3. Crystal vibrations 3. Crystal vibrations 3.1. Linear chain - dispersion relation 3. Crystal vibrations 75 77 3.1. Linear chain with two atoms per unit cell M1, sn1 M2, sn2 a (n-1)-th unit cell n-th unit cell optical branch (n+1)-th unit cell acoustical branch 3.1. Linear chain 3. Crystal vibrations 3.1. Linear chain – atomic displacements 3. Crystal vibrations 76 78 Dispersion relation for the diatomic linear chain. Displacement of atoms in a diatomic linear chain for q ~ 0 and q = π/a. Note: to understand this figure most of us will need at least 10 minutes! source: Th. Fauster 3.2. Lattice vibrations (3 dim.) 3. Crystal vibrations 3.2. Lattice vibrations (3 dim.) 3. Crystal vibrations 79 81 Example: (Si, Ge, diamond) fcc lattice with basis of 2 atoms (a = 2) lattice planes 6 branches: 1x LA + 2x TA 1x LO + 2x TO q Longitudinal mode Transversal mode L Data points stem from inelastic neutron diffraction 3.2. Lattice vibrations (3 dim.) 3. Crystal vibrations 3.3. Thermal properties 80 3. Crystal vibrations 82 Bose Verteilung 3.3. Debye approximation 3. Crystal vibrations 3. Crystal vibrations 3.3. Debye specific heat 83 85 T3 – law at low temperatures Specific heat of solid argon ΘD = 92 K Debye wave-vector Debye temperature (material property) 3.3. Debye specific heat 3. Crystal vibrations 0K 2K 3.4. Density of states 3. Crystal vibrations 86 84 Example: Si Good approximation for small and large T regions with low dispersion ω(q) ↔ high density of states 3.4. Debye approximation 3. Crystal vibrations 3. Crystal vibrations 3.4. Debye approximation 87 3.4. Density of states 3. Crystal vibrations 87 3. Crystal vibrations 3.5. Anharmonic Effects 86 88 Thermal Expansion a (Å) Example: Si Solid Argon Silicon T (K) γ negative regions with low dispersion ω(q) ↔ high density of states 3. Crystal vibrations 3.5. Anharmonic Effects 89 No umklapp: Heat conduction by phonons NaF Umklapp:
© Copyright 2025 Paperzz