E )
` " / '9C a ' 9 -) /!" 9 / #N) : 0 1$^ _ / .
(#`\) `
)
C " JI 8 *"
K
W $%
J
#
( / /
)n
#" M
0
)
[)
W
)
9 #; <
$D7
/ /
)
)
( # !#
Q '\ / r (
N/
+ ,!" ? + M
/
%
29 : ." y+ C !"
8K(
‡" .2= F " D !# "
%NK N1 M <1 rD" r
'
eih %W 2W 0
,! /
) % `!
/ ' j} ke k} e k x <b" #" . (D 0 ` <K` % ` !
_ z4 ( # !#
/r (
.%)1 ‡ ) F0#"%) " " )R
" ) ) < u
!" R
' " .%1 "
< k{g} 0 " _ %
_ C
+ ?) + + ) N /
+ ,!" ? + M
/
%
29 : .%1 * q " " +" 0 OK "
+ ,!" 0 OK! #/
‡ F0#"% "
)
) / M
%
"%C
O
0% / 2
L! ' ; " .%1 ‡ F0#"% " CF-IRMS TCA
0 O'
B/EI j/j ?) + + ) M )
)/
) "%)C
O )
'
* F
dd/ˆ ei/k " ? + + 0
,! / n W ( # !#
M13C-DOC "%)C
O ) ]kk ‰ ]h ‰ " ? + +
( # !#
/ 13C-DIC "%C
O
'
* F
) Q '\ / r (
N/
+ ,!" ? + M
/
%
29 :
u . ]jg/e ‰ ]{k/d ‰ ? + +
) / )+ (
) „() ) Z ) ' #" 0 ) ,! / n W / r (
M
0%<b 8K( 2 " . >' ( # !#
.2 " C ( (C3 5 F)
F 1 #"
%W + ( '
L A #(8
Pcd H(#L
0b
A PU
)8 H(#L PU
. H(#L :" - L " ' K
Evaluation of Dissolved Inorganic and Organic Carbon Concentrations
(DIC, DOC) and Their Isotopic Compositions (M 13C-DOC, M 13C-DIC) in
Water Resources of the Karde Catchment (North of Mashhad)
H. Mohammadzadeh 1
(Received Jan. 23, 2014
Z. Shirnezhad 2
Accepted Aug. 22, 2014)
Abstract
In this paper, the variations of dissolved inorganic and organic carbon (DIC, DOC) concentrations and their
isotopic compositions (s13C- DIC, s13C- DOC) were evaluated in both surface and ground water resources in the
Karde catchment area (with an area of about 547 Km2, located in the North of Mashhad). To identify the sources
of the dissolved carbon (DIC and DOC), samples were collected in June 2011 from surface and ground water
resources (river, dam’s lake, springs, wells, and Qanat) and from depths of 1, 5, 10, 15, and 20 meters of Karde
dam lakeat a point located near the dam outlet. Field parameters (T, EC, and TDS) were measured during
sampling. All measurements were performed in the G.G. Hatch Stable Isotope Laboratory at the University of
Ottawa, Canada. The concentrations and isotopic compositions of DIC and DOC were determined using TCA
and CF-IRMS instruments, respectively. Based on the results obtained, the average values of DIC are 54.1 mg/l
and 66.8 mg/l in the surface and ground water resources in the Karde catchment area, respectively; the average
values of DOC are 2.2 mg/l and 0.45 mg/l; the average values of s13C-DIC are -7‰ and -11 ‰; and the average
1. Assoc. Prof., Groundwater Research Center (GRC), Faculty of Sciences,
Ferdowsi University of Mashhad, Iran (Correspondin Author) (+98 511)
9797275 [email protected]
2. MSc Student of Hydrogeology, Groundwater Research Center (GRC),
Faculty of Sciences, Ferdowsi University of Mashhad, Iran
81
! "(Gk2%) &( %H H E /G@ Z [ [$S 5C % " ! ) ^ ^ ^ (70.8% (8 0!) = " %
"(Gk2%) &( %H H E /G@ Z [ [$S 5C % "El0>0ml) /
&' ( C E0F ! <
= " % &')
3 ! "60,!
&e')
3e ! "60,-
[email protected](
values of s13C-DOC are -31.6‰ and -29.5 ‰, respectively. In general, the concentrations of DIC, DOC, and
their isotopic compositions (s13C-DIC, s13C-DOC) are different in the various water resources (surface and
ground water) in the catchment and the major source of dissolved carbon in the catchment area is believed to be
due to the lithology (limestone and dolomite carbonate rocks) and partly due to the vegetation (plants C3) in the
region.
Keywords: Dissolved Inorganic Carbon, Dissolved Organic Carbon, Stable 13C Isotope, Karde
Catchment.
# g % > $ C !#$ DOC DIC # z # 0 % $
B
#& >
_ 3 5 - $ 5 /: •0% 8
0
Q! ?
/6 Q! *
pH _a
( <?
€/
0 '!
Q !
# $+ ? ` 0 % > -0 65& ' 6 Ÿ ?
'%9 #
. #! @ 6 #&!
$ TD
w$
* #M% 5 8y$
( ?` 5 = CO2 AE % 0z
Z .
& ' (PCO2) k " CO2 [ : G = pH
- *
# 5 CO2 _ 0 D$ _ < 5 * % ! 9
0 #
(CO2(g)) 9
CO2 0z
4$ Q ! = PCO2
CO2 G&% #
.0 Ÿ Q (CO2(aq)) Œ
( D< 9
5% /% - 35 .0 Ÿ Q
Œ _" 5
23
6 7#I CO2 (l 5B ) T s (j 5B )
[j] 6Ÿ = DIC -06 #$ H
_
j
%0 ? # !
1 5 P
X /? = A
# !_ !
n
- , #$
5 ! 6Ÿ @0 A
< #! lA
A
CO2 _ 6 DIC .0 &'
&' #&G
#!
0 % $Ÿ % hG 5! (
#!
# *T #!0 *=
.(j _ 6) 06 @0 P
k " s *@ 9 * :
2NaAlSi3O8+ 2CO2+ 3H2O ⇋ Al2Si2O5(OH)4 + 2Na+
())
(J)
+ 2HCO3- + 4SiO2
CaCO3+ H2O+ CO2 ⇋ Ca2++ 2HCO3-
Q! _< 5 %
#
= s¹³C-DIC # z
:
& ' _ 3 5 5! ( P - , k "
9
C $#$5 0 % $Ÿ 5&'
&' : &' - 5&'
A
O % i 06 O D6 5zB O D6 # H 5zB
#6
9
5!
% 5! Z5 .06 5$ #! 5$
0% $ 5! @#4
0 z *( <
( ' ! AE % *( 5$ #! #&' s
.0
Q s¹³C-DIC
*N 4% 5zB • I"5 8 % = - 0 '! @0 0>
0 '! *
0 4< # 0% $Ÿ - 0 '! .(
23
8 # gh $ <
( # 0 '! ) -e '! !
C !#$ .[J] 6
# = CO2 ( % / < * 4<
^
- 0 '! # @ E 3 (s¹³C-TDC) A
# ! _! > $
s AE % _1
A#& ! ( $ (
/ * <
# z #
5` 5!
5% " XEa .06 % 5$ #!
0
s¹³C-DIC
*0 !
G
s
DOC C !#$ DIC
: Q /% Ÿ $ /6 }#Z x_4 5
= Œ
k "
:
;
5$
9
*k "
: 0 >% <
4 &, _ 3 .0% 6Ÿ
G, N 4%
! Z5
CO2 AE %
6 % DIC * s
AE %
6 % DOC 5$ #!
#
B
= Œ
1
Total Dissolved Carbon (TDC)
Dissolved Inorganic Carbon (DIC)
3
Dissolved Organic Carbon (DOC)
2
82
.06 Ÿ # (13C-DOC 13C –DIC) % > $
# #g• _ 3 5 5 : $
#
B + &,
Œ
Œc
.0 6 i ^% @ ! 5 `
DOC DIC # z
% > $ C !#$ DOC DIC
( M H @ 4&
.06 5?< B
Œ
: A
#! hG *=
5% /%
#
% q I 6q5
• qY zq 75i q n%# q D $C ; @R T
@/ A
A7
( Œc ¥ 5p! x0^'
- r#6 @ ! # 5`
- #" - &
+ G! # 5`
5` #
#y: I&, 5 `
.(l_ 6) (
`
°
°
°
°
n‹ ƒ‚ vw n‹ •• vw c# 6 A Z ƒ‰ •ƒ vw $ ƒ‰ l‹ vw
Œ # #& ! ƒ•“ 0 - ( '
#c < /6 ˆ#3
5` O 4$ #a! 0 .( 0 G # 6 A /6 % &' !
%— :
# & jn•• - O 4$ _c 0 #& l‰n• *@ ! 5% "
#
Q @ ! 5 % " .( # & l•‚• 5 ` O 4$
&
- #: = : 5 A / 6 5 ! 0
_ G$ 5`
1
@# "N 0 ( G> *@ ! 0 ™ 0
5% "
= .
Z5 *#& ! L\ A Z 5 5< < " „ #Z 0 =
6Ÿ
_ z& (r# = ) 0 G ) @ / 6 5 % "5 4 I$ 5 0
z&'
* 6Ÿ ( W 4 =#6 7#I _ < 5 0 = 5! 0 U# . 6Ÿ
?< B 5 0 *0 ( G> = 9 <
# 9 :•# <
5 : $ (DOC DIC) A
# ! hG
# 5 /: * #&G
. 6
@0 G l_ 6 5 ! 5 zB Ÿ 6
5 Gz% 5 5: $
& <
0
$ < /6 (/'c * 6
5^ 6 5%
s 5
* % (/'c *0%
( dp { 5 /: # ,D$
5 P5!
0 5q #
T *5`
> (/'c
.( @0 6 _ G$ -{ š% 5 „ ?& • @ c
0 /U
0
#& G @ ! # 5`
! Z5
0 1 \Y/V Q .( @06 @0 6 > 0%
& <
0
/U 0%
5 zB ( '
.(n_ 6) 0% 6 >Ÿ
(
5$ _ 6 5 5`
9 Q6 > /3 /
*5 `
9 Q6 > . 0% : $ " &" @ G
( 5 & #9 # c k " Ÿ 6
* c #6 # gh$ ( $
(<"
€/ ( @ # ! ^
4 &,
–$
% 9#9
# y$ U *q#4 #U &' ! 5
5& ƒ 5 @ ! # 5 `
9 Q 6 > .( @06
83
#
Q
5! <
@ xl• ‰
.[K]0 &' xj• ‰ $ xjj ‰ 0 s¹³C
*
#!
= s¹³C 0 z 0% 6Ÿ 0 '! #&/! <
*T " #6
.0 Ÿ - G% A
#! #&G (! G 5% "
x‹ ‰ $ x‰ ‰ 0
TDC > $
C !#$ % :
&
*(s¹³C-DIC) - > $ C !#$ DIC (M H .[V L](
•5 % "
XEa .0 !Ÿ # y$ % 5% D6 A Z = Œ
A Z DIC ( M H * # @0 & (<
Œc % &% # 6
s¹³C- # y$ (
#& G # z
* 5 (D'% C6
7# I & & 0 # 5 q # 5! ( DIC 7E"# DIC
C 6 A Z d4 $ i
CO2
A Z DIC
[Y](
3EZ *(¹³C-DIC) - > $ C !#$ DIC # z
=
s =
/ 6 q D$
0 /6
5 ?< B ¹³C-DIC 0 > w $
0 Ÿ ( 5 AE %
&' ! # '4$ # €/ =
:
#! 5"#U
&'
Ÿ/ Qz% % DOC . 6Ÿ @ # !5 %
*
@0 P #
Ž/
k# $ # # 6 =
.[\]0 6
#
= @0 P
$5 (
/ €/
#
= DOC & ' E 0 D$ Œ
8 9# gh$ / 6 Q !
#
0 # k
€/
> $
< % T/!5 *
#
B
= DOC #
DIC DOC ( / 5 5: $ .[]] # 9 Ÿ
1 DOC :
* %
# •# > $
;
@ 4& = Œ
*5% /% - 35 .( 5& #9
1- :
' ?< B
5 5: $
" • Q e> *l••n A
- / ™
0 <# - 9P 5% " = ( 4 ! # 89# gh$ _ 3 * #! 5"#U
@ 4&
Ÿ
.0 % #! Ÿ
- # 5`
0z
*pH * 1 # 1 3 5 /:
/ 6 #& >
.[b]( @06 i ^% s¹³C-DIC
w $ (D '% @ 4&
*l••l A
R#9
( " #> #
0 #
6 5 * C13 #! 0 >
C13
C12
C12
(D'% # * #
Q!
0?$ 5
5 5: $
€/ @# H - $ * & *- & ? A
<
5% 9
# gh $
#
=
#! _a A
%0?
5% 9
•#
#! 0 > w $
@ 4&
; *0% 89Ÿ
5& 6 89 2 5 *- ,
#
( <?
6
.[j•](
C !# $ DOC DIC ( M H # y$ Q e >
0 % A €, •# 9@ 0 % - $ 5% /% 5 ! .06 _z&
# = Œ Œ $ 5zB Ÿ 6
5 5: $ .06
5&
5
# = Œ *5 $ #!# H 5 $ #! 0
Œ
Q1 Sp5 *Sp2 * Sp1 * Dw1 *Dw2 &
!= Œ
= Œ
@ # / @0 6 'z$ Sp4 Sw2 & !# H =
.(l_ 6) 06 # *@ ! 0 5U
5% "
? B
G! _ "
0 > w $ •# 9@ 0% 5! ^%
¨ " : • Œ /: d > =
5 % /% *( ' % 0z
_ z&
$ @ G% > $ @ G 5 / >
0 %
l
5 ! TCA DOC DIC /! # z ?$ # ^%
06
n
•
•# 9@ 0 % # ( 7 # ? % TIC -TOC
< % 5
(D '% #: t + Z (s¹³C) # ! > $ # z
@ 4& - /< (" ‹RE> &< A0 ƒ5& > - #: x > $
.06
2
3
4
5
Total Inorganic/Organic Carbon Analyzer
Total Inorganic Carbon
Total Organic Carbon
Continuous-Flow Isotope Ratio Mass Spectrometr (CF-IRMS)
6
Delta Plus XP Thermo Finnigan
(
#
B ) + &,
Œ
# 5% /% q z% ( ?c
*( 5zB
(3
ƒ/•ƒ 5 !
"5
Q6 > 01 ‚ƒ/•l _ 6 5! Œ$ # :0% 6Ÿ 'z$
*# 9 #
5zB 01 l/l 5! (3
¥ *( @0 6 @ #& '9 5 zB 01 ‹/ƒ 5!
5 zB 0 1 •/n 5 ! 5 U
0% 6 >
01
.[))]( @ • I&"
* % > $ C !#$ DOC DIC ( M H •# 9@ 0% • #
# = Œ D jƒ .0 6 ( 6 # = 5 % /% l• 0 ?$
ƒ 0 ?$
c @ U *5/GU *0 5U *5% " _ 6 B
*j r /3 *@ ! 0 5U
z/3 _ #> T = 5% /%
jn‰• A @
# " *0 : #" * #& l• *jƒ *j• *ƒ
* #& < ( 0 * 5 /:
# 1 #& > .06 •# 95% /%
j
.0 6 •# 9@ 0 % # 1 ))V @ &
$ TDS
• I, * % 5 G 6
•• 7 #W =
5% /%
@ G
5 (3# 5 • Œ /: *A
# ! •# 9@ 0%
1
ORION 115
@ ! # 5`
6
5Gz%
#y: ( ?c xT4 5
84
7,$8$ = p
7,$8 p
( '
!
^ %&
• #: #& #& p @ & _" 5
15 0%
T # 01 ) @ ! # 5`
5$ #!# H 5$ #!
[jl] Œ:# 5& # y$ •(( @06 @ - G% 0%
0% & 5% /% @ #/ 5% /% T #! 9
[jn] Œ:# 5& # y$
6 • Œ /: j
@0 !• Œ /: 5 5 - /
- 35
6Ÿ @ #/6 •‹ •ƒ *•• i#: # >$
i /$ .(L _ 6) 0 Ÿ Q /% 5 > $
03 0z
# 5 ! - _Dc ( i P *T > $ 5& > - #:
&'
9 #: t + Z - ŸB" * 6 i ^% •# 9@ 0% 5% 9
9- 5 ! 5 €
< % 7E " # . 6 _ 1
•• m/z 0 6 % '
G 0 % $Ÿ 5 % /% 0% &
15 = 5 % /% *5& > - #: *0% 6 „ $ _ 0 ?$
@0 6
%
> $
(D'% „ $ #4%
1
Faraday Cup Collector
85
>$
0%
(D'% #: t + Z
( ' xU4 5
/% xa4 5
l••• A
& ',% *5
$ 0z !
( @0 6 i ^% % ! A #&%
5& > - #: IRMS @ 9 !
@0 6 ; 9 l••j A
AIG-IV d% #4 !
< #
_! < #! < %
( z # ! &',% .(
13
A
%0?
5% /% C w $ - / < % # TOC
(D '% #: t + Z & ' T A
<
5% /%
(D '% #: t + Z .
! " 5& > - #: x > $
+ &,
i# : #!0 '!
9 + &, O % * > $
Z5 dp
6Ÿ 0: # 0
' Z y -0 T
( c .0% 6Ÿ 5D
•‹ •ƒ *•• m/z #
#
# 0 1 l %0 ?
< # ! ( M H # •# 9@ 0 %
.[)Y )V *)L]( ±•/l ‰ w $
*+, -# ! a
DIC)
% > $ C !#$ DOC DIC (M H 5 q #
@
# = Œ
@06 (6 # 5% /% B
#& >
5U _ 6 B = Œ
€/
& !# H & !
5 [ j A 0 : *jn‰• @
#" @ ! 5% "
@ !0
Ÿ ? % > $ C !#$ DOC DIC # y$ .( @06
*
#
B *+ &,
Œ
* 13C-DOC 13C-DIC
ƒ_6
%&
/%
15 @ ! # 5` SB
.( @0 6 @ - G% ‹ _ 6
B"
/%
15
A
# ! : ( M H # y$ % Œ $ 5 5: $
= DOC - 5 ! 6 @0 G
"5 ƒ _ 6
% > $ C !#$ DOC * DIC # z 5' z xc4 5
@ ! 5` (
> (s13C-DOC, s13C(( @06 DOC×100 *#& 5' z • # )
5?< B
DOC
5zB
Œ
(13C-DOC, 13C- DIC) % > $
DIC
mg/L M¹³C (‰)
C !#$ DOC *DIC
5
EC
(LS/cm)
TDS
(mg/L)
(%)
@ X x_3
pH
T(oc)
f/L
f/K
f/J
f/J
f/L
f/K
f/K
f/K
\/Y
\/]
\/]
\/]
]/)
\/b
]/f
\/b
)V/b
)b/f
JL/)
JK/J
)J/L
)V/f
JJ/J
JV/J
n•‰
f/K
\/b
)b/Y
#
ƒ‹‰
ƒ“j
‹jƒ
‹•l
‹l•
‹lƒ
‹lj
‹•j
‹l‰
‹•‹
‹•“
lĥ
lƒ‰
l‚‰
l‚•
l‰ƒ
njl
n‰j
•••
n‰‹
••j
••‚
f/K
f/K
f/K
f/K
f/K
f/K
x
x
x
x
x
]/)
]/f
]/)
]/f
\/b
]/f
\/b
]/J
]/)
]/f
\/]
))/]
))/J
JK/f
JJ/J
JL/f
Jf/Y
)]/)
J)/f
)L/f
)K/f
)J/f
Ri1
‹j‹
nnƒ
f/K
]/f
)\/K
mg/L
M¹³C (‰)
f/]
f/K
f/L
f/K
f/]
f/Y
f/J
f/J
xKL/\
xJ]/Y
xJb/f
xJb/J
xJ\/\
xKL/\
xJb/)
xJ]/J
bJ/V
V\/)
L\/V
L\/J
bY/]
bK/Y
VJ/J
L\/b
x)f/K
x)V/)
x]/J
x)J/K
x)J/K
x))/V
x\/f
x)f/]
‰•l
ƒl•
ƒƒ•
ƒ‹‰
““ƒ
“jl
ƒ‚•
ƒ‚ƒ
•l•
l•ƒ
l‹•
l“ƒ
n“j
n••
l“‰
l‚l
f/LV
xJb/V
YY/]
x))/f
‹•‰
f/\
f/\
J/]
)/Y
J/Y
J/\
J/]
J/b
J/\
J/L
J/Y
xJ]/L
xJ]/L
xKK/\
xJb/L
xKK/J
xKK/L
xKJ/L
xKJ/)
xKJ/J
xKJ/)
xKJ/K
VK/V
Y)/f
VJ/b
LV/Y
VK/Y
VL/f
LV/]
LV/]
V\/L
Y)/V
YK/b
x\/)
x]/\
xV/]
xV/K
xY/)
xV/b
xY/)
xY/)
x\/Y
x]/b
xb/]
J/J
xK)/Y
VL/)
x\/f
( @ ! 0 5:
Z5
KL7 B
Q1
T6 ! c
Š 0% 5/GU
# 5/GU
A 5/GU
T6 5/GU
@ ! l @ /6 @ U
j @ /6 @ U
l @ /6 @ U
SP1
Sp2
Sp4
Sp5
Sw2
Dw1
Dw2
=
# z
%
@ ! 5% "
@ ! 5% "
@ ! 5U
Ri2
La7
La3
"
"
"
"
"
"
"
"
La8
La2
SB *La1*La1-5
*La1-10
*La1-15
*La1-20
B
=
# z
z/3 _ #> 5 q # # z
%
*
86
( )
5?< B
5zB
#
B
Œ
s¹³C-DOC DOC
5&" 6 #! ( Da$ - 3 0 # 5! 0 &' <
A <
_ 0D$ < #! 5 %0? #! (
/ *
.[)\] 6Ÿ
_ < XP /& 5 ! 6 ( Da$ T %{
#!
15
6
5U
5%" _ 6 B
= Œ
DOC Q
! 5 ?< B
5zB
#
= DOC (M H .(
90 % - - P xj :06 # _ P 5 0% $Ÿ 5!
- 35 < #! 0
5! *
#
=
. 6Ÿ 0 '! * #!0 '! 5 =#
$ 8H ŒD T
(
/ *
# H
#
=
€/
(
# < #!
15
6 _ 0D$ - & 5 % 9
15 =8 : - ,
SB # < # ! xl • #
78 #!0 '!
15
6 5 ^$ / 6
/6
_ c < # ! /! # z
*- , 0 : xn • 6
.0% DOC _ G$
/!
0 &' = _
A
#!(M H
# 1
@ # z 5 5: $
5U
z/3 _ #> 4 ! @ # z 5U
z/3 _ #>
13
13
#
C-DOC, C- DIC *DOC *DIC # y$ *@ ! 0
1 # 1 3 ( M H # y$ 5 /:
4!
#& >
*@ ! 0 5 U
z/3 _ #> # # 1 #& >
5 ! *06
0 : #" 5Bz% * #& l• jƒ *j• *ƒ *j r /3
.(jA 0:) 6 @0 G “_ 6
?1#
0
Q
„/3 Q
DIC # z
# y$ < •
„ /3 Q
(s¹³C-DIC) - > $
% 0 U # y$ DOC 0 z .
< %#
0
Q !
13
(s C-DOC) - > $
0z < • 0% - G% „/3 5 (D'%
87
(g/ )
# y$ s¹³C-DIC DIC # y$ 5 q #
/% xd4 5
d 3# .(
#
= - 0 z #&G * B
.( #&G
#
= DIC * #! AE % _ < 5
%0 ? #! (M H # z Q
! Z5 ‹ _ 6 5 5: $
A 0: @ 5 5: $ .0 Ÿ Q ! % > $ # z * <
*
#
= Œ
DIC (M H *+< x‹ _ 6 j
= - ( M H #&G *#& < i#9 YY/] %
% * B
> $
0z
#& < i#9 VL/)
* x\/f‰ %
* B
= Œ
(s¹³C-DIC) *
#
= - # z #&G
x))/f ‰ %
bY/] - Ÿ ? *Sp5 5% /% 5 q # DIC 0z #&G .
i# 9
LV/Y - Ÿ ? *- 0z #&/! #& < i#9
13
C- 0z
#&G . (La3) 5U = 5% /% 5 q # #& <
q # - 0 z #&/! (xV/K ‰) La3 5% /% 5 q # DIC
DOC # y$ 5 ! <
. (x)V/) ‰) Sp1 5 % /% 5
13
X D #z$ *
#
B _ 6 + &,
Œ
C-DOC
$ D35 •(= x‹_ 6) s¹³C-DIC DIC # y$ d 3
i#9 J/J %
* B
= Œ
DOC f/LV %
#
= - # z #&G #& <
5 % /% 5 q # DOC 0 z #&G . #& < i#9
q # - 0z #&/! *#& < i#9 J/] # # La1 La7
( 5 # & < i# 9
f/J # # *Dw2 Dw1 5% /% 5
(xJ\/\ ‰) Sp5 5 % /% 5 q # 13C-DOC 0z #&G .0
. (xKL/\ ‰) Q1 SW2 5% /% 5 q # 0z #&/!
*0% 6Ÿ @0 % 7 #$ $ 5! 1 "
: * Œ
5 #
#! D !#$
# ! 0 '! _ 0D$ % $
@ ! 0 5U
z/3 _ #>
4!
#&
>#
- >$
C !#$ A
#! (M H
# y$ 5' z
/% xP4 5
88
_ < s¹³C-DIC Q ! Ÿ ? - > $ C !#$ # z Q !
-e '! : 5 5 : $ .( DOC 5 ^$ DIC h G #
1
T %9
5 ^$ *= A
Q ! „ /3
4<
# & % ( M H _ < / 5 * # 9Ÿ
*DIC : Q
.06 @0 G #& % Q
& ( %
*=
0 ! .( Q
Ÿ /! „ /3 % TDS EC *@ ! 5 U
.( =
%0 ?
„?
6%
# 0 h$ 0 % $Ÿ 5 ! 0
Q *„/3 5 (D'%
0!
Q ! „/3 5 (D'% pH - .06 =
%0? #! Q
# •0 6 = CO2 Q
_ < 5 0 % $Ÿ 5 ! 0
+
= H - Œ D$ 5 H2CO3 - *= CO2 - Q
Q
A
0 . 6Ÿ = pH Q ! CD 0
*@ j‹ Z @ ! 0 5U
/ 6 0 5?< B *jn‰j
5 ! 0 5 ^ &% 5 jn‰•/n/j“ $ jn‚‚/jl/j £ $
Q
>
- &' $_I Z
$ # 0 5 P @0 0>
+ &,
5 P
7E& " ^
B
5P
7E& " CD 5 ! 0 &
r 4$ 0 5 U
*=
5 /% 3# * 1 - $ ! - % * # 1 #& >
Z
( M H < • 6 + &,
% ! O D6
.[)b]0% Ÿ ( g X D #z$ @ ; #9 _ < 5
_I
# z
* %0 ?
< hG 5 5&' =
: DIC
0 # # gh $ .(‚_ 6) 0 " $ 4& s¹³C > $
# Q
*= Œ
s¹³C # z
# / 6 [{
# gh $ ( $ *
# 9 XEa •( @0 6 @ - G% ‚ _ 6
H C $#$5 > $ # z * # #c nd4 $ l & &
.06 0 " #$ $
Œ
s¹³C-TDC A
#! > $ C !#$ 5 5: $
*s¹³C-DOC 0 z # y$ @ *5 ?< B
5 zB
x)V/) ‰
s¹³C-DIC xJ\/\ ‰ xKL/\ ‰
|,G ‚ _ 6
# s% #&'! " %
1 5 x V/K ‰
5 (D '% /! - 5 5zB
Œ
s¹³C-DIC .( @06
.( #9 #c d4 $ # gh$ ( $ *s¹³C-DOC
{ < & < #& G @ ! 5`
*06 - 3 XEDc 5! 5% 9- /
Œ DIC *
•( @ _ G$ T
5 zB
# z
5 & #9 h G 5 zB
:
T AE %
< h G s¹³C-DIC 0 z 5 (D'% #$ H s¹³C > $
#
5` 5!
5% " * ! Z5 .(
2
3
Photosynthesis
Respiration
89
.( #9 " 5 & g 0 % dp ( Q *„/3 Q
T 5 5 5: $
U % „/3 5 (D'%
# y$
> 5 P) # & jƒ „ /3 $ SB
=
*„ /3 5 U
? DZ 0 %
U @0 G *0 ! /%
# y$ *(- / <
# „ /3 5 (D'% *@ ! 5U
: A -e '! .(
( M H # y$ 5 /: 4 ! #& > # . - G% < %
z/3 _ #> # # 1 DIC
#& >
1 #1 3
5 Bz%
# & l• jƒ *j• *ƒ *j r /3 *@ ! 0 5 U
Q
„ /3 Q
# z .(“ _ 6) 06 0 : #"
- >$
# y$ < *(6
?1 # (
.( 6 < % #
( Q ! „ /3 Q
(s¹³C-DIC)
< • 0 % - G% „ /3 5 (D '% % 0 U # y$ DOC # z
( Q *„/3 Q
(s13C-DOC) - > $
# z
U % „/3 5 (D'%
# y$ .( #9 " 5 & g 0% dp
$ SB =
*„ /3 5U T 5 5 5: $ 5!
? DZ 0%
U @0 G *0 ! /%
# y$ *#& jƒ „/3
# „ /3 5 (D'% @ ! 5U
: A -e '! .(
2 3 0 % $Ÿ = A
-e '! Q ! . - G% < %
^
6 0 4< 5 4< ( #& % 5 #& % #
.[Y] 0
(
/ ƒ • *n Q ! A a - 35 .0 !
4NO3-+5C(org)+4H+
NO3-+1/2C(org)
2N2+5CO2+2H2O
NO2-+1/2 CO2
(K)
(L)
_ 0 D$ Œ c j(%
4<
#&!
$
# 6T
5 !(
.(ƒ 5B ) # 9Ÿ i ^% *Desulfuvibrio desulfuricant
H2S 5
4<
H2SO4+2(CH2O)
2CO2+ 2H2O+H2S
(V)
?c
# W s% Q *„/3 5 (D'% @ ! 5U
* s% < @
: ( 35 0 % $Ÿ 5! ( ª _ c %
<
Q
.0 6 T < T
0 X $0/3
$ <
5 ^$ # •0 Ÿ Q ! A
-e '! *=
.[)]]0 Ÿ 7# I 5 = -e '! * { <
:
5 ^$ # % *„/3 5 (D'% DOC (M H Q ! @ ! 5U
„ /3 5 (D '% DO 0z Q ! 5! ( „/3 T % 9
@ # / *„ /3 5 (D'% DIC (M H Q
€/ . 6Ÿ 0 h$
1
Desulfuricant
[lf] Œ:#
5& # y$ •= Œ
( @ ! 5zB
Œ
#! 5"#U + &,
54< s¹³C # z Q /% x‚_ 6
¹³C # y$ @ @0 - G% #&'! " %
- $Ÿ C4 - 9 O % .[JJ]0% 6Ÿ (
# ' #9
5&
"# 56 " N # G % * N *i 9
.[)K] # i % *0 % i z #9 5 (D '% 5 ! - 9
?
F 4 *R # " F $ 5 - $Ÿ
C4 #
+3
€/
- 9 0 1 )f . # ! @ 6 d p # $
6+3* G
9
.0 %
5 P #!0
' < & *5 "#U
C3
15 & &
% $ 0% @0 ! #> %
&' !
.[JK]( C4 C3
0 % s¹³C t% 0%
C4
s¹³C 0 z *0 % @0 6 @0 6 > C3 9 5!
#
0 z *0 % C4 @ 9 Q 6 > 5! k " # xln ‰ 0
5 D H ( $ *k "
#! 0z .( x‰ ‰ T % s¹³C
5!
7E& " (
9 Q
> $ C !#$
C4 C3 9 (D '%
# y$ _ < 5 * 6 5M E %
.[JL](
5 % /% ¹³C-DOC > $ # z
% 5 5: $
& !# H * xJ]/V ‰ - 5 5zB & !
#
=
xJ]/L ‰ - 5 5% "
B
= xK)/b ‰ - 5
5 ! 0 Ÿ # M%5 * xKJ/n ‰ - 5 5U
B
=
Z5 .0 6 C3 *@ ! # 5` SB C< H
9 Q6 >
:
Œ
s¹³C-DOC # z
% 5D
!
- $Ÿ *0 ( 5 xKf/\ ‰ 0 5! @ ! # 5`
.0% @ _ G$ C3 - 9 5zB
9 Q6 > #a! 5! (49
$I Q! c
= DIC 0 z
VL/) # # C $#$5 @
%
!
*Q e >
# 5`
t &% 5 5: $
#
B
xjj ‰ 0
s¹³C-DIC
*0 !
G
#!
% 5 zB = Œ
>$
@ # z 0 &' xj• ‰ $
*
.[K]( @ ! # 5` - 5$ #! @0 - G%
# * # 10
Ÿ 6
#-0 &
C<H
! { < & < 5 - $Ÿ *= Œ jn #! w $
Z . # > *- 0c
#!
*5% " T # 5`
¹³C w $
0z -06 #$ $ CD *#4'/$ CO2 =8: * & &
G&%
15 0 #
. 6Ÿ (s¹³Cx DOC) <
( Da$ A @ I3 AE % •#
#& _" 5 CO2
$ * 6Ÿ _ 0D$ 0 #! 5 CO2 5! : * #! -06
CD _ #
5 3 /^ . 6Ÿ i ^% •# ( E> # !
„ #4$ 0 z .0 Q ! JV ‰ $ ƒ ‰ - 5 s¹³C 5! 6
j
! 5 "#U) & & 5 "#U 5 ! # ' 5 > $
0
' < & 5 "#U C4 5"#U lT m 5"#U *C3 5"#U
.[J)]
&' * 6Ÿ i ^% (n 5 P #!
! 5 "#U z #!0 '! ( Da$ # 5! % 9 5
- 9 s¹³C # z t % .0 9Ÿ C3 - 9 *0 !Ÿ @ 4&
xl“ ‰
&
Z5 xl• ‰ $ xn• ‰ 0
C3
*A z$#> * % *C * E9 5 - $Ÿ C3 - 9 .[l)](
+ 3 ž c * ! D $ *5D > *@ i0 9 *i0 9 * : *
C
C4 9 s¹³C # z t % .[)K] # ! @ 6 s %#/!
0
((
#! • 0 * # ! 0 '! ( Da$ _1 )
# &/! C4 .[J)]( xjn ‰
& Z5 xj• ‰ $ xj‹ ‰
43
0% 6Ÿ _ 6 0 9 5% 9 01 ƒ
1
2
3
Kalvin
Hatch-Slack
Crassulacean Acid Metabolism
90
#& G 0 ?$ 5 > $ •# 9@ 0%
# 5% /% * <
_ $- 5 ! #8 >
1 Œ
#$Œ SB
I
15 •# 95 % /% €/ .06 5&6 :
. ( 5 # $„ c t &% - & 5 ! 6 i ^% 5%
&
Œ c 5 !A
< # ! (M H 5! 6Ÿ
G > €/
= '
Œ
< @0 P
|" 6
- 35
6 # *- #
5`
:
Œ i /$ * 6Ÿ
C !#$ A
#!(MH
# •# 9@ 0 % - & $
5 = 9 < - 5 *=
5 % /% - > $
. # >T % 9
%
z z $ !# 5 ! 0 %
i P " # 5< z
• # *0 G
# @ G% (=« & )
R0
c
=
5 % /% > $
<
# G$ A /! * # 1
/3 T /! _ <
.0%
R O
- 90 ' %
#
=
% - # !5
0
:5
% 0c
0z
%
# & < i# 9
YY/] # & < i# 9
# & < i# 9 f/LV #& < i#9 J/J C $#$5 DOC
C $#$5
#
B
= 13C-DIC 0z
%
13
C $#$5 C-DOC 0 z
% xjj ‰ x“ ‰ # #
9e
1 I" 5 5: $ . xl‰/ƒ ‰ xnj/‹ ‰
0 1 ƒ• Q 5! { < & < ¡ < @ ! 5` # 5 #I
_ G$ & <
5$ #! s
5`
{ < &<
! X ?Bc ;
#! z&'
5! (49 - $Ÿ *0 Ÿ
* Œ
: A
#! @0/3 hG ( %06 %
• I"5 •( (C3 - 9)
9 Q6 > 0 $ { < & <
B
= 5 (D '%
#
= DIC # z 5!
d4 $ * & & 5! 0 Ÿ - G% #! > $ # z .( #&G
/ Q z% 0% $Ÿ * ' % 9 #
$ <
5 ^$
.06 5&6 5U
5% " = > $ C !#$
7'
Œ
#5
_ <5
h$
1
# 5% /% 0?$ ( 0 5 5: $
6
G>* > $
< % i ^%
K $ f
1. Telmer, K., and Veizer, J. (1999). “Carbon fluxes, pCO2 and substrate weathering in a large northern river
basin , Canada: Carbon isotope perspectives.” J. of Chemical Geology, 159(1), 61-86.
2. Moussavi Harrami, R. (2004). Sedimentology, 9nd Ed., Razavi Ghods Astan, Mashhad. (In Persian)
3. Sharp, Z. (2008). Principles of stable isotope geochemistry, Translate by Rahim Pourbonab., H., Mirnejad,
H., and Sonei, R., Tehran University Pub., Tehran.
4. Anderson, T.E., and Arthur, M.A. (1983). “Stable isotopes of oxygen and carbon and their application to
sedimentologic and paleoenviromental problem.” Arthur, M.A. Anderson, T.F., Kaplan, I.R., Veizer, J., and
Land, L.S. (Eds.) Stable isotopes in sedimentary geology, pp.1-15I., Vol. 10 SC:SEPM Short Course,
Columbia.
5. Kump, L.R. (1991). “Interpreting carbon-isotope excursions; Strange love oceans.” J.of Geology, 19, 299302.
6. Gammons, C.H., Babcock, J.N., Parker, S.R., and Poulson, S.R. (2010). “Diel cycling and stable isotopes of
dissolved oxygen, dissolved inorganic carbon, and nitrogenous species in a stream receiving treated
municipal sewage.” J. of Chemical Geology, 283(1-2), 44-55.
7. Neff, I.C., and Anser, G.P. (2001). “Dissolved organic carbon in terrestrial ecosystem synthesis and a model.
ecosystem.” J. of Ecosystem, 4, 29-48.
8. Wassenaar, L.I., Aravena, R., Fritz, P., and Barker, J.F. (1990). “Isotopic composition (13C,
14
C, 2H) and
geochemistry of aquatic humic substances from groundwater.” J. of Organic Geochemistry, 15, 383-339.
9. Barth, J.A.C., Cronin, A.A. , Dunlop, J., and Kalin, R.M. (2003). “Influence of carbonates on the riverine
carbon cycle in an anthropogenically dominated catchment basin: Evidence from major elements and stable
carbon isotopes in the Lagan River (N. Ireland).” J.of Chemical Geology, 3/4, 203-216.
91
M
10. Grossman, E.L. (2002). Stable carbon isotopes as indicators of microbial activity in aquifers, ASM Pub.,
Washington, USA.
11. Moradghuli, R. (2010). “Evaluation of landslide potential in karde catchment area.” M.Sc. Thesis, Ferdowsi
University of Mashhad, Iran. (In Persian)
12. Khanalyzadeh, F. (2009). “Study of karst geomorphology in karde basin with emphasis on water resources.”
MSc Thesis, Ferdowsi University of Mashhad, Iran. (In Persian)
13. Clark, I.D., and Fritz, P. (1997). Enviromental isotope in hydrogeology, Press LLC, IBSN:1-56670-249-6.
14. St-Jean, G. (2003). “Automated quantitative and isotope (13C) analysis of dissolved inorganic carbon and
dissolved organic carbon in continuous-flow using a total organic carbon analyser.” J. of Rapid Commun
Mass Spectrom, 17, 419-428.
15. Mohammadzadeh, H., Clark, I.D., Marschner, M., and St-Jean, G. (2005). “Compound specific isotopic
analysis (CSIA) of landfill leachate DOC Components.” J. of Chemical Geology, 218, 3-13.
16. Mohammadzadeh, H., and Clark, I.D., (2008). “Degradation pathways of dissolved carbon in landfill
leachate traced with compound-specific 13C isotope analysis of DOC.” J. of Isotopes in Environmental and
Health Studies, 44(3), 267-294.
17. Sylvia, D.M., Forman, J.J., HartleL, P.G., and Zubro, D.A. (2005). Principles and applications of soil
microbiology, Translate by Lekzyan, A., Ferdowsi University of Mashhad Pub., Iran. (In Persian)
18. Seddighi, A. (1999). “Study of geological and input sewage contaminations on Shiraz Khoshk river and
Maharlou lake with emphasis on heavy metal pollution.” MSc Thesis, University of Shiraz, Shiraz, Iran.
(In Persian)
19. Heydarizad, M. (2012). “Investigation on hydrogeochemistry of Karde dam's lake water and its hydraulic
connection with downstream groundwater resources.” MSc Thesis, Ferdowsi University of Mashhad,
Mashhad, Iran. (In Persian)
20. Schulte, P., Van Geldern, R., Freitag, H., Karim, A., Négrel, P.H., Petelet-Giraud, E., Probst, A., Probst, J.L.,
Telmer, K., Veizer, J., and Barth, J.A.C. (2011). “Applications of stable water and carbon isotopes in
watershed research: Weathering, carbon cycling, and water balances.” J. of Earth-Science Reviews, 109,
20-31.
21. Vogel, J.C. (1993). “Variability of carbon isotope fractionaton during photosynthesis.” Ehleringer, J.R., Hall
A.E., and Farquhar G.D. (Eds.) Stable isotopes and plant carbon water relations, Academic Press, San
Diego, CA: 29-38.
22. Ehleringer, J.R., Sage, R.F., Flanagan, L.B., and Pearcy, R.W. (1991). “Climate change and the evoloution of
C4 Photosynthesis.” J. of Trends in Ecology and Evolution, 6, 95-99.
23. Aravena, R., and Wassenaar, L.l. (1993). “Dissolved organic carbon and methane in a regional confined
aquifer: Evidence forassociated subsurface sources.” J. of Applied Geochemistry, 8, 483-493.
24. Cerling, T.E., and Quade, J. (1993). “Stable carbon and oxygen isotopes in soil carbonates.” Swart, P.K.,
Lohman, K.C., Mckenzie, J., and Savin, S. (Eds.), Climate change in continental isotopic, Records, Vol. 78,
American Geophysical Union, Washington, DC.
92
© Copyright 2025 Paperzz