Accelerated electrons in a hard X

-240
TRACE 195A 21:01:39.000 UT TRACE 195A 21:01:39.000 UT TRACE 195A 21:01:39.000 UT
-260
Y (arcsecs)
-280
-300
-320
-340
RHESSI 10-18 keV:21:01:27-21:01:55
OVSA 21:00:15.776-21:01:51.776
-360
460
RHESSI 18-30 keV:21:01:27-21:01:55
OVSA 21:00:15.776-21:01:51.776
RHESSI 30-100 keV:21:01:27-21:01:55
OVSA 21:00:15.776-21:01:51.776
Acceleratedelectronsina
hardX-ray/radiojet
480
500
520
X (arcsecs)
540
560
460
480
500
520
X (arcsecs)
540
560
460
480
500
520
X (arcsecs)
540
560
Lindsay Glesener (University ofMinnesota) and
Gregory Fleishman (NewJerseyInstitute ofTechnology)
2016July27
RHESSIWorkshopXV
University ofGraz
TRACE 195 19-Aug-2002 21:01:39.000 UT
-250
-260
Outline
Inthiswork,wecombineHXR,microwave,
andextremeultraviolet(EUV)datawith
emissionmodelingtoinvestigateflareacceleratedelectronsinacoronaljet.
Y (arcsecs)
-270
-280
-290
-300
-310
480
500
510
520
530
540
X (arcsecs)
OVSA NJIT I 3.2-5.4GHz 96s19-Aug-2002 21:00:15.776
Motivation
• Whatcanjetstellus
aboutparticle
acceleration?
• Whatcan
accelerated
particles tells us
aboutjets?
490
offset=[ 0.0, 0.0]
OVSA NJIT I 3.2-5.4GHz 96s 19-Aug-2002 21:00:15.776
OVSA NJIT I 3.2-5.4GHz 96s 19-Aug-2002 21:00:15.776
Observationsof
2002August19jet
• EUV(TRACE)
• HardX-rays(RHESSI
&Konus-Wind)
• Microwaves(OVSA)
3Dmodeling
• Simulated electron
populations withGX
Simulator
• Comparison with
observations
Whatisasolarcoronaljet?
• Impulsive,collimatedejectionof
plasmainthecorona.
SeePPTfor
movie!
• Oftenassociatedwithfeatures
indicatingopenfield:
• TypeIIIradioemission
• Promptelectronevents.
• Whystudyjets?
Hinode XRTpolarjets
– Relatively “simple”magnetic
geometry inwhichtostudy
reconnection
– Jetsareeverywhere! Theyoccurall
over theSun,andacrosslargesize
scales.
– Originatoroftransient heliospheric
events (in-situ particle events)
Howdocoronaljetsarise?
• 2-D:Shibatamodel ofinterchange
reconnection
• Formationofhotandcooljets
withinsame event
Shibataetal.(1997)
Pariat etal.(2015)
• Morecomplexin3-D
• e.g.Pariat etal.(2010,2015)
• Severaltypesofjets,including
straightandhelical
• Eruptingfilaments?Seeworkby
Sterling,Wyper,andothers.
Whystudyelectronaccelerationinjets?
Relatively simplemagnetic
geometry
Clear contextonwhichto
studyparticle acceleration
Ubiquitous andmultiscale
phenomenon
Understand energy
release/acceleration across
scales
Clear “escape route”to
interplanetary space
Chance tostudyaccelerated
electrons bothremotely and
insitu
Energydeposited by
accelerated electrons can
affect jetevolution
Learnmore abouthowjets
formandevolve
WhatdowelearnfromhardX-rays?
• HardX-rays(HXRs)revealthelocationsandspectraof
acceleratedelectrons.
• Krucker etal.(2011)studied16
flaresandfound>2footpoints in
mostevents.
• Resultsareconsistentwith
interchangereconnection,either
2Dor3D.
Krucker etal.
2008
Contrastwith2ribbonflare
RHESSIHXRoverlayon
TRACEEUVjet
Partlyoccultedflaresrevealcoronalsources
• Jet/flareon2003Aug21showedmultiplecoronalsources.
• Doublecoronalsource,thermal+nonthermal
• Accelerated electrons withintheemergingjetitself.
• Interpretation:HXRs
show
– Sitesofreconnection or
reconnection outflow
– Postflare loop
• Howdoaccelerated
electronsaccessthe
jet?
Glesener, Krucker,&Lin,Ap.J.,2012
Forthestartingpointforthiswork,wego
backtoKrucker etal.(2011):
4
GOES flux [Watt m-2]
10-5
10-6
10-7
flux [arbitrary units]
GOES flux [Watt m-2]
The Astrophysical Journal, 742:82 (10pp), 2011 December 1
2
jet
flare
1
30-80 keV
21:02
21:04
21:06
21:08
The Astrophysical Journal,
742:82 (10pp), 2011 December 1
time on 2002-08-19
0
6
21:00
4
5
-260
10-6
GOES flux [Watt m-2]
10-5
-260
10-8
3
Y (arcsecs)
10-7
flux [arbitrary units]
GOES flux [Watt m-2]
20:58
-280
-280
-300
-300
2
-320
1
195 A (19-Aug-2002 21:01:05 UT)
6-12 keV (21:05:27 - 21:06:29 UT)
30-80 keV (21:00:25 - 21:01:16 UT)
480
500
520
195 A (20-Aug-200
6-10 keV (01:35:00
25-60 keV (01:34:1
flare
540
520
jet
150
Flare/jeton2002August19asseenbyTRACE
• TRACE:EUVimagerthat
operated1998-2010
SeePPT
formovie!
• On2002August19
TRACEobserveda
coronaljetfromaGOES
M3.1flare.
HardX-rayandmicrowavedata
• HardX-raydata:
• RHESSIimages&spectra
• Konus-Windspectra
• NaI(Tl)scintillator
• 10keV – 1MeV
• Hightimeresolution
• Microwavedatafromthe
OwensValleySolarArray
(OVSA)
Normalized Light Curves
1.0
0.8
0.6
10.6 GHz
70-300 keV
20-70 keV
0.4
0.2
0.0
-0.2
tral Index
Konus-Winddatabase:See
talkbyAlexandraLysenko
21:00
21:01
21:02
21:03
Start Time (19-Aug-02 20:59:10)
7
HardX-raytemporaldynamics
Normalized Light Curves
1.0
0.8
0.6
HXR Spectral Index Evolution
12
10.6 GHz
70-300 keV
20-70 keV
6
0.2
4
0.0
2
-0.2
Effective KW G1-G2 Spectral Index
Effective KW G1-G2 Spectral Index
7
6
5
1.0
KW 20-70 keV
KW 70-300 keV
0
21:01:00
21:00
21:01
21:02
21:03
Start Time (19-Aug-02 20:59:10)
0.6
0.8
Normalized KW G1 Count Rate
Electron
spectral
index𝛿
8
0.4
4
0.4
KW δ
RHESSI δ
10
21:01:20
21:01:40
Start Time (19-Aug-02 21:01:00)
21:02:00
0.6
0.8
Normalized KW G2 Count Rate
1.0
5.0
4.8
4.6
4.4
4.2
4.0
0.4
• FasttimevariationsinHXRlightcurves!
• EachHXRpeakisassociated withaspectralhardening(SHSbehavior)
à isolated burstsofparticleacceleration?
LocationsofhardX-rayemission
RHESSICLEANimages (colors)onTRACE:
-240
TRACE 195A 21:01:39.000 UT TRACE 195A 21:01:39.000 UT TRACE 195A 21:01:39.000 UT
-260
Y (arcsecs)
-280
-300
-320
-340
RHESSI 10-18 keV:21:01:27-21:01:55
OVSA 21:00:15.776-21:01:51.776
RHESSI 18-30 keV:21:01:27-21:01:55
OVSA 21:00:15.776-21:01:51.776
RHESSI 30-100 keV:21:01:27-21:01:55
OVSA 21:00:15.776-21:01:51.776
-360
460
480
500
520
X (arcsecs)
10-18keV:
Thermalloops?
540
560
460
480
500
520
X (arcsecs)
540
18-30keV:
Extension alongthejet
Contourlevels are30,50,70,90%ofmax.
560
460
480
500
520
X (arcsecs)
540
560
30-100keV:
Nonthermal footpoints
OwensValleySolarArray(OVSA)jetdata
TRACE 195 19-Aug-2002 21:01:39.000 UT
• Background:TRACE195
-250
• Black:OVSAimage
-260
• Integrated96seconds
• 3.2-5.4GHz
• CLEAN+SELFCALmethod
• RedContour:Deconvolved
OVSAimage
Y (arcsecs)
• Whitedashed:Asymmetric
beam
-270
-280
-290
-300
• Result:OVSAemissionis
bothcospatial withthejet
andiselongatedalongit.
-310
480
490
500
510
520
530
540
X (arcsecs)
OVSA NJIT I 3.2-5.4GHz 96s19-Aug-2002 21:00:15.776
offset=[ 0.0, 0.0]
OVSA NJIT I 3.2-5.4GHz 96s 19-Aug-2002 21:00:15.776
OVSA NJIT I 3.2-5.4GHz 96s 19-Aug-2002 21:00:15.776
Gyrosynchrotron/X-raySimulatormodeling framework:
GXSimulator
1. Buildcoronalmagnetic fieldfromphotospheric Bmaps
2. Insertelectrondistributions
3. ComputehardX-rayandgyrosynchrotron emission
thatcanbecomparedwithobservations.
For2002August19:
• UseMDIdataastheconstraintandperformlinearforcefreefield(LFFF)
extrapolations.
• Modeltheclosedloopsandopenfieldseparately,withdifferentvalues
fortheforce-freeparameter.
High-twist
closedloops
Low-twist
including openfield
OnMDI
OnRHESSI
Electrondistributions
Wevariedthespatial distribution ofthenonthermal electrons inthejet,theirnumber
density,andspectralshapeuntilweobtained areasonableagreement withtheimaging
dataandspectraldataatlowfrequencies, wherethejetcontribution dominates theradio.
Closedflareloops:
• Thermalparameters:
• T=20MK
• n=1011 cm−3
• Nonthermalparameters:
Openfield(jet):
Chosentobe
consistent
withRHESSIfit
Looptop density(>Emin)2.3×109
•
• Emin=25keV
• 𝛿 =5
cm−3
• Thermalparameters:
• T=20MK
• n=1010 cm−3
• Nonthermalparameters:
• Looptop density(>Emin)1.5×107 cm−3
• Emin=25keV
• 𝛿 =5
Inaddition,a
smallnumberof
accelerated
electronsare
insertedinthis
closedloop,to
matchhighfrequencyOVSA
spectrum
HowdodataconstraintheGXSimulator
electrondistributions?
• MDIimagesaremagneticconstraintsatphotospheric(LFFFextrapolation).
• Forclosed,twistedfield,thermalandnonthermal HXRdatagivelocationsand
spectra.Fieldandelectrondistributionsareadjustedtomatch.
• Forthejet,OVSAemissionmustbematchedinlocationandspectralshape,
andsimulatedHXRemissionmustliebelowtheobservedRHESSIemission.
GX 11.4057 keV 19-Aug-2002 21:01:24.000 UT
Y (arcsecs)
-260
-280
-300
RHESSIthermalimage
overlaidonsimulatedHXRs
480
500
X (arcsecs)
520
WHITE: *RHESSI 6-15 keV 19-Aug-2002 21:01:24.000 10.,30.,50.,70.,90.
-240
SimulatedHXRandmicrowaveemission
Simulated andobservedmicrowavepowerspectra
*Observed
- Simulated
1000
21:00:34
Flux density, sfu
Flux density, sfu
100
10
1
1
10
Frequency, GHz
21:01:30
• Jetdominates atlow
frequencies duetoweaker
magnetic field(dashedline).
100
HardX-rays
10
1
100
*Observed
- Simulated
10
Frequency, GHz
100
Simulated andobservedX-rayspectra
10
6
106
21:00:34
102
Closedloops
(thin-target)
100
10-2
10-4
1
104
Observed
emission
102
100
Jetalone
(simulated)
10-2
*Observed
- Simulated
10
100
Energy, keV
21:01:30
Flux, s-1 cm-2 keV-1
Flux, s-1 cm-2 keV-1
104
1000
Microwaves
10-4
1
10
100
Energy, keV
1000
• Thin-targetemission from
closedloopsmatches
observedHXRsformost
energies.
• Exception:Simulatedemission
doesnotincludefootpoints, so
highenergiesare
underestimated.
• Jetemission liesbelowthe
totalobservedHXRspectrum,
asitmustbe.
AnotherlookattheRHESSIimages.
106
106
21:00:34
21:01:30
104
102
All
coronal
HXR
emission
100
10-2
10-4
1
-240
Flux, s-1 cm-2 keV-1
Flux, s-1 cm-2 keV-1
104
102
100
Jet
only
10-2
10
100
Energy, keV
1000
10-4
1
10
100
Energy, keV
1000
TRACE 195A 21:01:39.000 UT TRACE 195A 21:01:39.000 UT TRACE 195A 21:01:39.000 UT
-260
Y (arcsecs)
-280
-300
-320
-340
RHESSI 10-18 keV:21:01:27-21:01:55
OVSA 21:00:15.776-21:01:51.776
RHESSI 18-30 keV:21:01:27-21:01:55
OVSA 21:00:15.776-21:01:51.776
RHESSI 30-100 keV:21:01:27-21:01:55
OVSA 21:00:15.776-21:01:51.776
-360
460
480
500
520
X (arcsecs)
540
560
460
480
500
520
X (arcsecs)
540
560
460
480
500
520
X (arcsecs)
540
560
Wouldn’titbenicetohavedetailedHXR
imagingspectroscopyofajetlikethis?
• SimulatedFOXSIemissionusing
theelectronpopulation(thermal
+nonthermal)fromGX
Simulator.
Sidenote:wecandothisforanyofyour
favoriteX-raysources,ifyouhaveaninput
(e.g.HXRimageand/orspectrum)
SeePPTfor
movie!
Simulated FOXSI-SMEX
observationover30seconds
Concludingthoughts
• The2002August19jetisahighlytime-variable flarethatdisplays
evidence ofenergetic electronsontheopenfield.Toour
knowledge, thisisthefirstobservation ofgyrosynchrotron
emission fromajet.
• Best-yetestimates ofenergetic electrondistribution inajetby
usingconstraintsfromHXRs andmicrowaves.
• Theeventdemonstrates thecomplementary natureofHXRand
radiodata,andtheusefulness ofcombining thesedatawith
modeling toconstrainelectron distributions.
• Expectmoreeventslike thiswithfutureHXRsandEOVSA!