Introduction to Nanomechanics (Spring 2012) Martino Poggio Cooling Mechanical Resonators k BT • Achieve ultimate force resolution • Approach the quantum regime • Measure mechanical superpositions and coherences 11.04.2012 Introduction to Nanomechanics 2 Superposition & Coherence? 11.04.2012 Introduction to Nanomechanics 3 Strategies for Cooling Resonators k BT • “Brute force”: High resonance frequencies & low reservoir temperatures • Damping mechanical motion • Cavity cooling 11.04.2012 Introduction to Nanomechanics 4 1 xrms x zp 2 2 x zp 2 k T B 1 e k BT xrms xzp 2m k BT xrms xth k BT m 2 xrms (xzp) T (K) 11.04.2012 Introduction to Nanomechanics 5 “Brute Force” 11.04.2012 Introduction to Nanomechanics 6 Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) • m = 10-15 kg • = 2 x 10 MHz • xth = 2 x 10-12 m • xzp= 3 x 10-14 m 11.04.2012 Introduction to Nanomechanics 7 Real Numbers (T = 1 K) Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) • m = 10-21 kg • = 2 x 500 MHz • xth= 4 x 10-11 m • xzp = 4 x 10-12 m 11.04.2012 Introduction to Nanomechanics 8 Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) • m = 10-15 kg • = 2 x 10 MHz • m = 10-21 kg • = 2 x 500 MHz • xth = 2 x 10-12 m • xzp= 3 x 10-14 m • xth= 4 x 10-11 m • xzp = 4 x 10-12 m 11.04.2012 Introduction to Nanomechanics 9 Real Numbers (T = 10 mK) Top-down doubly clamped Si beams (Schwab) Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) • m = 10-15 kg • = 2 x 10 MHz • m = 10-21 kg • = 2 x 500 MHz • xth = 2 x 10-13 m • xzp= 3 x 10-14 m • xth= 4 x 10-12 m • xzp = 4 x 10-12 m 11.04.2012 Introduction to Nanomechanics 10 Technical Challenges • Resonator Fabrication (high frequency, low dissipation, low mass) • Displacement sensing (low measurement imprecision, i.e. low noise floor) • Refrigeration (mK temperatures) 11.04.2012 Introduction to Nanomechanics 11 11.04.2012 Introduction to Nanomechanics 12 Expectation vs. Reality Nth T (K) 11.04.2012 Introduction to Nanomechanics 13 Strategies for Cooling Resonators k BT • “Brute force”: High resonance frequencies & low reservoir temperatures • Damping mechanical motion • Cavity cooling 11.04.2012 Introduction to Nanomechanics 14 Usual Cantilever Motion Detection mx 0 x kx Fth x cantilever fiber interferometer x spectrum analyzer piezo Simple Electronic Damping damping mx 0 x kx Fth g0 x x cantilever x fiber interferometer spectrum analyzer piezo d F fb g0 x g0 dt Cooling (damping) of a cantilever - T = 4.2K 1000 1000 g=0 Tmode = 3.8 K 100 100 Q0 = 45,660 2 (Å2/Hz) Sprectral density Ang /Hz 10 10 11 0.1 0.1 0.01 0.01 1E-3 1E-3 Interferometer shot noise level 1E-4 1E-4 1E-5 1E-5 3500 3500 3750 3750 4000 4000 Frequency (Hz)(Hz) Frequency 4250 4250 Cooling (damping) of a cantilever - T = 4.2K 1000 1000 g = 6.8 100 100 2 (Å2/Hz) Sprectral density Ang /Hz 10 10 Tmode = 530 mK Qeff = 5,834 11 0.1 0.1 0.01 0.01 1E-3 1E-3 Interferometer shot noise level 1E-4 1E-4 1E-5 1E-5 3500 3500 3750 3750 4000 4000 Frequency (Hz)(Hz) Frequency 4250 4250 Cooling (damping) of a cantilever - T = 4.2K 1000 1000 g = 67 100 100 2 (Å2/Hz) Sprectral density Ang /Hz 10 10 11 0.1 0.1 Tmode = 71 mK Qeff = 674 0.01 0.01 1E-3 1E-3 Interferometer shot noise level 1E-4 1E-4 1E-5 1E-5 3500 3500 3750 3750 4000 4000 Frequency (Hz)(Hz) Frequency 4250 4250 Cooling (damping) of a cantilever - T = 4.2K 1000 1000 g = 263 100 100 2 (Å2/Hz) Sprectral density Ang /Hz 10 10 11 0.1 0.1 0.01 0.01 1E-3 1E-3 Tmode = 13 mK Qeff = 173 Interferometer shot noise level 1E-4 1E-4 1E-5 1E-5 3500 3500 3750 3750 4000 4000 Frequency (Hz)(Hz) Frequency 4250 4250 Cooling (damping) of a cantilever - T = 4.2K 1000 1000 g = 525 100 100 2 (Å2/Hz) Sprectral density Ang /Hz 10 10 11 0.1 0.1 0.01 0.01 1E-3 1E-3 Tmode = 5.3 mK Qeff = 87 Interferometer shot noise level 1E-4 1E-4 1E-5 1E-5 3500 3500 3750 3750 4000 4000 Frequency (Hz)(Hz) Frequency 4250 4250 Cooling (damping) of a cantilever - T = 4.2K 1000 1000 g = 1267 100 100 2 (Å2/Hz) Sprectral density Ang /Hz 10 10 11 0.1 0.1 0.01 0.01 1E-3 1E-3 Tmode = 0.62 mK Q = 36 Interferometer shot noise level 1E-4 1E-4 1E-5 1E-5 3500 3500 3750 3750 4000 4000 Frequency (Hz)(Hz) Frequency 4250 4250 Cooling (damping) of a cantilever - T = 4.2K 1000 1000 g = 3043 100 100 2 (Å2/Hz) Sprectral density Ang /Hz 10 10 11 0.1 0.1 0.01 0.01 1E-3 1E-3 Interferometer shot noise level 1E-4 1E-4 Tmode = -0.25 mK Qeff = 15 1E-5 1E-5 3500 3500 3750 3750 4000 4000 Frequency (Hz)(Hz) Frequency 4250 4250 Cooling (damping) of a cantilever - T = 4.2K 1000 1000 g = 4565 100 100 2 (Å2/Hz) Sprectral density Ang /Hz 10 10 11 Negative Mechanical modefeedback temperature?! can cancel photon shot noise! 0.1 0.1 0.01 0.01 1E-3 1E-3 Interferometer shot noise level 1E-4 1E-4 Tmode = -3.0 mK Qeff = 10 1E-5 1E-5 3500 3500 3750 3750 4000 4000 Frequency(Hz) (Hz) Frequency 4250 4250 Experimental setup damping mx 0 x kx Fth g0 ( x xn ) measurement noise x cantilever fiber interferometer x xn spectrum analyzer piezo d F fb g0 ( x xn ) g0 dt Cantilever Noise Temperature with Feedback mx 0 x kx Fth g 0 x xn Effective Q with feedback: Measured spectral density: Qeff Q0 k 1 g c 1 g 0 c4 / k 2 S x xn ( ) 2 2 2 2 2 / Q 2 c c eff Actual cantilever spectral density: S x ( ) Cantilever mode temperature: Tmod e Tmod e 2 2 2 2 2 / Q 2 c c 0 SF th 2 2 2 2 2 / Q 2 c c eff c4 / k 2 2 2 2 c c2 2 / Qeff2 g 2 k 2 2 S S Fth xn 2 2 Q c 0 k x2 kB g2 1 T 1 k c S xn 1 g 4 k B 1 g Q0 Sx n Cantilever Noise Temperature with Feedback mx 0 x kx Fth g0 x xn Effective Q with feedback: Measured spectral density: Actual cantilever spectral density: Cantilever mode temperature: For optimum feedback gain Qeff Q0 k 1 g c 1 g 0 4 2 / k c S x xn ( ) 2 2 2 2 2 / Q 2 c c eff 2 2 2 2 2 / Q 2 c c 0 SF th 2 2 2 2 2 / Q 2 c c eff g 2 k 2 2 S x ( ) S S Fth xn 2 2 2 2 2 2 2 2 Q c 0 c c / Qeff c4 / k 2 Tmod e k x2 kB Tmode,min k c T S xn k B Q0 Sx n T = 4.2 K Cooling (damping) of a cantilever - T = 4.2K → 4.6mK 1000 1000 T = 4.2 K Tmode = 5.3 K 100 100 2 2 Spectral density Ang (Å /Hz/Hz) 10 10 Tmode = 530 mK 11 0.1 0.1 Tmode = 73 mK 0.01 0.01 Tmode = 16 mK Tmode = 8.3 mK Tmode = 4.6 mK 1E-3 1E-3 1E-4 1E-4 Tmode = 5.3 mK Tmode = 9.3 mK 1E-5 1E-5 3500 3500 3750 3750 4000 4000 Frequency (Hz) Frequency (Hz) 4250 4250 Cooling (damping) of a cantilever – model and experiment 10000 10000 T = 4.2 K Q0 = 45,660 100 100 Tmode, min = 4.6 mK Qeff = 36 mode T (K) T mode(mK) 1000 1000 10 10 Theoretical Limit 11 0.1 0.1 0 1000 1000 2000 2000 3000 3000 gg 4000 4000 5000 5000 6000 6000 Cooling (damping) of a cantilever – model and experiment 102 100 Tmode (K) Teff (K) 1 10 10 1001 T = 295 K -1 10 0.1 Tmode = 2.9 mK 10-2 0.01 T = 4.2 K T = 2.2 K Theoretical Limit 10-3 1E-3 0 2000 2000 4000 4000 g g 6000 6000
© Copyright 2026 Paperzz