Supplementary figures and tables Diverse specificity of cellulosome attachment to the bacterial cell surface Joana L.A. Brás1,2,a, Benedita Pinheiro1,3,a, Kate Cameron1,a, Fiona Cuskin4,a, Aldino Viegas3,5, Shabir Najmudin1, Pedro Bule1, Virginia M.R. Pires1, Maria João Romão3, Edward A. Bayer6, Holly L. Spencer7, Steven Smith7, Harry J. Gilbert4, Victor D. Alves1,*, Ana Luísa Carvalho3,* and Carlos M.G.A. Fontes1,2,* 1 Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; 2NZYTech Genes & Enzymes, Campus do Lumiar, Estrada do Paço do Lumiar, Edifício E, r/c, 1649-038 Lisboa, Portugal; 3 UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; 4Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom; 5Institute of Physical Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; 6Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel; 7Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada. Figure S1 - Detection of C. thermocellum type II Coh-Doc specificities and binding preferences as evaluated by non-denaturing gel electrophoresis. A) XDoc module of ScaA was probed against the Cohs of ScaF, ScaC, ScaH and ScaE. B) XDoc module of CipB was probed against the Cohs of ScaF, ScaC, ScaH and ScaE. In panels A and B cohesins were used at a double molar concentration in relation to dockerins. C) The method used to detect preferential partners for dockerin is illustrated. The Doc is mixed with a double molar concentration of two potential Coh partners, and after a 30-min incubation period the complex formed is visualized through non-denaturing gel electrophoresis. An example of one such experiment is shown, where ScaA XDoc is mixed with ScaC2 Coh, forming complex A (CA) or ScaF Coh, forming complex B (CB). When the XDoc module is mixed with the two Cohs exclusively, complex A (CA) is formed, revealing that the ScaA XDoc module displays a preference for binding to ScaC2. D) The method described in panel C) was used to identify preferred Coh and Doc partners as listed. Figure S2 - CtCohScaC2-XDocCipB and CtCohScaF-XDocScaA complex interfaces between the dockerin and the X module (A and B) and between the dockerin and the cohesin (C, D, E and F). A), C) and E) correspond to the CtCohScaC2-XDocCipB complex. B), D) and F) correspond to the CtCohScaF-XDocScaA complex. Figure S3 - Examples of the isothermal titration calorimetry (ITC) experiments performed using wild type CipB Xdoc, its mutant derivatives Phe124A and Leu147A and the wild-type cohesins ScaF A), ScaE6 B) and ScaC2 C). The upper parts of each panel show the raw heats of binding, whereas the lower parts are the integrated heats after correction for heat of dilution. The curve represents the best fit to a single-site binding model. 1) Coh plus wild-type CipB XDoc. 2) Coh plus CipB XDoc Phe124A. 3) Coh plus CipB XDoc Leu147A. Figure S4 – Interaction of CipB XDoc and its seven mutant derivatives with ScaF, ScaC2 and ScaE6 at 45 ºC with complex formation probed by nondenaturing gel electrophoresis. The dockerins were loaded in lanes 1, 4 and 7. The cohesins were loaded in lanes 2 (ScaE6), 5 ( ScaF) and 8 (ScaC2). Complexes were loaded in lanes 3 (Doc with ScaE6), 6 (Doc with ScaF) and 9 (Doc with ScaC2). Table S3 – Primary sequences of cohesins and dockerins involved in the formation of protein complexes Protein complex Cohesin Dockerin CtCohScaC2-XDocCipB MASAHIALELDKTKVKVGDVIVATVKAKNMTSMAGIQV MNNDSTDKTTVSGYISVDFDYPPESESKIKSGFNVKVAG PDB 5k39 CtCohScaC2-XDocScaA 5g5d CtCohScaF-XDocCipB AcCohScaB3XDocScaA AcCohScaB3XDocScaAN145G AcCohScaB3XDocScaAN178G Nd, not determined NIKYDPEVLQAIDPATGKPFTKETLLVDPELLSNREYN PLLTAVNDINSGIINYASCYVYWDSYRESGVSESTGII GKVGFKVLKAANTTVKLEETRFTPNSIDGTLVIDWYGQ QIVGYKVIQPDLEHHHHHH MASAHIALELDKTKVKVGDVIVATVKAKNMTSMAGIQV NIKYDPEVLQAIDPATGKPFTKETLLVDPELLSNREYN PLLTAVNDINSGIINYASCYVYWDSYRESGVSESTGII GKVGFKVLKAANTTVKLEETRFTPNSIDGTLVIDWYGQ QIVGYKVIQPDLEHHHHHH MASRADKASSIELKFDRNKGEVGDILIGTVRINNIKNF AGFQVNIVYDPKVLMAVDPETGKEFTSSTFPPGRTVLK NNAYGPIQIADNDPEKGILNFALAYSYIAGYKETGVAE ESGIIAKIGFKILQKKSTAVKFQDTLSMPGAISGTQLF DWDGEVITGYEVIQPDVLSLGDEPYEVEHHHHHH MESYITMNFDKNTAEVGQIIKATVKINKITNFSGYQVN IKYDPTVLQAVNPKTGVAYTNSSLPTSGELLVNEDYGP IVQGVHKISEGILNLSRSYTALDVYRASESPEETGTVA VVGFKALQKKATTVVFEHSVTMPNGIIGTTLFNWYGNR ITSGYSVIQPGEINSE MESYITMNFDKNTAEVGQIIKATVKINKITNFSGYQVN IKYDPTVLQAVNPKTGVAYTNSSLPTSGELLVNEDYGP IVQGVHKISEGILNLSRSYTALDVYRASESPEETGTVA VVGFKALQKKATTVVFEHSVTMPNGIIGTTLFNWYGNR ITSGYSVIQPGEINSE MESYITMNFDKNTAEVGQIIKATVKINKITNFSGYQVN IKYDPTVLQAVNPKTGVAYTNSSLPTSGELLVNEDYGP IVQGVHKISEGILNLSRSYTALDVYRASESPEETGTVA VVGFKALQKKATTVVFEHSVTMPNGIIGTTLFNWYGNR ITSGYSVIQPGEINSE TELSTKTDEKGYFEISGIPGDMREFTLEISKRNYLKRNV TVNGTGKLVVSTEDNPLILWAGDVERKGVQDNAINMVDV MEISKVFGTRAGDEEYVAELDLNMDGAINLFDIAIVIRH FNALPSRY MNKPVIEGYKVSGYILPDFSFDATVAPLVKAGFKVEIVG TELYAVTDANGYFEITGVPANASGYTLKISRATYLDRVI ANVVVTGDTSVSTSQAPIMMWVGDIVKDNSINLLDVAEV IRCFNATKGSANYVEELDINRNGAINMQDIMIVHKHFGA TSSDYDAQ MNNDSTDKTTVSGYISVDFDYPPESESKIKSGFNVKVAG TELSTKTDEKGYFEISGIPGDMREFTLEISKRNYLKRNV TVNGTGKLVVSTEDNPLILWAGDVERKGVQDNAINMVDV MEISKVFGTRAGDEEYVAELDLNMDGAINLFDIAIVIRH FNALPSRY MGSSHHHHHHSSGLVPRGSHMASGIVSEGTTVSGYINPDF VTTSTTAPIVKAGFTVEIVGTTKSAVTDSNGYFEIKDVAAGTY TVKITKANYLTREIANVSVTADKELSTSASPILMWAGDMAIG GTQDGAINLEDILEICKAFNTSSTDAKYQVGLDLNRDGA ISLEDVMIVAKHFNKVSSDY MGSSHHHHHHSSGLVPRGSHMASGIVSEGTTVSGYINPDF VTTSTTAPIVKAGFTVEIVGTTKSAVTDSNGYFEIKDVAAGTY TVKITKANYLTREIANVSVTADKELSTSASPILMWAGDMAIG GTQDGAINLEDILEICKAFGTSSTDAKYQVGLDLNRDGA ISLEDVMIVAKHFNKVSSDY MGSSHHHHHHSSGLVPRGSHMASGIVSEGTTVSGYINPDF VTTSTTAPIVKAGFTVEIVGTTKSAVTDSNGYFEIKDVAAGTY TVKITKANYLTREIANVSVTADKELSTSASPILMWAGDMAIG GTQDGAINLEDILEICKAFNTSSTDAKYQVGLDLNRDGA ISLEDVMIVAKHFGKVSSDY 5g5b Nd 4u3s 4wi0 Table S5 – Primary sequence of recombinant cohesins and dockerins produced in the present study. Genes encoding cohesins were cloned into pET28 (NheIXhoI), and the corresponding recombinant protein contains a N-terminal His6 tag. XDockerin genes (encoding an X module fused to the dockerin) were cloned into pET21a (NdeI -XhoI), and the recombinant protein contains an engineered C-terminal His6 tag. Protein Name Organism Primary Sequence Cohesin ScaF Clostridium thermocellum DKASSIELKFDRNKGEVGDILIGTVRINNIKNFAGFQVNIVYDPKVLMAVDPETGKEFTSSTFPPGRTVLKNNA XDockerin ScaB6 Clostridium thermocellum ScaC1 Clostridium thermocellum ScaC2 Clostridium thermocellum ScaH Clostridium thermocellum ScaE6 Clostridium thermocellum ScaB3 Acetivibrio cellulolyticus ScaA Clostridium thermocellum CipB Clostridium thermocellum ScaA Acetivibrio cellulolyticus YGPIQIADNDPEKGILNFALAYSYIAGYKETGVAEESGIIAKIGFKILQKKSTAVKFQDTLSMPGAISGTQLFD WDGEVITGYEVIQPD DSYVIMELDKTKVKVGDIITATIKIENMKNFAGYQLNIKYDPTMLEAIELETGSAIAKRTWPVTGGTVLQSDNY GKTTAVANDVGAGIINFAEAYSNLTKYRETGVAEETGIIGKIGFRVLKAGSTAIRFEDTTAMPGAIEGTYMFDW YGENIKGYSVVQPG SRISMELDKTKANIGDIIIATIRIDNINNFSGYQLNIKYDPSYLQAVNPLTGEPIKKRTMPAVNGTVLLKGDQY SITEVVENNVDEGILNFGKGYANLTEYRKSGKPETTGIIGKIGFKALKLGKTEIKFENTPVMPGAKEGTLLFDW DAETITEYNVIQP AHIALELDKTKVKVGDVIVATVKAKNMTSMAGIQVNIKYDPEVLQAIDPATGKPFTKETLLVDPELLSNREYNP LLTAVNDINSGIINYASCYVYWDSYRESGVSESTGIIGKVGFKVLKAANTTVKLEETRFTPNSIDGTLVIDWYG QQIVGYKVIQPD AEANIQIVLDKNTAKKDEIITAKIILNNIPKIAGYQVNIKYDPNILQAVDLDTGKPLEDKQIPGGGDVLSNPDY NVLPLAASDVKNGVINFAKAYVNVDEYKESNNPESSGVLALIGFKVLKEESTVISFADTPSMPNAVSGTYVYDW DFNVLTNYSVGKGVKVN YIKLEFDKNTASEGEIIRATVKVNNVKNLAGYQICIKYDPNVLQPVNPNTGAAYTTTTHLVDGELIVKQEYGST SMAAHRLSNGILNFARTYLYVSDYKEDGKPEETGILGVIGFKVLKKEKTTVSFYADEALMPNSVSGTYLIDWNS NKKTDYKVIQP ESYITMNFDKNTAEVGQIIKATVKINKITNFSGYQVNIKYDPTVLQAVNPKTGVAYTNSSLPTSGELLVNEDYG PIVQGVHKISEGILNLSRSYTALDVYRASESPEETGTVAVVGFKALQKKATTVVFEHSVTMPNGIIGTTLFNWY GNRITSGYSVIQPGEINSE MNKPVIEGYKVSGYILPDFSFDATVAPLVKAGFKVEIVGTELYAVTDANGYFEITGVPANASGYTLKISRATYL DRVIANVVVTGDTSVSTSQAPIMMWVGDIVKDNSINLLDVAEVIRCFNATKGSANYVEELDINRNGAINMQDIM IVHKHFGATSSDYDAQ MNNDSTDKTTVSGYISVDFDYPPESESKIKSGFNVKVAGTELSTKTDEKGYFEISGIPGDMREFTLEISKRNYL KRNVTVNGTGKLVVSTEDNPLILWAGDVERKGVQDNAINMVDVMEISKVFGTRAGDEEYVAELDLNMDGAINLF DIAIVIRHFNALPSRY GIVSEGTTVSGYINPDFVTTSTTAPIVKAGFTVEIVGTTKSAVTDSNGYFEIKDVAAGTYTVKITKANYLTREI ANVSVTADKELSTSASPILMWAGDMAIGGTQDGAINLEDILEICKAFNTSSTDAKYQVGLDLNRDGAISLEDVM IVAKHFNKVSSDY Table S6 – Primers used to produce dockerin mutant derivatives obtained in the present study. Dockerin derivative XDocCipB M114A XDocCipB M118A XDocCipB S121A XDocCipB F124A XDocCipB L147A XDocCipB F148A XDocCipB I154A Sequence (5’ 3’) GCAAGACAATGCTATTAATGCGGTGGATGTGATGGAAATATCC GGATATTTCCATCACATCCACCGCATTAATAGCATTGTCTTGC GCTATTAATATGGTGGATGTGGCGGAAATATCCAAAG CTTTGGATATTTCCGCCACATCCACCATATTAATAGC GTGGATGTGATGGAAATAGCCAAAGTTTTTGGCAC GTGCCAAAAACTTTGGCTATTTCCATCACATCCAC GGAAATATCCAAAGTTGCTGGCACAAGAGCCGGAGATG CATCTCCGGCTCTTGTGCCAGCAACTTTGGATATTTCC GGACGGAGCAATCAATGCATTTGATATAGCTATAGTTATCAGGC GCCTGATAACTATAGCTATATCAAATGCATTGATTGCTCCGTCC GGACGGAGCAATCAATTTAGCTGATATAGCTATAGTTATCAGGC GCCTGATAACTATAGCTATATCAGCTAAATTGATTGCTCCGTCC GATATAGCTATAGTTGACAGGCATTTTAACGCATTACC GGTAATGCGTTAAAATGCCTGTCAACTATAGCTATATC Direction Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Table S7 – Data collection and refinement statistics of C. thermocellum coh-doc complexes. Coh-XDoc complex Space Group Unit cell parameters a, b, c (Å) α, β, γ (°) Matthews parameter (Å3/Da) Data collection statistics X-ray source Wavelength (Å) No. of unique reflections Resolution limits (Å) Completeness (%) Redundancy Average I/σ(I) Rmerge (%) Rpim (%) Half-dataset correlation CC(1/2) Refinement statistics Resolution limits (Å) R-work R-free No. protein residues in the asymmetric unit No. water molecules in the asymmetric unit No. atoms in the asymmetric unit rmsd bond length (Å) rmsd bond angles (°) Average temperature factor (Å2) main chain side chain Calcium 1 Calcium 2 solvent molecules outliers (%) Ramachandran plot favored (%) PDB ID codes CtCohScaF-XDocCipB P212121 CtCohScaC2-XDocCipB C121 CtCohScaC2-XDocScaA I222 43.4, 63.7, 141.2 90.0, 90.0, 90.0 2.6 116.7, 78.6, 35.8 90.0, 95.8, 90.0 2.2 52.4, 125.8, 130.5 90.0, 90.0, 90.0 3.1 ESRF, ID29 0.9762 63360 47.31 – 1.5 (1.53-1.50) 99.5 (99.6) 4.4 (4.5) 18.8 (2.3) 3.7 (64.8) 2.0 (33.8) 0.999 (0.736) ESRF, ID14-4 0.9735 21909 39.31 – 1.98 (2.09 – 1.98) 97.8 (98.2) 3.6 (3.7) 13.10 (5.5) 9.4 (17.3) 5.8 (10.4) not determined ESRF, ID29 0.9537 8989 45.28 – 3.00 (3.18 – 3.00) 100 (100) 7.0 (7.2) 5.9 (1.5) 18.9 (118) 8.2 (50.1) 0.991 (0.737) 47.3 - 1.5 0.190 0.203 333 201 2855 0.006 1.243 18.8 – 1.98 0.187 0.247 320 322 2819 0.009 1.154 48.3 – 3.0 0.255 0.303 316 0 2420 0.007 1.20 22.2 24.2 14.8 19.5 34.9 0 98.5 5m0y 17.8 18.7 17.0 14.6 36.8 0 97.0 5k39 48.0 48.4 64.4 62.3 0 95 5g5d Rmerge = [Σ |I-<I>|]/Σ <I>, where I is the observed intensity, and <I> is the statistically weighted average intensity of multiple observations. Rpim = [Σ (1/(n-1)) Σ |I-<I>|]/Σ <I>, a redundancy-independent version of Rmerge Rwork = Σ ||Fcalc|− |Fobs||/Σ |Fobs|× 100, where Fcalc and Fobs are the calculated and observed structure factor amplitudes, respectively (Rfree is calculated for a randomly chosen 5% of the reflections). Geometry values from Molprobity. Values in parentheses are for the highest resolution shell. Table S8 – Data collection and refinement statistics of A. cellulolyticus coh-doc complexes. Coh-XDoc complex Space Group Unit cell parameters a, b, c (Å) α, β, γ (°) Matthews parameter (Å3/Da) Data collection statistics X-ray source Wavelength (Å) No. of unique reflections Resolution limits (Å) Completeness (%) Redundancy Average I/σ(I) Rmerge (%) Rpim (%) Half-dataset correlation CC(1/2) Refinement statistics Resolution limits (Å) R-work R-free No. protein residues in the asymmetric unit No. water molecules in the asymmetric unit No. atoms in the asymmetric unit rmsd bond length (Å) rmsd bond angles (°) Average temperature factor (Å2) main chain side chain Calcium 1 Calcium 2 solvent molecules outliers (%) Ramachandran plot favored (%) PDB ID codes AcCohScaB3XDocScaA_N145G P6522 AcCohScaB3XDocScaA_N178G P212121 72.3, 72.3, 231.5 90.0, 90.0, 120.0 2.3 38.5, 88.3, 92.0 90.0, 90.0, 90.0 2.3 Diamond, IO3 0.976 45113 62.63 – 1.64 (1.68 – 1.64) 100 (100) 26.7 (29.5) 13.5 (3.2) 11.3 (70.2) 2.7 (13.0) 0.998 (0.856) ESRF, ID29 0.976 29281 92.02 – 1.93 (1.98 – 1.93) 90.8 (92.3) 3.3 (3.1) 5.0 (2.0) 13.6 (49.7) 8.0 (30.4) 0.987 (0.561) 62.6 – 1.64 0.171 0.206 323 341 2843 0.009 1.371 63.7 – 1.93 0.197 0.241 324 219 2680 0.006 1.097 25.5 28.3 16.2 19.7 31.9 0 98.5 4u3s 23.3 24.3 19.6 19.9 28.9 0 98.5 4wi0 Rmerge = [Σ |I-<I>|]/Σ <I>, where I is the observed intensity, and <I> is the statistically weighted average intensity of multiple observations. Rpim = [Σ (1/(n-1)) Σ |I-<I>|]/Σ <I>, a redundancy-independent version of Rmerge. Rwork = Σ ||Fcalc|− |Fobs||/Σ |Fobs|× 100, where Fcalc and Fobs are the calculated and observed structure factor amplitudes, respectively (Rfree is calculated for a randomly chosen 5% of the reflections). Geometry values from Molprobity. Values in parentheses are for the highest resolution shell.
© Copyright 2026 Paperzz