EE 4314: Control Systems

Lecture 3: Dynamic Models
β€’ Dynamics of Mechanical Systems
─ Newton’s 2nd law
o 𝐹 = π‘šπ‘Ž (translation)
o 𝑀 = 𝐼𝛼 (rotation)
─ Mass-Spring-Damper Model
o Mass (m)
o Spring (spring force 𝐹𝑠 = π‘˜π‘₯)
o Damper (damping force 𝐹𝑑 = 𝑏π‘₯)
Spring: stores energy
Damper: dissipates energy
Newton’s 2nd Law: Translational Motion
β€’ Newton’s 2nd law governs the relation between acceleration and force
β€’ Acceleration is proportional to force, and inversely proportional to mass
𝐹𝑛𝑒𝑑 =
𝐹 = π‘šπ‘Ž
where,
ο‚§ 𝐹𝑛𝑒𝑑 : the vector sum of all forces applied to each body in a
system (N)
ο‚§ π‘Ž:
the vector acceleration of each body w.r.t. an inertial
reference frame (m/sec2)
ο‚§ π‘š:
mass of the body (kg)
Newton’s 2nd Law: Rotational Motion
β€’ Newton’s 2nd law governs the relation between angular acceleration
and moment (torque)
β€’ Angular acceleration is proportional to moment, and inversely
proportional to moment of inertia
𝑀𝑛𝑒𝑑 =
𝑀 = 𝐼𝛼
where,
ο‚§ 𝑀𝑛𝑒𝑑 : the sum of all external moments about the center of mass of a
body in a system, (Nm)
ο‚§ 𝛼:
the angular acceleration of the body w.r.t. an inertial reference
frame (rad/sec2)
ο‚§ 𝐼:
body’s moment of inertia about its center of mass (kgm2)
Moment of Inertia I
β€’ It is a measure of an object’s resistance to changes to its rotation.
Equivalent to mass of an object.
β€’ It should be specified with respect to a chosen axis of rotation.
Moment of Inertia I
β€’ Moment of inertia becomes smaller when mass is concentrated on the
axis of rotation
Moment of Inertia I
Rotation in the
middle of bar
Distributed mass
Lumped mass
L
L
L
m
m
m
Moment of Inertia I
Rotation in the
middle of bar
Distributed mass
Lumped mass
L
L
L
m
m
m
𝐼 = π‘šπΏ2
1 2
𝐼 = π‘šπΏ
3
1
𝐼=
π‘šπΏ2
12
Spring Model
Two springs in parallel
Two springs in series
Spring Model
Two springs in parallel
When π‘˜ = π‘˜1 = π‘˜2, π‘˜π‘’π‘ž = 2π‘˜
Two springs in series
When π‘˜ = π‘˜1 = π‘˜2, π‘˜π‘’π‘ž = 0.5π‘˜
Spring and Damper Model
m
?
?
m
Mass Spring Damper System
β€’ Derive equation of motion
β€’ Transfer function 𝐺 𝑆
β€’ Input: force f
β€’ Output: displacement y
Mass Spring Damper System
β€’ Applying Newton’s 2nd law,
π‘šπ‘Ž =
𝐹
π‘šπ‘¦ = βˆ’π‘π‘¦ βˆ’ π‘˜π‘¦ + 𝑓
β€’ Taking the Laplace transform
π‘šπ‘  2 + 𝑏𝑠 + π‘˜ π‘Œ 𝑠 = 𝐹(𝑠)
β€’ Transfer function
𝐺 𝑆 =
π‘Œ(𝑠)
𝐹(𝑠)
=
1
π‘šπ‘  2 +𝑏𝑠+π‘˜
MATLAB Simulation: Mass Spring Dashpot System
β€’ Transfer function 𝐺 𝑆 =
π‘Œ(𝑠)
𝐹(𝑠)
=
1
π‘šπ‘  2 +𝑏𝑠+π‘˜
β€’ π‘š = 1, π‘˜ = 1
β€’ Case study
π‘₯(𝑑) + 2πœπœ”0 π‘₯(𝑑) + πœ”02 π‘₯(𝑑) = 𝑒(𝑑)
β€’ 𝑏 = 1 (underdamped  < 1)
β€’ 𝑏 = 2 (critically damped  = 1)
β€’ 𝑏 = 3 (over damped  > 1)
Matlab code:
num = 1
den = [1 b 1]
sys = tf(num, den)
step(sys)
MATLAB Simulation: Mass Spring Dashpot System
β€’ Transfer function 𝐺 𝑆 =
π‘Œ(𝑠)
𝐹(𝑠)
=
1
π‘šπ‘  2 +𝑏𝑠+π‘˜
π‘₯(𝑑) + 2πœπœ”0 π‘₯(𝑑) + πœ”02 π‘₯(𝑑) = 𝑒(𝑑)
β€’ π‘š = 1, π‘˜ = 1
β€’ Case study
β€’ 𝑏 = 1 (underdamped  < 1)
β€’ 𝑏 = 2 (critically damped  = 1)
β€’ 𝑏 = 3 (over damped  > 1)
Step Response
1.4
underdamped
critically damped
1.2
overdamped
Matlab code:
Amplitude
num = 1
den = [1 b 1]
sys = tf(num, den)
step(sys)
1
0.8
0.6
0.4
0.2
0
0
5
10
Time (seconds)
15
MATLAB Simulink: Mass Spring Dashpot System
β€’ Transfer function 𝐺 𝑆 =
π‘Œ(𝑠)
𝐹(𝑠)
=
1
π‘šπ‘  2 +𝑏𝑠+π‘˜
β€’ π‘š = 1, π‘˜ = 1
π‘₯(𝑑) + 2πœπœ”0 π‘₯(𝑑) + πœ”02 π‘₯(𝑑) = 𝑒(𝑑)
β€’ Case study
β€’ 𝑏 = 1 (underdamped  < 1)
β€’ 𝑏 = 2 (critically damped  = 1)
β€’ 𝑏 = 3 (over damped  > 1)
Step Response
1.4
underdamped
critically damped
1.2
overdamped
Amplitude
1
0.8
0.6
0.4
0.2
0
0
5
10
Time (seconds)
15
Mass Spring Damper System
β€’ Automobile suspension system
Problem: Find the transfer function
Mass Spring Damper System
β€’ Automobile suspension system
β€’ The equation of motion for the system
β€’ Taking the Laplace transform
β€’ Transfer function
Cruise Control Model
β€’ Example 2.1
─ Write the equations of motion
─ Find the transfer function
o Input: force u
o Output: velocity
Cruise control model
Free-body diagram
Cruise Control Model
β€’ Example 2.1
─ Applying Newton’s 2nd law
π‘šπ‘Ž =
𝐹
π‘šπ‘₯ = βˆ’π‘π‘₯ + 𝑒
𝑏
𝑒
π‘₯+ π‘₯=
π‘š
π‘š
─ Since v = π‘₯, 𝑣 = π‘₯
𝑏
𝑒
𝑣+ 𝑣=
π‘š
π‘š
─ Transfer function
Free-body diagram
Cruise Control Model
β€’ MATLAB Simulation
βˆ’ Transfer function
Matlab code:
Free-body diagram
num = 1/m
den = [1 b/m]
sys = tf(num, den)
step(sys)
Step Response
10
9
8
7
Amplitude
6
Parameter values:
5
4
3
2
𝑒 = 500, π‘š = 1000π‘˜π‘”, 𝑏 = 50𝑁𝑠/π‘š
1
0
0
20
40
60
Time (seconds)
80
100
120
Combined Motion: Rotational and Translational Motion
β€’ Inverted pendulum mounted cart
βˆ’ Input: force u
βˆ’ Output: 
β€’ Derive equations of motion
Unstable system
Combined Motion: Rotational and Translational Motion
β€’ Position of the center of gravity
of the pendulum rod
β€’ Rotational motion of pendulum
Free body diagram
Combined Motion: Rotational and Translational Motion
β€’ Horizontal motion of the center
of pendulum
β€’ Vertical motion of the center of
gravity of pendulum
β€’ Horizontal motion of cart
Free body diagram
Combined Motion: Rotational and Translational Motion
β€’ For small πœƒ,
βˆ’sin πœƒ β‰ˆ πœƒ
βˆ’cos πœƒ β‰ˆ 1
Free body diagram
Week 2, Lecture 3: Reading and Practice
Reading for week 2:
- Franklin Textbook Chapter 2, Dynamic Models:
- 2.1: Dynamics of Mechanical Systems
- 2.2: Models of Electric Circuits
- Modern Control Engineering by K. Ogata
- Chapter 3 Mathematical Modeling of Mechanical Systems and
Electrical Systems