Document

Supplementary Material
Identifying the sources and sinks of CDOM/FDOM across the
Mauritanian Shelf and their potential role
in the decomposition of Superoxide (O2-)
Authors: Maija, I. Heller1,2, * Kathrin Wuttig1,3 and Peter L. Croot1,4
1
Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel,
Duesternbrooker Weg 20, 24105 Kiel, Germany
2
Department of Ocean Sciences, University of California, Santa Cruz, CA, United States,
[email protected]
3
Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania,
Private Bag 80, Hobart Tasmania 7001, Australia, [email protected]
4
Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland
Galway (NUIG), [email protected]
Comprising:
9 Pages
5 Tables
1 Figure
* Corresponding Author: [email protected]
Table S1: Location of the trace metal clean sampled Goflo stations of this present study
Stn.
MSM17-4
336
352
356
382
404
454
456
491
493
514
517
525
527
541
543
592
Sampling
gear
Nr.
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
GOFLO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Date
2011
13.03.
15.03.
15.03.
18.03.
20.03.
24.03.
24.03.
29.03.
29.03.
01.04.
01.04.
03.04.
03.04.
05.04.
05.04.
09.04.
Time
(UTC)
22:34
00:03
09:03
12:42
06:24
16:35
18:20
08:34
15:00
09:26
16:29
09:57
13:26
06:10
08:32
09:25
Coord.
Lat. ºN
12°49,990
13°59,927
14°00,187
16°11,500
18°15,299
18°12,454
18°12,453
18°11,302
18°11,301
18°11,301
18°11,252
18°09,999
18°10,056
18°13,099
18°13,040
20°20,000
Coord.
Long. °W
17°33,850
17°37,473
17°24,004
16°52,004
16°27,001
16°35,598
16°35,598
16°39,302
16°39,302
16°39,299
16°39,274
16°45,009
16°45,022
16°33,309
16°33,346
17°45,011
Bot.
depth
(m)
53
981
81
236
95
417
418
786
786
786
791
1111
1115
240
245
592
Table S2: Duration of the O2- experiments which used the thermal O2- source SOTS-1 (di(4carboxybenzyl) hyponitrite) which generate O2− at µM and continuously over several hours
(Heller and Croot, 2010a).
Goflo Stn
[SOTS-1]0 in µM
Exp Duration in h
5
1.78
23
6
1.78
10
7
1.67
10
8
0.86
9
9
1.56
10
10&11
No O2- Exp
12
1.5
9
13
1.5
8
14
1.71
6
Table S3: MSM17-4 distribution of FDOM components identified by PARAFAC
Station
5
5
5
Depth
30
45
63
C1 [RFU]
0.023
0.022
0.024
C2 [RFU]
0.013
0.013
0.012
C3 [RFU]
0.015
0.011
0.014
6
6
6
6
7
7
7
7
20
40
60
80
105
180
280
355
0.025
0.025
0.031
0.030
0.024
0.022
0.022
0.024
0.015
0.014
0.013
0.012
0.011
0.011
0.011
0.013
0.020
0.012
0.018
0.021
0.010
0.005
0.007
0.012
8
8
8
8
9
9
9
9
25
50
100
200
300
400
550
700
0.021
0.025
0.027
0.023
0.022
0.025
0.025
0.022
0.011
0.012
0.011
0.011
0.011
0.012
0.012
0.012
0.016
0.011
0.020
0.009
0.006
0.013
0.009
0.009
12
12
12
12
13
13
13
13
20
40
100
200
300
400
600
800
0.020
0.022
0.022
0.020
0.020
0.023
0.019
-
0.012
0.011
0.011
0.010
0.011
0.012
0.012
-
0.003
0.004
0
0
0.033
0
0.009
-
14
14
14
14
15
15
20
40
70
100
170
190
0.040
0.024
0.029
0.030
0.029
0.033
0.018
0.013
0.011
0.012
0.014
0.011
0.007
0.010
0.007
0.022
0.017
0.015
Table S4: MSM17-4 Superoxide decay rates using SOTS-1 as superoxide source
Station
5
5
5
Depth
30
45
63
kDTPA
0.0052 ± 0.0023
0.0071 ± 0.0035
0.0066 ± 0.0032
kSW
0.0086 ± 0.0036
0.0129 ± 0.0059
0.0127 ± 0.0062
6
6
6
6
7
7
7
7
20
40
60
80
105
180
280
355
0.0067 ± 0.0023
0.0064 ± 0.0021
0.0053 ± 0.0023
0.0058 ± 0.0026
0.0034 ± 0.0007
0.0059 ± 0.0030
0.0045 ± 0.0017
0.0049 ± 0.0019
0.0119 ± 0.0038
0.0097 ± 0.0038
0.0092 ± 0.0035
0.0104 ± 0.0044
0.0099 ± 0.0026
0.0100 ± 0.0024
0.0110 ± 0.0012
0.0099 ± 0.0024
8
8
8
8
9
9
9
9
25
50
100
200
300
400
550
700
0.0121 ± 0.0031
0.0169 ± 0.0053
0.0135 ± 0.0045
0.0137 ± 0.0018
0.0097 ± 0.0024
0.0085 ± 0.0034
0.0054 ± 0.0024
0.0067 ± 0.0029
0.0167 ± 0.0034
0.0241 ± 0.0072
0.0169 ± 0.0047
0.0207 ± 0.0015
0.0158 ± 0.0044
0.0157 ± 0.0052
0.0114 ± 0.0040
0.0122 ± 0.0045
12
12
12
12
13
13
13
13
20
40
100
200
300
400
600
800
0.0098 ± 0.0057
0.0111 ± 0.0069
0.0114 ± 0.0070
0.0114 ± 0.0072
0.0071 ± 0.0013
0.0091 ± 0.0019
0.0072 ± 0.0018
0.0098 ± 0.0020
0.0132 ± 0.0067
0.0152 ± 0.0085
0.0210 ± 0.0092
0.0215 ± 0.0116
0.0132 ± 0.0017
0.0140 ± 0.0030
0.0096 ± 0.0023
0.0122 ± 0.0028
14
14
14
14
15
15
20
40
70
100
170
190
0.0079 ± 0.0016
0.0079 ± 0.0005
0.0071 ± 0.0013
0.0084 ± 0.0006
0.0079 ± 0.0005
0.0119 ± 0.0032
0.0108 ± 0.0014
0.0090 ± 0.0009
0.0147 ± 0.0025
0.0170 ± 0.0019
Data is reported as ±1 sd.
Table S5. 2nd Order Reaction Rate Constants (M-1 s-1) for selected metal and organic species
with O2- modified after (Heller and Croot, 2010b).
Species
HO2
O2-
Cu(I)
> 1*109 (a)
~1*1010 (a)
-
9.4±0.8*109 (b)
-
1.98±0.05*109 (c)
1.2*108 (d)
1.1*1010 (d)
-
6.63 ± 0.71*108 (c)
1.2±0.5*106 (e)
7.2*108 (f)
1.2±0.2*106 (g)
1.0±0.1*107 (g)
-
1.8*108 (g)
3.1*105 (h)
1.5±0.2*108 (i)
Cu(II)
Fe(II)
Fe(III)
5.4*107 (j)
Mn(II)
2.8*107 (k)
1.7*107 (l)
8.9*106 (m)
Mn(III)
HO2
8.3±0.7*105 (n)
9.7±0.6*107 (n)
Cu(II)L
-
2.9-8.1*108 (o)
-
5±3*107 (p)
-
9.3±0.2*103 (q)
-
2.3±0.1*105 (r)
Fe(III)L
Ferulic acid
1.6*105 (s)
Gallic acid
5.4*106 (s)
Cinnamic acid
5.9*103 (s)
Caffeic acid
5.0*105 (s)
Notes: The reader is also referred to the compilation of Bielski et al. (1985). In describing the
experimental setup used in each work we use the following abbreviations: pulse radiolysis (p.r.), flash
photolysis (f.p.),  irradiation (γ-r), optical detection of superoxide (opt) and chemical detection of
superoxide or equivalent (chem.). The pKa for HO2 is 4.60±0.15 (Zafiriou, 1990). All experiments are
in the range 20-25° C.
(a)
Cu+, pH 5.3, p.r. opt. (Rabani et al., 1973).
seawater, p.r. opt. (Zafiriou et al., 1998).
(b)
Cu+, p.r. opt. (Piechowski von et al., 1993).
(c)
Cu+ and Cu++ in
(d)
Cu2+ and Cu2+-arginine, p.r, opt.(Cabelli et al., 1987). (e)Fe2+, pH 1,
p.r, opt.(Jayson et al., 1973). (f)Fe2+ and Fe3+, p.r., opt (Matthews, 1983).
(g)
Fe2+ species, pH 1-7, p.r, opt (Rush
and Bielski, 1985). (h)Fe3+ species, pH 2.74, p.r., opt (Sehested et al., 1969). (i)Fe(OH)2+ species, pH 1-7, p.r, opt
(Rush and Bielski, 1985). (j) Mn+ in sulphate, pH 7, γ-r, opt (Barnese et al., 2008). (k) Mn+ in phosphate, pH 7, γr, opt(Barnese et al., 2008). (l) Mn+ in pyrophosphate, pH 7, γ-r, opt(Barnese et al., 2008). (m)Mn3+ in phosphate,
pH 7, γ-r, opt(Barnese et al., 2008).
(n)
As summarized in Bielski et al. (1985).
complexing ligands (Voelker et al., 2000).
et al., 2000).
(o)
Natural seawater with Cu
(p)
Copper complexing ligands produced by Synechococcus (Voelker
(q)
Fe(III) complexed with desferrioxamine B in bicarbonate buffered solution (Rose and Waite,
2005). (r)Fe(III) complexed with natural organic matter in bicarbonate buffered solution (Rose and Waite, 2005).
(s)
Values from Taubert (2003)
Figure S1: Spectral characteristics of 3-component model for MSM17-4 dataset (N=253).
Highest intensities are shown in yellow.
References:
Barnese, K., Gralla, E.B., Cabelli, D.E. and Selverstone Valentine, J., 2008. Manganous Phosphate Acts
as a Superoxide Dismutase. J. Am. Chem. Soc., 130(14): 4604-4606.
Bielski, B.H.J., Cabelli, D.E., Arudi, R.L. and Ross, A.B., 1985. Reactivity Of HO2/O2- Radicals In
Aqueous-Solution. J. Phys. Chem. Ref. Data, 14(4): 1041-1100.
Cabelli, D.E., Bielski, B.H.J. and Holcman, J., 1987. Interaction between Copper(II)-Arginine
Complexes and HO2/O2- Radicals, a Pulse Radiolysis Study. J. Am. Chem. Soc., 109: 36653669.
Heller, M.I. and Croot, P.L., 2010a. Application of a superoxide (O-2(-)) thermal source (SOTS-1) for
the determination and calibration of O-2(-) fluxes in seawater. Analytica Chimica Acta,
667(1-2): 1-13.
Heller, M.I. and Croot, P.L., 2010b. Superoxide Decay Kinetics in the Southern Ocean. Environmental
Science & Technology, 44(1): 191-196 DOI: 10.1021/es901766r.
Jayson, G.G., Parsons, B.J. and Swallow, A.J., 1973. Oxidation Of Ferrous Ions By Perhydroxyl
Radicals. J. Chem. Soc. - Faraday Trans. I, 69(1): 236-242.
Matthews, R.W., 1983. The radiation chemistry of aqueous ferrous sulfate solutions at natural pH.
Aust. J. Chem., 36: 1305-1317.
Piechowski von, M., Nauser, T., Hoigné, J. and Bühler, R., 1993. O2− decay catalyzed by Cu2+ and Cu+
ions in aqueous solutions: a pulse radiolysis study for atmospheric chemistry. Ber.
Bunsenges. Phys. Chem., 6: 762-771.
Rabani, J., Klug-Roth, D. and Lilie, J., 1973. Pulse radiolytic investigations of the catalyzed
disproportionation of peroxy radicals. Aqueous cupric ions. J. Phys. Chem., 77(9): 1169-1175.
Rose, A.L. and Waite, T.D., 2005. Reduction of organically complexed ferric iron by superoxide in a
simulated natural water. Environ. Sci. Tech., 39(8): 2645-2650.
Rush, J.D. and Bielski, B.H.J., 1985. Pulse Radiolytic Studies of HO2/O2- with Fe(II)/Fe(III) Ions. The
reactivity of HO2/O2- with Ferric Ions and Its Implication on the Occurrence of the HaberWeiss Reaction. J. Phys. Chem., 89: 5062-5066.
Sehested, K., Bjergbakke, E., Rasmussen, O.L. and Fricke, H., 1969. Reactions of H2O3 in the Pulse Irradiated Fe(II)-O2 System. J. Chem. Phys., 51(8): 3159-3166.
Taubert, D. et al., 2003. Reaction rate constants of superoxide scavenging by plant antioxidants. Free
Radical Biology and Medicine, 35(12): 1599-1607.
Voelker, B.M., Sedlak, D.L. and Zafiriou, O.C., 2000. Chemistry of Superoxide Radical in Seawater:
Reactions with Organic Cu Complexes. Environ. Sci. Tech., 34: 1036-1042.
Zafiriou, O.C., 1990. Chemistry of superoxide ion (O2-) in seawater. I. pKasw* (HOO) and uncatalysed
dismutation kinetics studied by pulse radiolysis. Mar. Chem., 30: 31-43.
Zafiriou, O.C., Voelker, B.M. and Sedlak, D.L., 1998. Chemistry of the superoxide radical (O2-) in
seawater: Reactions with inorganic copper complexes. Journal of Physical Chemistry A,
102(28): 5693-5700.