Statistical Thermodynamics: from Molecule to Ensemble 1 http://www.bodybuilding.com/fun/thermodynamics_training.htm Introduction to thermodynamic state functions • Partitional function (q, [q]=?): Encodes how the probabilities are partitioned among the different microstates, based on their individual energies (’sum over states’) • (Internal) Energy (E, [E]=kJ/mol): ΔE = w + q • Enthalpy (H, [H]=kJ/mol): H ≡ E + pV = E + RT • Entropy (S, [S]=J/molK): a measure of the number of specific ways in which a thermodynamic system may be arranged (’measure of disorder’) • Gibbs Free energy (G, [G]=kJ/mol): G ≡ H - TS maximum energy can be attained only in a completely reversible process (’chemical potential’ ’available energy’) 2 State Function? Independently: fi 3 Get the feeling of Energy conversion Sedentary Glucose C6H12O6 + 6 O2 = 6 CO2 + 6 H2O 0 ∆𝑐𝑜𝑚𝑏 𝐻298.15𝐾 = −2805 kJ/mol 0 ∆𝑐𝑜𝑚𝑏 𝐻298.15𝐾 = −15.6 kJ/g Estimated Energy Requirements (kJ per day) Year Female Male 2-3 4602 4602 4-5 5021 5230 6-7 5439 5858 8-9 5858 6276 10-11 6276 7113 12-13 7113 7950 14-16 7322 9623 17-18 7322 10251 19-30 7950 10460 31-50 7531 9832 51-70 6904 8996 71+ 6485 83684 Statistical thermodynamics • 1 Molecule 𝐸(𝑇) = 𝑁𝑘𝐵 𝑇 2 𝜕𝑙𝑛𝑞 𝜕𝑇 𝑞(𝑉, 𝑇) 𝜕𝑙𝑛𝑞 𝑆 𝑇 = 𝑁𝑘𝐵 + 𝑁𝑘𝐵 𝑙𝑛 +𝑁𝑘𝐵 𝑇 𝑁 𝜕𝑇 𝑉 𝑉 • 1 Mol 5 Statistical thermodynamics • 1 Molecule 𝐸(𝑇) = 𝑁𝑘𝐵 𝑇 2 𝜕𝑙𝑛𝑞 𝜕𝑇 𝑞(𝑉, 𝑇) 𝜕𝑙𝑛𝑞 𝑆 𝑇 = 𝑁𝑘𝐵 + 𝑁𝑘𝐵 𝑙𝑛 +𝑁𝑘𝐵 𝑇 𝑁 𝜕𝑇 𝑉 𝑉 If we know q and T, then: E(T) and S(T) !!! • 1 Mol „Sum over states” Energy distribution of the molecules Energy Energy 𝑔𝑖 𝑒 −𝐸𝑖 /𝑘𝑏 𝑇 𝑃 𝑇 = 𝑔𝑖 𝑒 −𝐸𝑖 /𝑘𝑏 𝑇 E(T) and S(T) + microstates How to get microstates? Boltzmann distribution H(T) = E(T) + RT G(T) = H(T) – TS(T) 6 Microstates • Combintation of Degree of freedom – External: translation – Internal: rotation, vibration and electronic 7 Translational states What we need to know: Molecular mass 1 molecule 𝑞𝑡𝑟𝑎𝑛𝑠 2𝜋𝑚𝑘𝐵 𝑇 = ℎ2 3/2 𝑉 𝑞(𝑉, 𝑇) 𝜕𝑙𝑛𝑞 𝑆 𝑇 = 𝑁𝑘𝐵 + 𝑁𝑘𝐵 𝑙𝑛 +𝑁𝑘𝐵 𝑇 𝑁 𝜕𝑇 𝜕𝑙𝑛𝑞 𝐸(𝑇) = 𝑁𝑘𝐵 𝑇 2 𝜕𝑇 𝑉 1 mol 𝑉 Etrans(T)=3/2NkbT=3/2RT Strans(T)=R[ln(qtrans)+1+3/2] Etrans(T=298.15K)=3/2RT=3.7 kJ/mol 8 https://www.youtube.com/watch?v=mXpfO9WhlPA Rotational states What we need to know: Optimized geometry of the species → Rotational constants (Rigid rotor treatment) Energy level diagram ≈2x =1x 1 molecule 𝑞𝑟𝑜𝑡 𝜋 = 𝜎𝑟 2 𝐸(𝑇) = 𝑁𝑘𝐵 𝑇 2 1/2 𝜕𝑙𝑛𝑞 𝜕𝑇 𝑇 3/2 (Θ𝑟,𝑥 Θ𝑟,𝑦 Θ𝑟,𝑧 )1/2 𝑉 𝑞(𝑉, 𝑇) 𝜕𝑙𝑛𝑞 𝑆 𝑇 = 𝑁𝑘𝐵 + 𝑁𝑘𝐵 𝑙𝑛 +𝑁𝑘𝐵 𝑇 𝑁 𝜕𝑇 1 mol Erot(T)=NkbT=RT Srot(T)=R[ln(qrot)+1] 𝑉 Erot (T=298.15K)=RT=2.5 kJ/mol 9 Vibrational states What we need to know: Optimized geometry of the species Force constants (k) → harmonic wavenumber (Harmonic oscillator approximation) 1 dimension (diatomics molecule) 1 molecule 𝑞𝑣𝑖𝑏 = 𝐾 1 1 − 𝑒 −Θ𝑣,𝐾 /𝑇 𝑞(𝑉, 𝑇) 𝜕𝑙𝑛𝑞 𝑆 𝑇 = 𝑁𝑘𝐵 + 𝑁𝑘𝐵 𝑙𝑛 +𝑁𝑘𝐵 𝑇 𝑁 𝜕𝑇 𝜕𝑙𝑛𝑞 𝐸(𝑇) = 𝑁𝑘𝐵 𝑇 2 𝜕𝑇 𝑉 𝐄𝐯𝐢𝐛 (𝐓) = 𝐑 1 mol 𝑲 Θ𝒗,𝑲 𝐒𝐯𝐢𝐛 (𝐓) = 𝐑 𝑲 𝟏 𝟐 𝑉 𝟏 + Θ /𝑻 =𝐙𝐏𝐕𝐄 + 𝐑 𝒆 𝒗,𝑲 −𝟏 Θ𝒗,𝑲 /𝑻 + 𝒍𝒏(𝟏 − 𝒆Θ𝒗,𝑲 /𝑻 ) 𝒆Θ𝒗,𝑲 /𝑻 − 𝟏 𝑲 Θ𝒗,𝑲 𝒆Θ𝒗,𝑲 /𝑻 −𝟏 10 Scaling factors The vibrational frequencies need adjustment (scale factor) to better match experimental vibrational frequencies. This scaling compensates errors from: (1) Approximation in the solution of the electronic Schrödinger equation. (2) Harmonic oscillator approach How to get scaling? (1) Do it yourself (2) Find it (a) http://cccbdb.nist.gov/ (b) literature Experimental vibrational frequencies (νi), Theoretical vibrational frequencies (ωi). Scaling factor (c) and its relative uncertainty (𝒖𝒓 𝟐 ): ν (ωi2 (𝑐 − ωi )2 ) (νi ωi) i 𝑐= 𝑢𝑟 2 = 2 2 (ωi ) (ωi ) c=0.9608 for B3LYP/6-31G(d) 11 Electronic states Usually it is not considered, but it can be important: - Spectroscopy - Species having low lying excitations Energy Units S0/S1/T1 1.223 Å/1.238 Å/1.230Å 1.393 Å/1.408 Å/1.400Å 1.223 Å/1.239 Å/1.230Å 1.478 Å/1.434 Å/1.453Å 1.390 Å/1.409 Å/1.401Å kJ/mol eV nm S1 T1 303.9 3.15 393.6 287.9 2.98 415.5 S0 0 1.386 Å/1.371 Å/1.376Å 1.389 Å/1.370 Å/1.375Å 1.401 Å/1.433 Å/1.426Å 1.397 Å/1.430 Å/1.425Å 1.486 Å/1.393 Å/1.406Å 1.207 Å/1.261 Å/1.299Å 1.112 Å/1.111 Å/1.096Å 12 Energy Jablonski diagram Jablonski diagram Potential energy diagram Energy Electronic excited state (e.g. S1) Rotationally, vibrationally and electronically excited state Rotational ground state, vibrationally and electronically excited state Rotationally excited, vivrational ground state and electronically excited state Rotational and vibrational ground state, electronically excited state microstate Elecronic ground state (e.g. S0) Rotationally vibrationally excited state and elecronic ground state Rotational ground state, vibrationally excited state and elecronic ground state Rotationally excited, vibrational and elecronic ground state Rotational, vibrational and elecronic ground state (first molecular state!) Interatomic distance 13 Thermodynamics terminology X in energy dimension E0≡Etot+ZPVE E°(T)≡Etot+Ethermal H°(T)=E°(T)+RT G°(T)≡H°(T)-TS°(T) Microstates Zero-point corrected energy Thermal-corrected energy Standard enthalpy (pV=nRT!) Standard Gibbs free energy Macroscopic properties: Etot P(T) H°(rmin)(T) ZPVE P(0K) Minimum of potential energy surface (Etot(rmin)) E°(rmin)(T) E0(rmin) (first molecular state!) G°(rmin)(T) Interatomic distance Ethermal(T=0K)=ZPVE 14 Ethermal(T)=Etrans(T)+Erot(T)+Evib(T) (+Eelec(T)) Thermodynamics terminology X in energy dimension E0=Etot+ZPVE E°(T)=Etot+Ecorr H°(T)=Etot+Hcorr G°(T)= Etot+Gcorr Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Total E (Thermal) KCal/Mol 537.139 0.799551 ZPVE 0.855985 Ecorr 0.856929 Hcorr 0.699092 Gcorr -2392.526502 -2392.470067 -2392.469123 -2392.626960 CV Cal/Mol-Kelvin 206.443 Etot+ZPVE Etot+Ecorr Etot+Hcorr Etot+Gcorr S Cal/Mol-Kelvin 332.196 Etot H°(rmin)(T) E°(rmin)(T) Hcorr Ecorr Gcorr Minimum of potential energy surface (Etot(rmin)) G°(rmin)(T) Interatomic distance 15 Reference state? Different definition of reference state in experiment and theory, conversion needed Experimental E(kJ/mol) Ref (Theory): Theory E(Hartree) 0 Hartree 9C6+(g)+8H+(g)+2Cl17+(g) +3O8+ (g)+120e- (g) 93C(g)+82H(g)+22Cl(g) +33O(g) 9184.246kJ/mol -1490.021129 Hartree =9·716.68+ 8·217.998+ 2·121.301+ 3·249.18 Ref (Experiment): 9Cgrafit+4H2(g)+Cl2 (g) +1.5O2 (g) e.g. B3LYP/6-31G(d) =9·-37.843920+ 8·-0.497912+ 2·-460.133882+ 3·-75.058263 0 kJ/mol fH° C9H8Cl2O3 -404.5 kJ/mol -1493.673273 Hartree 16 17
© Copyright 2026 Paperzz