Phytoplankton and plants (photosynthesis and respiration) Impacts on the level of DO via photosynthesis and respiration - Photosynthesis (P) contributes to DO recovery - Respiration (R) consumes DO - Impacts on N, P, and SOD Photosynthesis = f (light) Upstream – heterotrophic oxidation (oxygen depletion, turbidity increase, light decrease) Downstream – autotrophic recovery (solids settling, light increase, nutrients increase) 106CO2 + 16NH4+ + HPO42-+ 106H2O C106H263O110N16P + 106O2 + 14H+ 106CO2 + 16NO3- + HPO42-+ 122H2O + 18H+ C106H263O110N16P + 138O2 Mass ratio of C:N:P = 40%:7.2%:1% Unit of phytoplankton (algae) = mgChl/L (chlorophyll a, mgA/L), the chlorophyll to carbon ratio = 10 – 50 mgA/mgC Stoichiometric mass ratio – 100 mgD(organic matter):40mgC:7.2mgN:1mgP:1mgA Simulation – zero order distributed sources Deficit D PR (1 e k at ) ka 녹조류 (green algae) 녹색을 띠며 엽록소 a와 b를 이용하여 광합성 산물인 전분을 생산 (Chlorophyta) 담수와 해수 모두에 서식 호수의 조류 중에는 계절적으로 크게 번식하여 물의 색을 변화시키는 종도 존재 구멍갈파래 잎파래 납작파래 참깃털말 청각 남조류 (blue green algae) 체세포 분열로 번식하며, 원핵생물(prokaryote)인 세균류처럼 핵막이 결여된 구조 남조세균 (Cyanobacteria) 인이 풍부한 호소 등 정체 수역에서는 남조류의 성장속도 증가하여 수화 (agal bloom) 현상 발생 일부 남조류의 경우 독소를 생산하여 포유동물이나 어패류를 폐사 시킴 규조류 (diatom) 단세포, 규산질의 단단한 외피 (규조류 : Thalassionsira rotula) 외피는 상각과 하각으로 구성, 두 피각이 비누곽처럼 끼워져 각 개체를 구성 다양한 수역에서 그 수환경에 적응한 종류가 출현, 수질판정 화석화된 종류 조사, 과거의 수환경 파악 연안에 많이 분포, 수온이 낮은 곳 다른 규조류와 함께 혼합 적조를 일으키는 경우가 많음 10~60 mm 녹조현상 부영양화된 호수나 유속이 느린 하천에서 부유성의 조류 (식물성 플랑크톤) 가 대량 증식하여 수면에 집적하여 물색을 현저하게 녹색으로 변화시키는 현상 수화현상의 한 종류로 남조류의 대량 증식으로 인해 물색이 녹색으로 변하는 현상 적조현상과 비교되어 메스컴으로부터 명명된 이름 c.f.) 적조현상 : 봄철 규조토의 대량 증식으로 황갈색으로 물색이 변하는 경우 녹조현상이 생태계에 미치는 영향 시각적 영향 착색 또는 스컴으로 인한 시각적 불쾌감 공중위생상의 문제점 남조류 독소에 의한 인체 및 가축에의 영향, 이취미 발생으로 인한 불쾌감 유발 생태학적인 영향 생태계 파괴로 인한 개체군 변화 서식처 이동 동물의 건강에 미치는 영향 남조류 독소에 의한 가축이나 야생동물의 폐사, 산소 부족에 의한 물고기 및 수중생물 폐사 경제적 손실 레크리에이션 활동 저해로 인한 지역 경제적 손실 상수원에 미치는 영향 남조류 독소발생, 이취미 생성, 여과지폐쇄등 팔당댐의 월별 조류 발생 현황 팔당호의 월별 식물 플랑크톤 우점종 및 개체수 현황 월별 우점조류종 세포수 (cell/ml) 총세포수 (cell/ml) 5월 Coleasterum 3,840 20,250 6월 Coleasterum 27,720 62,160 7월 Microcystis 92,560 150,895 8월 Aulacoseira 3,490 18,140 9월 Cyclotella 2,960 7,300 10월 Aulacoseira 13,620 22,040 11월 Aulacoseira 4,610 13,223 조류의 천이현상 : 남조류 (7월) 규조류 (10월) 남조류 증식의 제한인자 : 수온 Effect of light on photosynthesis Photosynthesis = f (light intensity) DO level varies seasonally and diurnally P(t ) I (t ) where available light (langleys/ d) P(t ) Pm sin (t t r ) 1 langley 1 cal/cm 2 P(t ) 0 tr t ts otherwise where Pm = max rate (g m-3 d-1) = angular frequency (=/(fTp)) tr = time of sunrise (d) tp = time of sunset (d) f = fraction of day having sunlight (photoperiod) Tp = daily period (typically 1 d = 24 hrs) Photoperiod fraction (f) and time for solar noon (tn) f t s tr Tp tn t s tr 2 Pm Average daily photosynthesis rate (g Tp P 0 P(t )dt Tp m-3d-1) Pa Pm 2f P Average daylight photosynthesis rate (g m-3d-1) Tp Pa 0 P(t )dt fTp tr Pm 2 tn fTp ts Tp Modeling of algal growth and loss (phytoplankton) in QUAL 2K Governing equation da p dt da p dt PhytoGrowt h PhytoLoss k g a p klossa p Growth of phytoplankton n( na nn ) pi , k sn n( na nn ) k sp pi N min Growth rate = f (temp, nutrient, light) N , L – attenuation factors for nutrients and k g (T , N , I ) k g (T ) N L light limitation (0~1) Temperature effect k g (T ) k g , 20 T 20 1.066 Nutrient limitation (nitrogen and phosphorus) – Liebig’s law of the minimum Half-saturation constants for nutrient limitation of phytoplankton growth Nutrient ks Nitrogen 5~20 mgN/L Phosphorus 1~5 mgP/L Growth of phytoplankton Light limitation Light variation along the depth of a stream (Beer-Lambert law) I ( z ) 0.47 I 0 e ke z I0: solar radiation at the surface The extinction coefficient (ke, m-1) ke keb 0.052mi 0.174mo 0.0088a p 0.054a p ke : background extinction coeff. due to 2/ 3 particle-free water and color mi: inorganic SS mo: detritus 1. Half-saturation light model Phytoplankton growth attenuation due to light as a function of depth, FLP I ( z) K L P I ( z) KLP = half-saturation coefficient for light (ly/d) The depth-averaged light attenuation factor – combined with the Beer-Lambert law and integrated over the depth, H L 1 ke H KL P I0 ke H K L P I 0e Growth of phytoplankton 2. Smith’s function FLP I ( z) KLP = the Smith parameter, light intensity at which the growth rate is 70.7% of the maximum (ly/d) K L P I ( z)2 2 The depth-averaged light attenuation factor I o / K L P 1 (I o / K L P )2 1 L ln ke H ( I o / K L )e ke H 1 (( I o / K L )e ke H ) 2 P P 3. Steele’s function I (z) I ( z ) 1 K L P FLP e KLP KLP = light intensity at which the growth rate is optimal (ly/d) The depth-averaged light attenuation factor 2.718282 K L P e L e ke H Io ke H e Io KLP Growth of phytoplankton Growth Attenuation Factor for Light 1 Saturation 3 2 0.8 1 0.6 Half Saturation 0.4 1 = Half Saturation 2 = Smith's Function 3 = Steele's Equation 0.2 0 0 100 200 Light Intensity, I (ly/d) 300 400 Modeling of algal growth and loss (phytoplankton) in QUAL 2K Loss of phytoplankton 1. Respiration (excretion) – oxygen consumption, release of nutrients (N, P) and organic carbon PhytoResp k rp(T) a p krp(T) = temp-dependent respiration rate constant (/d) 2. Death PhytoDeath k dp (T )a p kdp(T) = temp-dependent death rate constant (/d) 3. Settling PhytoSettl va ap H va = settling velocity (m/d) The complete model for phytoplankton da p dt k g (T )N L a p (krp kdp va )a p H Modeling of bottom algae Governing equation da p dt BotAlgPhot o BotAlgResp BotAlgDeat h Growth of bottom algae (zero order rate) BotAlgPhot o C gb (T ) NbLb Cgb(T) = temp-dependent max. bottom algae photosynthesis rate (gD m-2d-1) Temperature effect Cgb (T ) Cgb, 20 T 20 1.066 Nutrient limitation (nitrogen and phosphorus) – Liebig’s law of the minimum n( na nn ) pi , k sNb n( na nn ) k sPb pi Nb min Growth of bottom algae Light limitation Light variation along the depth of a stream (Beer-Lambert law) I ( H ) I 0 e ke H I0: solar radiation at the surface Combining the above equation with each of three models used for the impact of light on phytoplankton photosynthesis 1. Half-saturation light model Lb I0 K L b I 0 e ke H 2. Smith’s function Lb I o e ke H K L b ( I o e ke H ) 2 2 3. Steele’s function I o e ke H 1 Lb e K Lb I o e ke H k Lb Loss of bottom algae (1st order rate) 1. Respiration BotAlgResp krb (T )ab 2. Death BotAlgDeat h kdb (T )ab krb(T) and kdb(T) = temp-dependent respiration and death rates, respectively (/d) The complete model for bottom algae dab C gb (T ) N L (k rb k db )ab dt Sediment oxygen demand (SOD) Oxygen demand for the oxidation of organic matter in bottom sediment Organic matter in sediment – settlement of wastewater particulates, allochthonous particulates, plants, phytoplankton, detritus, etc. Sediment oxygen demand (SOD) Modeling of the conversion of sediment organic matter – computation of the fluxes of ammonium, nitrate, methane, and phosphate Fundamental assumption – sediment consists of two layers (thin aerobic top layer and underlying anaerobic layer) 1. Settling of particulate organic matter (phytoplankton and detritus) – transport of organic carbon, nitrogen, and phosphorus to the sediment (anaerobic layer) 2. Decomposition (mineralization) of the delivered organic matter in the anaerobic layer – generation of soluble methane, ammonium, and inorganic phosphorus (phosphate) diagenesis 3. Transport (diffusion) to the aerobic layer and subsequent oxidation of methane and ammonium → The flux of oxygen from the overlying water required for the oxidation of methane (CSOD) and nitrification of ammonium (NSOD), SB’ (areal oxygen demand, gO2m-2d-1) Diagenesis of organic matter in sediments Carbon In anaerobic layer CH2O → 1/2CO2 + 1/2CH4 (diffuses upward to the aerobic layer) In aerobic layer 1/2CH4 + O2 → 1/2CO2 + H2O 1/2g of methane consumes 2.67 g of oxygen (CSOD). Nitrogen In aerobic layer (nitrification of ammonium diffused from the anaerobic layer) NH3 + 2O2 → NHO3 + H2O 1g of nitrogen consumes 4.57 g of oxygen (NSOD). In anaerobic layer (denitrification of nitrate using methane as a carbon source) 5/8CH4 + NHO3 → 5/8CO2 + 1/2N2 + 7/4H2O The entire process (conversion of ammonium to inorganic nitrogen via nitrification/denitrification) NH3 + 3/4O2 → 1/2N2 + 3/2H2O 1 g of nitrogen consumes 1.714 g of oxygen (NSOD’, the ratio of O to N consumed during nitrification and denitrification) SOD (SB’ gO2m-2d-1) = CSOD + NSOD Diagenesis of organic matter in sediments (in QUAL 2K) The total downward flux of particulate organic matter (POM, phytoplankton + detritus) J POM rdava a p vdt mo Diagenesis of organic matter in sediments (in QUAL 2K) POM flux (JPOM, gDm-2d-1) = 1. particulate organic carbon (POC) flux (JPOC, gO2m-2d-1) + 2. particulate organic nitrogen (PON) flux (JPON, gNm-2d-1) + 3. particulate organic phosphorus (POP) flux (JPOP, gPm-2d-1) Each flux is divided into: labile (fast reactive, G1), slowly reactive (G2), and non-reactive (G3) fractions For the fluxes of dissolved nutrients (dissolved carbon, nitrogen, and phosphorus) produced via diagenesis in the anaerobic layer JC (gO2m-2d-1) = JC,G1+ JC,G2 JN (gNm-2d-1) = JN,G1+ JN,G2 JP (gPm-2d-1) = JP,G1+ JP,G2 The fluxes of methane, ammonia, nitrate, and phosphate from the aerobic layer to the overlying water – obtained from the mass balances in the aerobic and anaerobic layers JCH4 =SB’/o(CH4, aerobic – cf ) cf: fast reacting CBOC in the overlying water (gO2/m3) JNH4 =SB’/o(NH4, aerobic-dissolved – na/1000) na: ammonia conc. in the overlying water (mgN/m3) JNO3 =SB’/o(NO3, aerobic-dissolved – nn/1000) nn: nitrate conc. in the overlying water (mgN/m3) JPO4 =SB’/o(PO4, aerobic-dissolved – Pi/1000) na: phosphorus conc. in the overlying water (mgP/m3) o: DO in the overlying water (gO2/m3)
© Copyright 2026 Paperzz