Biofiltration of fish farm effluents in Crete- the role of macroalgae in nutrient stripping Manolis Tsapakis, Eugenia Apostolaki, Vivi Pitta, Ioannis Karakassis Amsterdam, 29-30/1/03 Institute of Marine Biology of Crete Objectives - Strategy 1. When should we deploy the filters 2. When should we replace the filters 3. How many filters should we deploy … in order to remove the maximal amount of N & P and fine particles from the system. Filters standing and sampling Biotic succession on Biofilters wet biomass gross wet biomass 1500 4000 1000 may 2000 july sept 1000 july july sept sept 500 0 may may g/m 2 g/m 2 3000 0 noe may july Biofilters biomass Stress: 0.08 4(J-N)1 6(M-N)1 6(M-N)2 2(S-N)1 4(J-N)2 2(S-N)2 4(M-S)1 2(J-S)1 2(M-J)3 sept noe Biotic succession on Biofilters flora coverage wet biomass 1600 2,5 TOTAL FLORA 1400 2 TOTAL FAUNA % coverage 1200 g m-2 1000 800 600 400 1,5 1 0,5 200 0 0 2(M-J) 2(J-S) 2(S-N) 4(M-S) 4(J-N) 2(M-J) 6(M-N) 100 80 may 60 july 40 sept 20 0 sept noe individuals no/m 2 species no/m2 120 july 2(S-N) 4(M-S) 4(J-N) 6(M-N) individuals species may 2(J-S) 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 may july sept may july sept noe Sampling of mesocosms Dissolve oxygen 0.40 2(M-J) 0.35 Reference mmole lt July Experiment -1 0.30 0.25 0.20 0.15 0.10 0.05 6 5 4 3 2 1 0 ht 6 Ni g 5 4 3 2 1 Da y 0 0.00 0.40 2(J-S) 0.35 4(M-S) 0.30 Reference 0.25 0.20 0.15 0.10 0.05 4 3 2 1 0 3 2 1 0 ni gh t m or ni af te rn oo n 4 3 2 0 1 0.00 ng Sept. Experiment mmole lt -1 time (h) time (h) 0.45 2 (S-N) 4 (J-N) 0.40 Nov. Experiment mmole lt -1 6 (M-N) 0.35 Reference 0.30 0.25 0.20 D ay 0 1 2 t 3 N h ig time (h) 0 1 2 3 Ammonia trends 12 μΜ 10 8 2(M-J) 6 Reference 4 2 6 5 4 3 2 1 N 0 6 ig ht 5 4 3 2 1 D 0 ay 0 Time (h) 2(J-S) 20 4(M-S) 15 Reference μΜ 25 10 5 3 2 1 0 ht 3 af ter Ni g 2 1 0 no on 4 3 2 1 m or ni n 0 in g 0 Time (h) 1.4 1.2 6(M-N)2 4(J-N)2 0.8 0.6 2(S-N)2 0.4 0.2 N Time (h) 2 1 0 ig ht 3 2 1 0 A Y 0.0 D μΜ 1.0 Phosphate Trends 1.0 μΜ 2(M-J) 0.5 Reference 0.0 D ay 0 1 2 3 4 5 6 N h ig t 0 1 2 3 4 5 6 Time(h) 1.6 μM 1.2 2(J-S) 0.8 4(M-S) Reference 0.4 3 2 1 0 3 ig ht N 2 1 0 af te 4 rn oo n 3 2 1 m or ni ni ng 0 0.0 Time (h) 0.20 6(M-N)2 0.15 4(J-N)2 2(S-N)2 0.10 0.05 N ig h Time (h) 2 1 0 t 3 2 1 0 AY 0.00 D μΜ 0.25 Oxygen fluxes: Two months biofilters NIGHT DAY O 2 (mmole/h) O 2 (mmole /h) 10 0 8 -2 6 -4 4 -6 2 -8 0 -10 July Sept Nov July Se pt Nov NH4 fluxes: Two months biofilters NIGHT DAY NH 4 (μmole /h) NH 4 (μmole/h) 350 300 250 200 150 100 50 0 0 -50 -100 -150 -200 -250 -300 -350 July Sept Nov July Se pt Nov PO4 fluxes: Two months biofilters NIGHT DAY PO 4 (μmole/h) PO 4 (μmole /h) 5 25 0 20 -5 15 -10 10 -15 -20 5 -25 0 July Sept Nov July Se pt Nov -1 Oxygen fluxes (mmoles h ) Oxygen fluxes during the night experiment vs water temperature 0 -1 y = -0.82x + 14.32 -2 R2 = 0.93 -3 -4 -5 -6 18 19 20 21 22 T (0 C) 23 24 25 26 NH4 fluxes during the day experiment vs Solar irradiation -1 Oxygen fluxes (mmoles h ) 300 500 700 900 0 -20 -40 -60 -80 -100 -120 -140 -160 1100 y = -0.13x - 2.44 R2 = 0.83 Solar irradiation (W m-2 ) Mass Balance of Nitogen in Sitia fish farm Fish Biomass: ~1000tn Feed per Day: 1000kg Nitrogen (8%): 80kg Released as NH4 (~20%): 16 kg Released as total dissolve N (60%): 48kg Released as fine particulate matter (4-6%): 3.2-4.8kg Then The estimated consumption of dissolve NH4 during a day of a two month Biofilter is approximately 1.3 mg N Conclusions • During the day the biofilters uptake dissolve inorganic nutrients (N, P) & fine particulate matter and release oxygen • The uptake rate of dissolve N is depending from the solar irradiation • During the night the biofilters consume fine particulate matter and release NH4 and PO4.. In addition, they consume oxygen New design • Do you think that the micro bioassay experiment in large scale could be a good biofiletr? • What to you think if we fill the dialysis bag with high density phytoplankton? • The product may can be used by the fish farm hatchery. Dialysis Bag High density phytoplacton
© Copyright 2025 Paperzz