Approximation Method for a Non-convex Variational Model Tieyong Zeng Department of Mathematics, Hong Kong Baptist University Email: [email protected] Joint work with: Yumei Huang, Michael Ng SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 1 Outline 1. Introduction 2. Approximation 3. Iterative algorithm 4. Convergence analysis 5. Numerical simulation 6. Conclusions SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 2 Background Image denoising • Gaussian noise – Total variation model, wavelet shrinkage – NL-means, K-SVD, BM3D • Non-Gaussian noise – Impulse noise – Poisson noise – Multiplicative noise SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 3 Multiplicative noise Noisy model: f = un, where f is noisy image, u is clean image and n is multiplicative noise. • Variational approaches – – – – Rudin-Lions-Osher Aubert-Aujol Shi-Osher Huang-Wen-Ng • Hybrid approach – Durand-Fadili-Nikolova SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 4 Aubert-Aujol model Assumptions: Ω-image region, and n is of Gamma distribution. The AA model reads: Z inf u∈S(Ω) log u + Ω f u Z |Du|, +λ (1) Ω where S(Ω) := {u ∈ BV (Ω), u > 0}, f > 0 in L∞(Ω) and λ > 0. • Discussion – Non-convex – Important – How to solve? SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 5 How to handle non-convex? Huang-Ng-Wen (SIIMS, 2009) consider: Z inf log u + u∈{u>0, log u∈BV (Ω)} Ω f u Z |D log u|. +λ (2) Ω Using logarithm transformation, it can be transferred to a convex problem: Z inf w∈BV (Ω) SIAM IS10, Chicago −w w + fe +λ Ω April 12-14, 2010 Z |Dw|. (3) Ω First Previous Next Last 6 Our approach Restricting u in: B(Ω) := {u > 0, u ∈ W 1,1(Ω)}, where W 1,1(Ω) is Sobolev space. For u ∈ B(Ω), consider v = log u, then Du = ∇u = ∇ev = ev ∇v. Replacing AA by: Z inf v∈{v, ev ∈W 1,1 (Ω)} −v v + fe +λ Ω Z ev |∇v|, (4) Ω and let u = ev as result. SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 7 Discrete setting The discrete version can be given as follows: 2 min E(v) ≡ v n X [v]i + [f ]ie−[v]i + λT Vv (v), (5) i=1 where T Vv (u) := X e vj,k |(∇u)j,k |2 = 1≤j,k≤n SIAM IS10, Chicago X e vj,k q |(∇u)xj,k |2 + |(∇u)yj,k |2. 1≤j,k≤n April 12-14, 2010 First Previous Next Last 8 Approximation We study the following problem: 2 min J (v, w) ≡ v,w n X [v]i + [f ]ie−[v]i + α||v − w||22 + λT Vv (w), (6) i=1 where α > 0. • Advantage – Easier to handle – Let α → +∞, solution converges to global minimizer SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 9 Convergence Proposition 1. The function J (v, w) is coercive. Denote v∗-global minimizer of E(v), (vα, wα)-minimizer of J (v, w). Proposition 2. Let α tends to +∞, then in the sense of objective function, the minimizer of J (v, w) converges to global minimizer of E(v). Moreover, we have: ∗ ∗ E(v ) ≤ E(vα) ≤ E(v ) + λ sup e vα √ · min{ 8nkvα − wαk2, 4kvα − wαk1}. (7) In practice, α small is ok. SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 10 The iterative algorithm Object: 2 min J (v, w) ≡ v,w n X [v]i + [f ]ie−[v]i + α||v − w||22 + λT Vv (w). i=1 • Alternating minimization algorithm – fix v, update w – fix w, update v We thus obtain a sequences: v(0), w(0), v(1), w(1), v(2), w(2), . . . , v(m), w(m), . . . . SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 11 Details It is just: R(w(m−1)) := 2 v (m) = argminv n X [v]i + [f ]ie −[v]i + i=1 (8) α||v − w(m−1)||22 S(v(m)) := w(m) = argminw αkv(m) − wk22 + λT Vv(m) (w) • first step, Newton method • second step, weighted Chambolle algorithm SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 12 The convergence analysis Lemma 1. The operator R on a bounded region {w : kwk∞ ≤ A} is a contraction map, i.e., we have: kR (w1) − R (w2) k ≤ q kw1 − w2k2 , −A where q = 1 + e2α · inf i[f ]i −1 ∈ (0, 1). (0) N2 Theorem 1. For any initial guess w ∈ R , suppose w(m) is generated by the alternating minimization algorithm, then w(m) converges q-linearly to the minimizer of J . SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 13 Outline 1. Introduction 2. Approximation 3. Iterative algorithm 4. Convergence analysis 5. Numerical simulation 6. Conclusions SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 14 Gamma noise Consider: f = un, where the Gamma noise n is of mean one with probability density function L L−1 L n e−Ln, n > 0, p(n; L) = Γ(L) 0, n ≤ 0. The level of noise is determined by L and the variance equals 1/L. SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 15 Experiment I 1-D case: Clear u: u = [0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6 0.6]. (Quasi)-global solution of AA model (by fmin extensively) ũ = [0.2120 0.2120 0.2120 0.2120 0.2120 0.5876 0.5876 0.5876 0.5876 0.5876]. Our model: e 800 = [0.2141 0.2141 0.2141 0.2141 0.2141 0.5887 0.5887 0.5887 0.5887 0.5887]. u SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 16 Experiment II Figure 1: Barbara: middle-noisy image with L = 10; right-restored image. SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 17 Experiment III Figure 2: Boat: middle-noisy image with L = 10; right-restored image. SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 18 Experiment-IV Images (initial) “Babara” L = 33 “Babara” L = 10 “Boat” L = 10 “Cameraman” L = 10 Proposed recorded mean 26.0 26.1 (24.2) (30.2) 23.0 23.1 (55.6) (51.3) 25.3 25.4 (53.4) (49.9) 26.5 26.5 (67.5) (56.9) “HNW” recorded mean 25.9 25.9 (31.0) (51.5) 23.3 23.3 (75.6) (94.8) 25.4 25.2 (72.3) (97.5) 26.5 26.3 (73.6) (119.6) “AA” recorded mean 25.1 25.9 (588.2) (602.2) 22.2 22.9 (620.6) (594.3) 25.3 21.1 (624.2) (568.3) 25.6 18.8 (587.2) (692.6) Table 1: The recovered PSNRs and computing time for various images, the upper value is PSNR, the lower one is computing time (seconds). SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 19 Conclusion Multiplicative noise removal • AA model – – – – approximation alternating minimization algorithm linear convergence some comparison • Further works – extended to other non-convex models – extended to deblurring SIAM IS10, Chicago April 12-14, 2010 First Previous Next Last 20
© Copyright 2026 Paperzz