magnus University. After seven days of growth plants were divided in to two halves. One half of each cultivar of barley plants was irradiated with 8 kJ m-2 d-1 UV-B radiation. The other part of barley was grown in the reference treatment chamber (zero UV-B radiation). Impact of elevated ozone on different spring barley cultivars Seven cultivars of spring barley (‘Aura’, ‘Annabell’, ‘Henni’, ‘Tolar’, ‘Jersey’, ‘Scarlet’ and ‘Barke’) were grown in the phytotron complex of the Lithuanian Institute of Horticulture. After seven days of growth the plants were divided in to two halves. One half of each cultivar of barley plants was exposed to 240 g m-3 ozone concentration. Plants were exposed for five days, 7 h per day. The other part of barley was grown in the reference treatment chamber where ozone concentration was 0 g m-3. The effect of UV-B radiation on spring barley under different amount of photosynthetically active radiation (PAR) Spring barley plants were grown in different growth chambers in different places: Lithuanian Institute of Horticulture and Vytautas Magnus University. For the first experiment plants were grown in a greenhouse of the Lithuanian Institute of Horticulture (LIH), prior to being transfered to the growth chamber. In the greenhouse plants received a natural amount of photosynthetically active radiation (PAR). For the second experiment, the plants were grown in chambers at Vytautas Magnus University (VMU) all the time and received a relatively small amount of PAR. Spring barley cultivar ‘Aura’ was chosen as the object. In LIH plants were grown in the greenhouse for eleven days after sowing, with illumination of 20 000 lux. Then plants were transfered to the phytotron chamber. After transfer, the plants were acclimated for two days before being exposed to UV-B radiation. Plants were exposed for five days to 0 (control), 1, 3, 5, 7 and 9 kJ m-2 d-1 UV-B radiation. In VMU, during all the time of experiment plants were grown in a growth chamber, with illumination of 5 000 lux. After six days plants were exposed to 0 (reference treatment), 1, 2, 3, 4, 6, 8 and 10 kJ m-2 d-1 UV-B radiation. The duration of exposure was five days. 8 Single and integrated impact of tropospheric ozone and UV-B radiation on spring barley plants and barley adaptation possibilities to the single and integrated impact of these factors Single and integrated impact of tropospheric ozone and UV-B radiation on spring barley (Hordeum sativum L.) plants has been investigated in the phytotron complex of the Lithuanian Institute of Horticulture. Spring barley cultivar ‘Aura’ was chosen as the object of this investigation. Plants for nine days after sowing were grown in a greenhouse. Then plants were transfered to phytotron chambers. There were two stages of experiment. During the first (adaptation) stage barley seedlings were adapted for five days to a relatively low UV-B radiation (3 kJ m-2 d-1) or to a relatively low concentration of ozone (120 g m-3). Other part of plants was grown without exposure to UV-B or ozone (reference treatment) (Fig. 2). In the second (main impact) stage, investigated plants for five days were exposed to 9 kJ m-2 d-1 UV-B dose or to 360 g m-3 ozone. Untreated plants were also exposed to a higher UV-B dose or higher ozone concentration. Besides, three vegetative pods during all the time of experiment were grown in the control chamber (absolute control). Adaptation impact UV-B – 3 kJ m-2 d-1 UV-B UV-B UV-B UV-B Reference R Main impact UV-B – 9 kJ m-2 d-1 R UV-B R O3 O3 O3 O3 O3 Adaptation impact O3 – 120 µg m-3 Main impact O3 – 360 µg m-3 Fig. 2. Scheme of single and integrated impact of ozone and ultraviolet (UV-B) radiation A photoperiod of 16 h was used and air temperature of 21/17oC (day/night) was maintained in phytotron chambers throughout the experiment. The experiment lasted for 23 days. Statistical data analysis The results were statitically analysed with the analysis of variance in a twofactor method and regresion analysis. The t-test and Mann-Whitney U test were applied for the evaluation of the significance of differences at the confidence level p0.05. The data were analysed by STATISTICA statistical program. 9 Results and discussion Impact of ultraviolet (UV-B) radiation on the morphological and physiological indices of spring barley Plant height, cm nnn In order to determine the limits of tolerance to UV-B radiation, the impact of different UV-B doses on the growth of spring barley were investigated. Plants were exposed to 0 (reference treatment), 1, 3, 5, 7 and 9 kJ m-2 d-1 UV-B radiation doses. Data relating to the impact of UV-B radiation on the growth of spring barley are presented in Figure 3. UV-B radiation caused a significant reduction in plant height (p0.05), in comparison with the reference treatment. It was determined that even 1 kJ m-2 d-1 UV-B radiation has reduced plant height of spring barley by 3 %. UV-B radiation dose of 5 kJ m-2 d-1 has diminished plant height – by 4 %, 7 kJ m-2 d-1 – by 10 % and 9 kJ m-2 d-1 – by 6 %. 41 40 39 38 37 36 35 34 0 1 3 5 -2 7 9 -1 kJ m d Fig. 3. The impact of different UV-B doses: 0, 1, 3, 5, 7 and 9 kJ m-2 d-1 on the height of spring barley plants UV-B caused decrease in fresh and dry weight of the aboveground part of barley (Fig. 4). Fresh and dry weight of plants decreased with increasing UV-B dose. Fresh weight under 1 kJ m-2 d-1 UV-B radiation decreased by 22 %, and the difference from the reference treatment was statistically significant (p0.05). UV-B radiation dose of 3 kJ m-2 d-1 has diminished fresh weight of plants by 33 %. It was found that UV-B radiation dose of 7 kJ m-2 d-1 even by 43 % reduced biomass accumulation. Plant biomass decreased by 38 % when treated with 9 kJ m-2 d-1 UV-B radiation dose, as compared to the reference treatment Dry weight of spring barley has significantly decreased even after UV-B irradiation with the lowest 1 kJ m-2 d-1 dose (p0.05). Plants dry weight decreased by 34 %, treated with 9 kJ m-2 d-1 UV-B radiation dose. 10 220 ±1.96*Std. Err. ±1.00*Std. Err. Mean 1700 1500 1300 1100 Dry weight, mg Fresh weight, mg 1900 ±1.96*Std. Err. ±1.00*Std. Err. Mean 200 180 160 140 120 100 900 0 1 3 5 7 0 9 1 3 5 7 9 kJ m-2 d-1 kJ m-2 d-1 Fig. 4. Impact of different UV-B doses: 0, 1, 3, 5, 7 and 9 kJ m-2 d-1 on fresh and dry weight of the aboveground part of spring barley plants mg g -1 Data related to the impact of UV-B radiation on the content of photosyntetic pigments of spring barley are presented in Figure 5. The content of a and b chlorophyll in the leaves of spring barley decreased with increasing UV-B dose. Plants treated with 1 kJ m-2 d-1 UV-B had by 7 % less chlorophyll a and even by 15 % less chlorophyll b, but this reduction was not significant, as compared to the reference treatment. A significant reduction in the content of chlorophyll a and b was detected under 3 kJ m-2 d-1 UV-B radiation dose (p0.05). In this dose variant, the content of chlorophyll a and b in barley leaves decreased by 26.5 % and 27.5 %, respectively. After irradiation with 5 kJ m-2 d-1 UV-B dose, chlorophyll a content decreased by 30.5 %, chlorophyll b – by 45 %. In the highest investigated UV-B dose variant (9 kJ m-2 d-1) chlorophyll a content decreased even by 50 %, chlorophyll b – by 48 %. No significant differences were observed in chlorophyll a/b ratio in the leaves of spring barley exposed to different UV-B doses. 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.4 0.3 0.2 0.1 0.0 1 3 5 7 9 2.5 0 c 2.0 -1 b 0.5 0 mg g 0.6 a 1 3 5 7 9 4.0 d 3.0 1.5 2.0 1.0 1.0 0.5 0.0 0.0 0 1 3 5 kJ m-2 d -1 7 9 0 1 3 5 7 9 -2 -1 kJm d Fig. 5. Impact of different UV-B doses: 0, 1, 3, 5, 7 and 9 kJ m-2 d-1 on the content of photosynthetic pigments: a – chlorophyll a, b – chlorophyll b, c – total chlorophyll a and b content, d – chlorophyll a/b ratio in leaves of spring barley plants 11 Glutathione concentration mg g -1 A decrease in photosynthetic pigments during exposure to UV-B radiation is in agreement with the previous studies (Li et al., 2000a; Alexieva et al., 2001; Zu et al., 2003). However, our results are contrasting with the data of N.K. Ambasht, M. Agrawal (1995) and C.M. Correia et al. (1999b). Their results suggest that chlorophyll content in the leaves of investigated plants increased under exposure to UV-B radiation. Biochemical analysis has shown that UV-B radiation causes the increase of the total glutathione concentration in the tissues of barley leaves by more than three times (Fig. 6). 180 160 140 oxidized total 120 100 80 60 40 20 0 Reference UV-B Fig. 6. Impact of UV-B radiation on the glutathione concentration in the tissues of spring barley leaves The impact of UV-B radiation reduced also the ratio of reduced and oxidized glutathione. The leaves of the reference treatment plants contained 49.7 % of reduced glutathione from the total amount, meanwhile, in the leaves affected by UV-B radiation it decreased down to 35.4 %. Increases in glutathione concentration suggest that in plants are activated adaptation processes. However decrease of reduced glutathione means that it is used for neutralization of reactive oxygen species. Impact of ozone (O3) on the morphological and physiological indices of spring barley The impact of ozone on spring barley was investigated in the phytotron complex of the Lithuanian Institute of Horticulture. Ten days’ plants were exposed to 0 (reference treatment), 120, 240 and 360 g m-3 of ozone for five days per week, 7 h per day. The impact of ozone caused visible leaf injury and accelerated senescence of spring barley leaves. Data regarding the impact of ozone on the growth of spring barley are presented in Figure 7. No regular changes in plant height were observed. After exposure to 240 g m-3 ozone concentration, the height of plants had even an 12 Plant height, cm mm insignificant increase (5 %). Ozone stimulated genesis of new leaves. 52 50 48 46 44 42 0 120 240 360 g m-3 Fig. 7. Impact of different ozone concentrations (0, 120, 240 and 360 g m-3) on the height of spring barley plants Fresh and dry weight had a tendency to decrease with increasing ozone concentrations (Fig. 8). The results have shown that 120 g m-3 ozone concentration has decreased fresh weight by 17 %, 240 g m-3 ozone concentration – by 24 % and 360 g m-3 ozone concentration – 32 %. Dry weight of spring barley decreased with increasing ozone concentrations no so essentially. Exposure to 240 g m-3 ozone concentration decreased dry weight of plants by 8 %, 360 g m-3 ozone concentration – by 12 %. At the lowest ozone concentration dry weight was by 6 % higher in comparison to reference treatment, however difference was statistically insignificant (p>0.05). ±1.96*Std. Err. ±1.00*Std. Err. Mean Fresh weight, mg 2000 1800 1600 1400 1200 1000 800 330 290 270 250 230 210 0 120 g m-3 240 360 ±1.96*Std. Err. ±1.00*Std. Err. mean 310 Dry weight, mg 2200 0 120 240 360 g m-3 Fig. 8. Impact of different ozone concentrations (0, 120, 240 and 360 g m-3) on fresh and dry weight of spring barley plants It was determined that ozone negatively influenced chlorophyll a content and chlorophyll b content in the leaves of spring barley (Fig. 9). After exposure to 120 g m-3 ozone concentration, chlorophyll a content decreased by 12 %, 240 g m-3 ozone concentration – by 17 %, 360 g m-3 ozone concentration – by 35 %. After exposure to 120 g m-3 ozone concentration chlorophyll b content decreased by 17 %, 13 240 g m-3 ozone concentration – by 14 % and 360 g m-3 ozone concentration – by 35 %. These differences from reference treatment were statistically significant (p0.05) only at 360 g m-3 ozone concentration. The ratio of chlorophyll a and b remained unchanged. mg g -1 1.4 a 0.30 1.0 0.25 0.8 0.20 0.6 0.15 0.4 0.10 0.2 0.05 0.0 -1 b 0.00 0 mg g 0.35 1.2 120 240 360 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 c 0 120 240 μg m-3 360 120 240 360 d 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 120 μg m-3 240 360 Fig. 9. Impact of different ozone concentrations (0, 120, 240 and 360 g m-3) on the photosynthetic pigments content: a – chlorophyll a, b – chlorophyll b, c – total chlorophyll a and b content, d – chlorophyll a/b ratio in leaves of spring barley plants Studies of many investigators have indicated that sensitivity of different plant species to ozone impact is different. Our experimental data showed that spring barley was not very sensitive to the impact of ozone. Studies in Germany showed that winter and spring barley were highly resistant to ozone. Visible injury symptoms occurred only after exposure to higher than 300 g m-3 ozone concentrations (Wu and von Tiedemman, 2004). Impact of elevated UV-B radiation on different spring barley cultivars In this experiment, seven cultivars of spring barley: ‘Aura’, ‘Annabell’, ‘Henni’, ‘Tolar’, ‘Jersey’, ‘Scarlet’ and ‘Barke’ were irradiated with 8 kJ m-2 d-1 UV-B dose. UV-B radiation caused reduction in the growth of spring barley plants (Fig. 10). After exposure to UV-B radiation, the height of plants was by 15-26 % less in comparison to the reference treatment (zero UV-B dose). Differences from the reference treatment were statistically significant (p0.05) for all investigated cultivars. ‘Tolar’, ‘Annabell’ and ‘Aura’ cultivars were most affected by UV-B radiation, i.e. their height was reduced by 26.3, 22.9 and 22.7 % respectively. ‘Jersey’ and ‘Henni’ barley were least affected. Their height was by 14.6 and 17.1 % lower respectively, compared to the reference treatment. 14 Reference 45 Height, cm 40 34.9 32.8 35 30 26.9 33.6 31.9 33.0 31.1 29.2 28.0 26.2 23.5 UV-B 26.2 24.2 24.2 25 20 15 ‘Barke’ ‘Scarlet’ ‘Aura’ ‘Henni’ ‘Tolar’ ‘Jersey’ ‘Annabell’ 10 Fig. 10. Impact of UV-B radiation on the height of different spring barley cultivars Data related to the impact of UV-B radiation on the dry weight of different spring barley cultivars are presented in Figure 11. UV-B radiation caused an essential reduction in the dry weight of treated plants, in comparison to the reference treatment. Reference 45 Dry weight, mg aa 40 35 34.2 UV-B 37.0 34.9 35.9 30.2 30.3 30 23.5 25 20 18.7 19.3 19.8 16.1 21.3 15.8 19.2 15 ‘Barke’ ‘Scarlet’ ‘Aura’ ‘Henni’ ‘Tolar’ ‘Jersey’ ‘Annabell’ 10 Fig. 11. Impact of UV-B radiation on the dry weight of different spring barley cultivars Lithuanian spring barley cultivar ‘Aura’ was most susceptible to UV-B radiation. After exposure to UV-B radiation (8 kJ m-2 d-1), dry weight of ‘Aura’ was reduced by 57 %. ‘Scarlet’ and ‘Henni’ cultivars were most tolerant to UV-B radiation and their weight decreased by 30 % as compared to reference treatment. Data on the impact of UV-B radiation on the content of photosynthetic pigments in the leaves of different spring barley cultivars are presented in Table 1. Without exposure to UV-B, chlorophyll a content in barley leaves approximated 1 mg g-1 (0.90-1.14 mg g-1). After exposure to UV-B, chlorophyll a content in ‘Jersey’ leaves increased by 3.2 %, whereas chlorophyll content in other cultivars decreased. The least decrease in chlorophyll a content – 11.1 % was observed in ‘Henni’ barley leaves, the greatest change – 36.3 % was detected in ‘Barke’ leaves. After exposure to UV-B, chlorophyll b content increased in the leaves of ‘Jersey’ and ‘Henni’ cultivars. Chlorophyll b content in others cultivars has decreased. 15 After exposure to UV-B radiation, total content of chlorophyll a+b increased in the leaves of spring barley cultivar ‘Jersey’ by 4 %. The least content of chlorophyll a+b losses (3.5 %) were characteristic to ‘Henni’ cultivar and these differences from the reference treatment were statistically insignificant (p>0.05). Whereas content of chlorophyll a+b in ‘Tolar’ and ‘Barke’ barley leaves decreased by 35 % after UV-B exposure. It was found that the content of carotenoids increased after exposure to UV-B radiation from 18.5 to 88.9 % in different cultivars. Table 1. Impact of UV-B radiation on the content of photosynthetic pigments in the leaves of 7 spring barley cultivars mg g-1 Cultivars Treatment Reference ‘Annabell’ UV-B Reference ‘Jersey’ UV-B Reference ‘Tolar’ UV-B Reference ‘Henni’ UV-B Reference ‘Aura’ UV-B Reference ‘Scarlet’ UV-B Reference ‘Barke’ UV-B a 1.03*0.015 0.66*0.012 0.94*0.001 0.97*0.004 1.10*0.023 0.71*0.001 0.90*0.012 0.80*0.018 1.14*0.015 0.76*0.005 1.07*0.015 0.86*0.002 1.02*0.005 0.65*0.006 Chlorophyll content b a+b 0.36*0.011 1,39*0.020 0.33*0,001 0.99*0.012 0,28 0.011 1.22*0.011 0.30 0.008 1.27*0.010 0.33*0.016 1.43*0.017 0.22*0.002 0.93*0.003 0.25 0.029 1.15 0.029 0.30 0.008 1.11 0.010 0.34*0.010 1.48*0.007 0.29*0.012 1.06*0.017 0.31 0.004 1.38*0.012 0.30 0.014 1.16*0.016 0.31*0.004 1.33*0.008 0.21*0.001 0.86*0.008 a/b 2.89*0.098 2.03*0.032 3.40 0.141 3.25 0.087 3.35 0.223 3.22 0.029 3.66*0.457 2.67*0.127 3.38*0.140 2.61*0.089 3.47*0.087 2.89*0.126 3.26*0.023 3.12*0.019 Carotenoids content 0,31*0.027 0.42*0.001 0.27*0.004 0.51*0.010 0.33*0.008 0.47*0.001 0.27*0.004 0.32*0.003 0.34*0.014 0.54*0.006 0.31*0.001 0.43*0.005 0.30*0.001 0.39*0.004 * - significant difference at p<0.05. The impact of UV-B on various cultivars was different. According to the generalized changes in different investigated indices, the cultivars may be ranked from the least to the most sensitive to ultraviolet-B radiation as follows: ‘Henni’, ‘Scarlet’, ‘Jersey’, ‘Annabell’, ‘Aura’, ‘Barke’ and ‘Tolar’. Impact of elevated ozone on different spring barley cultivars The same seven cultivars of spring barley (‘Aura’, ‘Annabell’, ‘Henni’, ‘Tolar’, ‘Jersey’, ‘Scarlet’ and ‘Barke’) were exposed to ozone in the phytotron complex of the Lithuanian Institute of Horticulture. Exposure to 240 μg m-3 ozone concentration increased plant height of all 7 cultivars of spring barley (Fig. 12). After exposure to ozone, ‘Scarlet’ barley was by 20 % higher than the reference treatment plants. The height of ‘Tolar’ cultivar, exposed to ozone, increased by 15 %, ‘Annabell’ cultivar – by 3 %. 16 55 49.0 50 47.7 Height, cm 51.9 50.9 47.5 45.4 45 41.1 47.4 44.8 42.7 Reference Oз 50.4 48.4 44.1 42.6 40 35 30 25 ‘Barke’ ‘Scarlet’ ‘Aura’ ‘Henni’ ‘Tolar’ ‘Jersey’ ‘Annabell’ 20 Fig. 12. Impact of ozone on the height of different cultivars of spring barley Under ozone exposure dry weight of all 7 barley cultivars has decreased (Fig. 13). Their dry weight decreased from 19 to 39 %. The least changes in biomass as compared to reference treatment (zero ozone concentration) were observed for ‘Aura’ (19 %) and ‘Scarlet’ cultivars. The greatest changes in dry weight were observed for ‘Barke’ (36 %) and ‘Annabell’ (39 %) cultivars. 350 265.6 Dry weight, mg 300 250 192.3 Oз Reference 316.0 191.8 200 258.8 167.9 273.8 279.2 249.8 178.1 225.6 201.7 173.1 179.7 150 100 50 ‘Barke’ ‘Scarlet’ ‘Aura’ ‘Henni’ ‘Tolar’ ‘Jersey’ ‘Annabell’ 0 Fig. 13. Impact of ozone on the dry weight of different spring barley cultivars After exposure to ozone, total content of chlorophyll a+b in the leaves of all spring barley cultivars decreased (Table 2). The least losses of chlorophyll a+b (31 %) were detected for ‘Aura’ cultivar whereas the content of chlorophyll a+b in ‘Henni’ leaves decreased by 44 % and in ‘Scarlet’ leaves – by 52 % as compared to reference treatment. Data presented in Table 2 shows that the content of carotenoids in the leaves of all investigated cultivars decreased under ozone exposure. The content of carotenoids in ‘Jersey’, ‘Annabell’ and ‘Scarlet’ decreased by 20 %, 29 % and 33 %, respectively. The greatest losses in content of carotenoids were detected for ‘Henni’ cultivar – 41 %. Table 2. Impact of ozone on the content of photosynthetic pigments in the leaves of 7 17 spring barley cultivars mg g-1 Cultivars Treatment ‘Annabell’ ‘Jersey’ ‘Tolar’ ‘Henni’ ‘Aura’ ‘Scarlet’ ‘Barke’ Reference O3 Reference O3 Reference O3 Reference O3 Reference O3 Reference O3 Reference O3 a 1.44*0.311 0.73*0.014 1.26*0.078 0.72*0.004 1.19*0.026 0.70*0.068 1.15*0.081 0.60*0.037 1.07*0.052 0.73*0.038 1.17*0.109 0.52*0.121 1.22*0.039 0.66*0.075 Chlorophyll content b a+b 0.86*0.512 2.29*0.823 0.24*0.014 0.97*0.026 0.37 0.021 1.63 0.099 0.35 0.008 1.08 0.010 0.36*0.015 1.55*0.039 0.22*0.015 0.92*0.083 0.36*0.037 1.51*0.119 0.24*0.022 0.84*0.057 0.34 0.025 1.41 0.075 0.25 0.024 0.98 0.061 0.41*0.028 1.58*0.138 0.23*0.054 0.76*0.161 0.37*0.018 1.59*0.056 0.27*0.033 0.92*0.104 a/b 2.54 0.727 3.06 0.147 3.36*0.051 2.25*0.087 3.35 0.094 3.24 0.105 3.24*0.099 2.54*0.124 3.18 0.120 2.93 0.141 2.80 0.074 2.33 0.369 3.27*0.078 2.50*0.185 Carotenoids content 0.38*0.008 0.27*0.015 0.40 0.020 0.32 0.010 0.40*0.006 0.27*0.031 0.37*0.019 0.22*0.006 0.41*0.012 0.27*0.005 0.39 0.028 0.26 0.052 0.38*0.008 0.24*0.011 * - significant difference at p<0.05. According to the generalized changes in different indices the cultivars were ranked from the least to the most sensitive to ozone: ‘Aura’, ‘Jersey’, ‘Tolar’, ‘Barke’, ‘Henni’, ‘Annabell’ and ‘Scarlet’. It is necessary to note that sensitivity of investigated barley cultivars to ozone impact different essentially from their reaction to UV-B radiation and most sensitive to the impact of ozone were most resistant to the impact of UV-B. The impact of UV-B radiation on spring barley under different intensity of photosynthetically active radiation (PAR) The threshold of UV-B damage is dependent on the quantity and quality of photosynthetically active radiation (PAR). In order to evaluate the effect of PAR, spring barley before exposure to UV-B were grown in different light conditions. For the first experiment, plants were grown in a greenhouse of the Lithuanian Institute of Horticulture (LIH), before being transferred to growth chamber. In the greenhouse plants received a natural amount of photosynthetically active radiation (PAR) (20000 Lx). For the second experiment, the plants were grown in chambers at Vytautas Magnus University (VMU) all the time and received a relatively small amount of PAR (5000 Lx). Height increment dependence of spring barley on UV-B in different experiments is presented in Figure 14. Height increment of barley in the reference treatment and minimal UV-B radiation (1 kJ m-2 per day) variant differed insignificantly. With increasing dose of UV-B radiation, height increment of barley of the first experiment, where illumination was 20000 Lx, remained almost unchanged, while the height of barley of the second experiment, where intensity of PAR was 5000, was gradually decreasing. Under 18 Height increment, cm 2 kJ m-2 d-1 dose, it statistically reliably (p<0.05) differed from the reference treatment. Under maximal daily dose of UV-B radiation (10 kJ m-2), height increment of this experiment was by 28 % lower that in reference treatment. kJ m-2d-1 Fig. 14. Dependence of spring barley height increment on UV-B radiation: 1 – normal light – 20000 Lx; 2 – reduced light conditions – 5000 Lx Dependence of aboveground mass on the dose of UV-B radiation is presented in Figure 15. Barley, grown under normal light conditions prior to UV-B exposure, had a considerably greater biomass, and its dependence on the dose of UV-B radiation was less expressed as in the case when barley was grown under reduced light conditions in phytotron chambers prior to exposure. Under maximal daily dose of UV-B radiation (9 kJ m-2), fresh weight of adapted to normal light barley plants in the first experiment was by 33 % lower than in reference treatment, while in the second experiment (barley grew under reduced light) this difference comprised 48 %. Fresh weight of barley exposed to UV-B rays was almost twice lower. 19 Fresh weight, mg kJ m-2d-1 Fig. 15. Dependence of spring barley fresh weight on UV-B radiation: 1 – under normal light – 20000 Lx (the left side); 2 – reduced light conditions – 5000 Lx (the right side) Dry weight, mg Dependence of the dry mass on the dose of UV-B radiation is less revealed (Fig.16). Under daily dose of 9 kJ m-2, biomass of adapted to normal light barley was by 28 %, while that of adapted to reduced light – by 33 % lower than in reference treatment. The fact that the fresh weight is more affected by UV-B radiation than the dry one may be explained by the fact that higher UV-B doses cause drying of leaves. kJ m-2d-1 Fig. 16. Dependence of spring barley dry weight on UV-B radiation: 1 – normal light – 20000 Lx (the left side); 2 – reduced light conditions – 5000 Lx (the right side) 20 mg g-1 Data on the dependence of chlorophyll a content in barley leaves on UV-B radiation dose are presented in Fig.17. The content of chlorophyll a in the leaves of adapted to normal light barley in all variants (including the reference treatment) was statistically significant (p<0.05) higher than in the leaves of barley adapted to reduced light. Under daily UV-B radiation dose of 9 kJ m-2, chlorophyll a content comprised only one third of the amount determined in reference treatment, however, in the experiment where barley was grown under normal light prior to UV-B exposure, the amount of chlorophyll was also twice lower. kJ m-2d-1 Fig. 17. Dependence of chlorophyll a content on UV-B radiation: 1 – normal light – 20000 Lx; 2 – reduced light conditions – 5000 Lx The content of chlorophyll b in reference treatment and that of minimal UV-B radiation dose (1 kJ m-2 per day) in both experiments was almost the same (Fig. 18). However, with increasing UV-B radiation dose, the content of chlorophyll b in the leaves decreased more in the experiment with reduced light. Under maximal daily UV-B radiation dose (9 kJ m-2), the content of chlorophyll b in the experiment with normal light conditions was by 47 % lower than in reference treatment. In the experiment with reduced light – 61 %. 21 mg g-1 kJ m-2d-1 Fig. 18. Dependence of chlorophyll b content on UV-B radiation: 1 – normal light – 20000 Lx; 2 – reduced light conditions – 5000 Lx Our results were similar to the conclusions of other authors (Caldwell et al., 1995) who showed that the negative effect of UV-B was stronger when plants received small amount of photosynthetically active radiation (PAR). Single and integrated impact of tropospheric ozone and UV-B radiation on spring barley and adaptation possibilities to the impact of these factors Adaptation possibilities of spring barley to the single and integrated impact of ozone and UV-B were performed on the basis of two stage experiments. During the first (adaptation) stage barley seedlings were adapted for five days to a relatively low UV-B radiation dose (3 kJ m-2 d-1) or to a relatively low concentration of ozone (120 g m-3). Other part of plants was grown without exposure to UV-B or ozone (reference treatment). In the second (main impact) stage, investigated plants for five days were exposed to the relatively strong – 9 kJ m-2 d-1 UV-B dose or to 360 g m-3 ozone in order to evaluate adaptation possibilities to the same factor or possibilities of cross adaptation. The unaffected during first phase of experiment plants were also exposed to the same UV-B dose or ozone concentration. Results demonstrated that after exposure to high ozone concentration (360 g m-3) or UV-B radiation (9 kJ m-2 d-1) during main impact period, spring barley grew better when they during the adaptation period were adapted to low ozone concentration or UV-B dose and plants height increment during main impact period was higher of that for no adapted plants (Fig. 19). That shows that spring barley affected by a low ozone concentration or UV-B radiation during the adaptation period adapts not only to the impact of the same stressor, but to the impact of other stressor as well. When barley during the adaptation period were adapted to a relatively low concentration of ozone and in the main impact period were exposed to a high ozone concentration (O3+O3), height increment of plants were by 6 % higher than the 22 reference treatment. These differences from reference treatment were statistically insignificant (p>0.05). Barley during the adaptation period adapted to a relatively low UV-B radiation dose, while in the main impact period exposed to high UV-B radiation dose (9 kJ m-2 d-1) height increment was by 58 % higher than that of barley which during the adaptation period was grown without the impact of UV-B or ozone. These differences from reference treatment were statistically significant (p<0.05). Height increment, mmnn 160 Adaptation impact Reference Ozone UV-B 140 120 100 80 60 40 20 0 Ozone Main impact UV-B Fig. 19. Height increment of spring barley over the period of the main impact, mm (adaptation impact – 3 kJ m-2 d-1 UV-B or 120 µg m-3 O3, main impact – 9 kJ m-2 d-1 UV-B and 360 µg m-3 O3) Cross-adaptation studies have shown that barley affected during the adaptation period to a low UV-B dose, while in the main impact period subjected to a high ozone concentration, have adapted to a certain degree to the impact of another stressor as well. Height increment of barley in this variant was on an average by 26 % higher and statistically significant (p<0.05) than that of plants grown in the reference treatment in the first stage. Similar cross-adaptation effect was determined when barley affected in the adaptation period by a low ozone concentration (120 µg m-3), while in the main impact period subjected to a high UV-B dose (9 kJ m-2 d-1). Height increment of barley in this variant was on an average by 25 % higher than that of plants grown without adaptation in the first stage. Data on the content of photosynthetic pigments in different variants of the experiment are provided in Fig. 20. In the variant of high ozone concentration the content of chlorophyll a in barley leaves was higher than in previously unaffected one, in the case when plants were adapted to a weak UV-B dose. In the period of the main impact, having exposed plants to an intensive UV-B radiation, higher concentration of chlorophyll a was found in the leaves of unadapted plants. Similar tendencies were ascertained in the studies of chlorophyll b as well as total amount of chlorophyll a+b. 23 -1 mg g 1.4 1.2 1 0.8 0.6 0.4 0.2 0 a -1 mg g Ozone b UV-B 0.4 0.2 0 UV-B 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Ozone c UV-B 0.8 d 0.6 0.4 0.2 0 Ozone -1 Reference 0.6 Ozone mg g Adaptation impact 0.8 UV-B 3.5 3 2.5 2 1.5 1 0.5 0 Ozone e Ozone UV-B Main impact UV-B 3.5 3 2.5 2 1.5 1 0.5 0 f Ozone UV-B Main impact Fig. 20. Content of photosynthetic pigments: a – chlorophyll a content; b – chlorophyll b content; c – a+b; d – amount of carotenoids; e – a/b; f – carotenoids/a+b The leaves of barley, when plants were grown without any stressors (absolute control) contained about 0.38 mg g-1of carotenoids. The amount of carotenoids in the leaves of spring barley, exposed to ozone, decreased. Meanwhile, UV-B radiation stimulated the formation of higher amounts of carotenoids in the leaves of spring barley. Adaptation mechanisms haven‘t been elicited yet, but it is known that plants employ different protection systems to avoid stressors. It was ascertained that the reaction of plants to stressors is similar (Krupa, 2003; Fujibe et al., 2004). The impact mechanisms of ozone and UV-B radiation are similar as well (Willekens et al., 1994). A. Polle (1997) has proved that low UV-B radiation can stimulate antioxidation systems and induce cross-tolerance to other environmental stressors. Our studies have shown that adaptation doses of UV-B radiation increased the tolerance of plants to extreme ozone concentrations. 24 Conclusions 1. Having conducted studies on UV-B radiation impact on spring barley, it was found that UV-B radiation of even 3 kJ m-2 d-1 caused observable damages on barley leaves, by about 30% decrease in fresh and dry biomass as well as the total content of chlorophylls a+b, meanwhile, in the variant with 9 kJ m-2 d-1 UV-B radiation dose, the content of chlorophylls decreased approximately two times. 2. Biochemical analysis has shown that 3 kJ m-2 d-1 UV-B radiation causes the increase of the total glutathione concentration in the tissues of barley leaves by more than three times. The effect of UV-B radiation reduced also the ratio of reduced and oxidized glutathione. The leaves of the reference treatment plants contained 49.7 % of reduced glutathione from the total amount, meanwhile, in the leaves affected by UV-B radiation it decreased down to 35.4 %. 3. Studies have shown that increasing ozone concentration had no statistically significant impact to height growth however inhibited biomass accumulation of spring barley. 360 µg m-3 ozone concentration reduced fresh biomass by about 32 %. The content of chlorophylls a and b decreased most in the variant with 360 µg m-3 ozone concentration and this reduction comprised about 35 %. The ratio of chlorophyll a/b remained almost unchanged. 4. The resistance of different cultivars to UV-B radiation differed. The most sensitive to UV-B radiation was detected to be the Lithuanian cultivar ‘Aura’ as well as foreign cultivars – ‘Barke’ and ‘Tolar’. As the most tolerant to UV-B radiation were detected ‘Henni’, ‘Scarlet’ and ‘Jersey’ cultivars. 5. The sensitivity of different barley cultivars to ozone impact differed from their reaction to UV-B radiation. ‘Aura’, ‘Tolar’ and ‘Jersey’ occurred to be most tolerant, while ‘Henni’, ‘Scarlet’ and ‘Annabell’ cultivars – sensitive to ozone impact. 6. Having compared the sensitivity of different barley cultivars to UV-B radiation and ozone impact, it can be seen that the reaction of the same cultivars to different stressors greatly differs. ‘Aura’ and ‘Tolar’ cultivars were sensitive to UV-B impact, however, resistant to ozone. ‘Henni’ and ‘Scarlet’, on the contrary, were sensitive to ozone, but resistant to UV-B radiation. 7. The sensitivity of spring barley to UV-B radiation depends on the intensity of photosynthetically active radiation. Under maximal investigated daily UV-B doze (9 kJ m-2), fresh biomass of adapted to normal light (20000 Lx) plants decreased by one-third, while that of grown under reduced light (5000 Lx) – almost twice. 8. Studies of spring barley adaptation possibilities to UV-B radiation and ozone impact have shown that barley adapts not only to the impact of the same stressor, but to the impact of other stressors as well. Studies of barley adaptation possibilities to the impact of the same stressor have revealed that height increment of barley affected during the adaptation period by a relatively low, while during the main impact period by a high UV-B dose, was by 58 % higher than in barley grown without preliminary adaptation. 9. Cross-adaptation studies have shown that barley affected during the adaptation period by a low UV-B dose, while in the main impact period subjected to a high ozone concentration, have adapted to a certain degree to the impact of another 25 stressor as well. Height increment of barley in this variant was on an average by 26 % higher than that of plants grown in the reference treatment in the first stage. Similar cross-adaptation process was determined when barley was affected during the adaptation period by a low ozone concentration (120 µg m-3), while in the main impact period subjected to a high UV-B dose (9 kJ m-2 d-1). Height increment of barley in this variant was on an average by 25 % higher than that of plants grown without adaptation in the first stage. 10. An increased content of chlorophylls (a, b, a+b), as compared to unadapted plants, was most often ascertained when in the main impact period plants were affected by a high ozone concentration, being primarily adapted to a low UV-B radiation. The content of carotenoids, as compared to unadapted plants, was higher in the variant of high ozone concentration with a prior adaptation to a low UV-B dose, as well as in plants of both stages, affected by UV-B radiation. 26 List of publication In peer-reviewed journals, referred in Intrnational scienticic databases: 1. Dėdelienė K., Brazaitytė A., Stankevičiūtė S. 2006. Vasarinių miežių adaptacija prie diferencijuoto ir kompleksinio UV-B ir ozono poveikio. Sodininkystė ir daržininkystė. Mokslo darbai. 25 (2), p. 107-117. ISSN 0236-4212 2. Brazaitytė A., Juknys R., Sakalauskaitė J., Šikšnianienė J.B., Januškaitienė I., Dėdelienė K., Sliesaravičius A., Ramaškevičienė A., Juozaitytė R., Šlepetys J., Kadžiulienė Ž., Lazauskas S., Duchovskis P. 2006. Žemės ūkio augalų fotosintezės sistemos tolerancija ozono ir UV-B spinduliuotės stresui. Sodininkystė ir daržininkystė. Mokslo darbai. 25 (2), p. 14-24. ISSN 0236-4212 3. Juknys R., Duchovskis P., Sliesaravičius A., Šlepetys J., Martinavičienė J., Brazaitytė A., Juozaitytė R., Lazauskas S., Dėdelienė K., Sakalauskaitė J., Romaneckienė R., Kadžiulienė Ž., Januškaitienė I. 2006. Anglies dioksido ir temperatūros diferencijuotas bei kompleksinis poveikis žemės ūkio augalams. Sodininkystė ir daržininkystė. Mokslo darbai. 25 (2), p. 3-13. 4. Juknys R., Dėdelienė K., Martinavičienė J., Blažytė A., Duchovskis P., Šikšnianienė J.B., Brazaitytė A. 2005. Vasarinių miežių (Hordeum sativum L.) jautrumo ultravioletinei (UV-B) spinduliuotei tyrimai. Sodininkystė ir daržininkystė. Mokslo darbai. 24 (2), p. 97-104. ISSN 0236-4212 5. Blažytė A., Dėdelienė K., Juknys R., Martinavičienė J., Brazaitytė A., Duchovskis P., Ramaškevičienė A. 2005. Kadmio ir vario poveikis ir augalų adaptacija prie šių metalų. Sodininkystė ir daržininkystė. Mokslo darbai. 24 (2), p. 113-121. ISSN 0236-4212 In conferences proceedings and other publications: 1. Dėdelienė K., Brazaitytė A., Stankevičiūtė S. 2006. Vasarinių miežių adaptacija prie diferencijuoto ir kompleksinio UV-B ir ozono poveikio. Mokslinės konferencijos “Augalų adaptyvumo didinimo ekologiniai ir biotechnologiniai aspektai” medžiaga [LSDI, Babtai, 2006 birželio 30]. Sodininkystė ir daržininkystė. Mokslo darbai. 25 (2), p. 107-117. 2. Dedeliene K., Baranauskis K., Sabajaviene G. 2005. Impact of ozone on spring barley (Hordeum sativum ssp.) photosynthetic pigments. Tarptautinės konferencijos “EcoBalt’2005” medžiaga [Riga, May 5-6, 2005]. – Ryga, 2005. – p. 12-13. 3. Blažytė A., Dėdelienė K. 2004. Augalų adaptacijos prie aplinkos stresorių poveikio tyrimai. 7-osios Lietuvos jaunųjų mokslininkų konferencijos ”Lietuva be mokslo – Lietuva be ateities“ medžiaga [VGTU, Vilnius 2004 kovo 25]. – Vilnius: Technika, 2004. – p. 291-296. CURRICULUM VITAE Name: KRISTINA DĖDELIENĖ Date of the birth 28 March, 1979 Education: 1985-1997 Kybartai K.Donelaitis Secondary school, Vilkaviškis district, Lithuania 1997-2001 Lithuanian University of Agriculture, Akademija, Kaunas district, Lithuania. BSc in Agriculture Sciences 2001-2003 Lithuanian University of Agriculture, Akademija, Kaunas district, Lithuania. MSc in Agriculture Sciences 2003-2007 PhD student in Department of Environmental Sciences, Vytautas Magnus University Research and professional experiences: 2004-2006 2007 09 Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania. Project “Integrated impact of antropogenic climatic and environmental changes to the vegetation of forest and agro-ecosystems”, laboratory Assistent Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania. Research Assistent Reziumė Vis aktualesnės tampa aplinkos problemos, susijusios su ozono kiekio pokyčiais stratosferoje ir troposferoje. Nuo XX amž. aštuntojo dešimtmečio pradžios fiksuojamas gana spartus stratosferos ozono sluoksnio irimas (Krizek et al., 1998). Įvairių institucijų tyrimų duomenimis stratosferos ozono sluoksnis nuo 1980 pradžios žymiai suplonėjo, 1997-2001 metais vidutinis ozono sluoksnis pasaulyje buvo 3 % plonesnis negu 1980 metais (WMO, 2003). Europoje per šį laikotarpį ozono sluoksnis suplonėjo apie 7 % (EEA, 2003). Ozono sluoksnis sugeria didelę dalį ultravioletinių spindulių ir apsaugo augalus bei kitus gyvus organizmus nuo žalingo poveikio. Ozono sluoksnio storis lemia UV-B spindulių srautą, todėl yrant ozono sluoksniui, didžiausią pavojų augalijai kelia ši ultravioletinės spinduliuotės spektro dalis (Cicerone, 1987). Kita su ozonu susijusi problema yra pagrindinio ozono pirmtako – azoto dioksido koncentracijos didėjimas troposferoje ir gana spartus priežemio ozono koncentracijos augimas. Priežemio ozono susidarymas yra endoterminė reakcija, jos vyksmą visų pirma sąlygoja į troposferą patenkančių ultravioletinių spindulių (UV) kiekis. Ultravioletiniai spinduliai skatina NO2 fotolizę (Thompson et al., 1991; Wayne, 2000). Per pastaruosius 20 metų Lietuvoje priežemio ozono koncentracija kasmet padidėjo po 0,9 µg m-3 (Girgždienė, Girgždys, 2003). Lietuvoje ozono koncentracija kai kuriais metų laikais viršija leistiną lygį. Vidutinė paros ozono koncentracija padidėjimo periodu viršija 65 µg m-3 lygį, kurį Pasaulinė sveikatos organizacija rekomenduoja laikyti paros ribine koncentracija. 28 Vidutinė UV-B spinduliuotės paros dozė Lietuvoje saulėtomis vasaros dienomis gali būti 2,5 kJ m-2 d-1 (Chadyšienė et al., 2005), o kitose platumose UV-B srauto intensyvumas pakyla iki 11 kJ m-2 d-1 (Frederick et al., 2000). Įvairių autorių atlikti tyrimai rodo, kad UV-B spinduliuotės poveikis augalams yra gana įvairiapusis. Dėl UV-B spinduliuotės poveikio sumažėja daugelio rūšių augalų augimas, žalioji ir sausoji biomasė, chlorofilų ir karotinoidų kiekis (Ambasht, Agrawal, 1997, 1998; Correia et al., 1999a; Mazza et al., 1999; Nasser, 2001). Nustatytas statistiškai patikimas UV-B spinduliuotės poveikis miežių augimo parametrams – aukščiui, atžalų kiekiui, lapo plotui, biomasei (Nasser, 2001). Tyrimuose su žaliąja kreisve (Crepis Capillaris (L.)) nustatyta, kad net nedidelės UV-B dozės – 1 kJ m-2 d-1 labai paveikia augalo augimą, SOD aktyvumą ir baltymų kiekį lapuose, genų, lemiančių kiekybinius požymius, raišką (Rančelienė ir kt., 2005). Priežemio ozono poveikio tyrimai miško ir lauko augalams rodo, kad didesnės koncentracijos priežemio ozonas sukelia įvairius išorinius augalų pažeidimus, sulėtina jų augimą bei padidina jautrumą kitiems natūraliems ir antropogeniniams stresoriams (Skärby, 1994; Küppers et al., 1994; Miller et al., 1994). Nustatyta, kad net nedidelės koncentracijos ozonas slopina jautrių augalų (ankštinių, javų) fotosintezę, vystymąsi ir augimą (Fiscus et al.,1994; Fiscus and Booker, 1995; Krupa, Kirckert, 1989). Nustatyta, kad ozonas kaip itin stiprus oksidatorius sukelia augalų oksidacinį stresą, pažeidžia ląstelių membranas ir plazmą, sutrikdo medžiagų apykaitos ir informacijos srautus, skatina senėjimo procesus (Ludwikow et al., 2004). Natūraliai gamtoje vienas teršalas niekada neveikia, organizmai ir ekosistemos yra veikiami daugelio skirtingų teršalų ir jų darinių. Didėjanti priežemio ozono koncentracija ir UV-B spinduliuotė daro neigiamą poveikį augalams, sukelia neigiamus jų morfologijos ir fiziologijos pokyčius (Runeckles and Krupa, 1994; Caldwell et al., 1995). Tačiau yra duomenų, kurie rodo, kad nedidelė UV-B spinduliuotė gali turėti netgi palankų poveikį augalų streso tolerancijai. Pavyzdžiui, pušų sodinukai buvo mažiau pažeisti ozono, kai prieš tai buvo paveikti UV-B spinduliuote. UV-B spinduliuotė sumažino žalingą ozono poveikį (Schnitzler et al., 1999). Augalų prisitaikymo galimybės prie besikeičiančių aplinkos ir klimato sąlygų yra itin aktualus klausimas ir turi neabejotiną praktinę reikšmę. Natūralioje aplinkoje didėjantis ozono ir UV-B spinduliuotės intensyvumas paskatino atlikti vasarinių miežių augimo tyrimus kontroliuojamomis sąlygomis. Nors nemažai darbų atlikta detalizuojant diferencijuotą UV-B spinduliuotės ir ozono įtaką augalams, tačiau kompleksinis šių veiksnių poveikis yra palyginti mažai tyrinėtas. Lietuvoje tokio pobūdžio tyrimai vykdomi nuo 2003 pagal Lietuvos valstybinio mokslo ir studijų fondo finansuojamą projektą “Antropogeninių klimato ir aplinkos pokyčių kompleksinis poveikis miškų ir agroekosistemų augmenijai”. Darbo tikslas – ištirti priežemio ozono ir ultravioletinės (UV-B) spinduliuotės poveikį vasariniams miežiams bei miežių adaptacijos prie diferencijuoto ir kompleksinio šių veiksnių poveikio galimybes. Darbo hipotezė. Augalai fiziologiškai prisitaikę prie vieno stresoriaus poveikio tampa atsparesni ne tik to paties, bet ir kitų neigiamų aplinkos veiksnių poveikiui. Tyrimų objektu buvo pasirinkti vasariniai miežiai (Hordeum vulgare L.), kaip vieni plačiausiai auginamų miglinių augalų Lietuvoje. Eksperimentai buvo atlikti Vytauto Didžiojo universiteto Aplinkotyros katedros ir Lietuvos sodininkystės ir daržininkystės Fiziologijos laboratorijos fitokamerų komplekse. Nustatytos vasarinių miežių tolerancijos sritys skirtingo intensyvumo priežemio ozono ir suintensyvėjusios UV-B spinduliuotės 29 poveikiui. Atlikti skirtingų veislių miežių reakcijos į šių veiksnių poveikį tyrimai. Siekiant išsiaiškinti vasarinių miežių adaptacijos prie UV-B ir ozono poveikio galimybes buvo atlikti tyrimai, kurie parodė, kad adaptacinio poveikio metu miežiai paveikti silpna UV-B spinduliuotės doze ar ozono koncentracija, prisitaikė ne tik prie to paties, bet ir prie kito iš tirtų veiksnių poveikio. Remiantis tyrimų rezultatais padarytos tokios išvados: 1. Nustatyta, kad jau 3 kJ m-2 d-1 UV-B spinduliuotė sukėlė matomus miežių lapų pažeidimus, apie 30 % sumažino žaliosios ir sausosios biomasės kaupimąsi bei chlorofilų a ir b sintezę, o 9 kJ m-2 d-1 UV-B spinduliuotės dozės variante chlorofilų kiekis sumažėjo du kartus. 2. Biocheminė analizė parodė, kad dėl 3 kJ m-2 d-1 UV-B spinduliuotės dozės poveikio miežių lapų audiniuose daugiau negu tris kartus padidėja bendra glutationo koncentracija. Taip pat UV-B poveikyje nustatytas glutationo redukuotos bei oksiduotos formų santykio sumažėjimas. Kontrolinių augalų lapuose redukuotas glutationas sudarė 49,7 % bendro jo kiekio, tuo tarpu UV-B spinduliuote paveiktų augalų lapuose jis sumažėjo iki 35,4 %. 3. Padidėjusi ozono koncentracija neturėjo esminės įtakos vasarinių miežių augimui į aukštį, skatino naujų lapų genezę ir tįstamąjį augimą, tačiau slopino biomasės kaupimąsi. 360 μg m-3 ozono poveikyje miežių žalioji biomasė sumažėjo apie 32 %. Ozonas slopino tiek chlorofilo a, tiek chlorofilo b sintezę. Chlorofilų a ir b kiekis 360 µg m-3 ozono poveikyje sumažėjo apie 35 %, o jų santykis beveik nepakito. 4. Skirtingų miežių veislių atsparumas UV-B spinduliuotei buvo nevienodas. Jautriausiai į UV-B spinduliuotės poveikį reagavo lietuviška veislė ‘Aura’ bei užsienio veislės – ‘Barke’ ir ‘Tolar’. Tolerantiškiausios UV-B poveikiui buvo ‘Henni’, ‘Scarlet’ ir ‘Jersey’ veislės. 5. Tirtų miežių veislių jautrumas ozono poveikiui labai skyrėsi nuo jų jautrumo UV-B poveikiui. ‘Aura’ ir ‘Tolar’ veislės įvertintos kaip tolerantiškos ozono poveikiui, o ‘Henni’ ir ‘Scarlet’ kaip veislės jautrios ozono poveikiui. 7. Vasarinių miežių jautrumas UV-B spinduliuotei priklauso nuo fotosintetiškai aktyvios spinduliuotės intensyvumo. Esant maksimaliai iš tirtų UV-B spinduliuotės paros dozei (9 kJ m-2), adaptuotų prie normalios šviesos (20000 Lx), augalų žalioji biomasė sumažėjo trečdaliu, o silpnesnėje šviesoje (5000 Lx) augintų – beveik du kartus, todėl interpretuojant UV-B poveikio rezultatus būtina atsižvelgti į FAS intensyvumą bandymų metu. 8. Vasarinių miežių adaptacijos prie UV-B spinduliuotės ir ozono poveikio galimybių tyrimai parodė, kad miežiai prisitaikė ne tik prie to paties, bet ir prie kito iš tirtų veiksnių poveikio (kryžminė adaptacija). Tiriant miežių adaptacijos galimybes prie to paties veiksnio poveikio, nustatyta, kad adaptacinio periodu metu paveiktų sąlygiškai silpna (3 kJ m-2 d-1), o pagrindinio etapo metu – stipria UV-B doze (9 kJ m-2 d-1), aukščio prieaugis buvo 58 proc. didesnis, nei be išankstinės adaptacijos augintų miežių prieaugis. Ozono atveju adaptacijos prie to paties veiksnio reiškinys nebuvo toks efektyvus, miežių aukščio prieaugis šiame variante vidutiniškai buvo tik 6 % didesnis, nei miežių, pirmajame poveikio etape augintų kontrolinėje kameroje, prieaugis. 9. Kryžminės adaptacijos tyrimai parodė, kad miežių adaptaciniame etape veiktų silpna UV-B doze (3 kJ m-2 d-1), o pagrindinio poveikio metu patyrusių didelės ozono koncentracijos (360 µg m-3) poveikį adaptavosi ir prie kito veiksnio poveikio. Miežių aukščio prieaugis šiame variante vidutiniškai buvo apie 26 proc. didesnis, nei pirmajame etape kontrolinėje kameroje augusių augalų. Panašus kryžminės adaptacijos reiškinys 30 užfiksuotas ir tuo atveju, kai adaptacinio periodo metu miežiai patyrė sąlygiškai silpną (120 µg m-3) ozono poveikį, o pagrindinio poveikio metu buvo paveikti stipria UV-B doze (9 kJ m-2 d-1). Šiame variante miežių prieaugis į aukštį buvo 25 proc. didesnis, nei be išankstinės adaptacijos augintų miežių prieaugis. 10. Chlorofilų kiekio pokyčiai nebuvo tokie dėsningi, kaip augimo intensyvumo atveju. Padidėjęs chlorofilų (a, b, a+b) kiekis, lyginant su neadaptuotais augalais, buvo nustatytas tik tuo atveju, kai augalai buvo adaptuoti prie silpno UV-B spinduliuotės poveikio, o pagrindinio poveikio periodu paveikti didele ozono koncentracija. Karotinoidų kiekis buvo didesnis, lyginant su neadaptuotais augalais, didelės ozono koncentracijos ir prieš tai adaptuotame prie silpnos UV-B dozės variante, taip pat abiejuose tyrimo etapuose patyrusių UV-B spinduliuotės poveikį. 31
© Copyright 2026 Paperzz