Optimization for inverse modelling Ketevan Kasradze1 [email protected] Hendrik Elbern1,2 [email protected] and the Chemical Data Assimilation group of RIU 1 Rhenish Institute for Environmental Research at the University of Cologne, Germany 2 Institute for Energy and Climate Research -Troposphere, Germany Tbilisi, 10.07.2014 GGSWBS'14 Atmospheric layers Tbilisi, 10.07.2014 3/18 GGSWBS'14 Atmospheric layers Tbilisi, 10.07.2014 3/18 GGSWBS'14 SACADA assimilation-system Background Meteorological ECMWF analyses Trace gas observations PREP DWD GME CTM SACADA CTMad Diffusion L-BFGS Analysis Tbilisi, 10.07.2014 GGSWBS'14 Horizontal GME Grid • ~147km between the grid points • 23 042 grid points per Model layer Tbilisi, 10.07.2014 9/18 GGSWBS'14 SACADA Vertical Grid MLS CRISTA-NF Tbilisi, 10.07.2014 Additional refinement troposphere/lower stratosphere 54 layer GGSWBS'14 HNO3 4.11.2005 ~137hPa 12 Uhr UTC MLS Tbilisi, 10.07.2014 15 GGSWBS'14 SCOUT-O3 campaign Stratospheric-Climate Links with Emphasis on the UTLS - O3 November-December 2005 AMMA-campaign African Monsoon Multidisciplinary Analyses 29.07.2006 -17.08.2006 Tbilisi, 10.07.2014 12/18 GGSWBS'14 SACADA assimilation-system 4D-Var 1 1 N T 1 T J ( x0 ) x0 xb B x0 xb H M i x0 yi R 1 H M i x0 yi 2 2 i 0 Model operator Background Cost function Projection operator Observation error covariance matrix Background error covariance matrix BECM ~ 1012 ~ 80 Terrabyte Tbilisi, 10.07.2014 Vector of observations GGSWBS'14 SACADA assimilation-system 4D-Var 1 1 N T 1 T J ( x0 ) x0 xb B x0 xb H M i x0 yi R 1 H M i x0 yi 2 2 i 0 x0 J ( x0 ) B Gradient Tbilisi, 10.07.2014 1 N x0 xb M i* H T R 1Hxi yi i 0 Adjoint Model GGSWBS'14 SACADA assimilation-system 4D-Var 1 1 N T 1 T J ( x0 ) x0 xb B x0 xb H M i x0 yi R 1 H M i x0 yi 2 2 i 0 x0 J ( x0 ) B 1 x0 xb M i* H T R 1Hxi yi x0 , J ( x0 ), x0 J ( x0 ) Tbilisi, 10.07.2014 N i 0 Quasi-Newton method L-BFGS x0 GGSWBS'14 SACADA assimilation-system 4D-Var 1 1 N T 1 T J ( x0 ) x0 xb B x0 xb H M i x0 yi R 1 H M i x0 yi 2 2 i 0 x0 J ( x0 ) B 1 N x0 xb M i* H T R 1Hxi yi x0 , J ( x0 ), x0 J ( x0 ) i 0 Quasi-Newton method L-BFGS x0 Background error covariance matrix BECM ~ 1012 ~ 80 Terrabyte Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Radius of Influence ((de-)correlation length): Extending the information from an observation location For atmospheric chemistry covariance modelling the diffusion approach is advocated: • localisation intrinsically performed • sharp gradients easily feasible • matrix square roots for preconditioning straightforward to calculate; no inversion needed Textbook: horizontal influence radius L around a measurement site, to be based on a priori statistical assessments L Horizontal structure function, to be stored as a column of the forecast error covariance matrix diffusion operator construction vertical cut L Tbilisi, 10.07.2014 GGSWBS'14 concentration species 2 transformed species 2 Isopleths of the cost function and transformed cost function and minimisation steps concentration species 1 transformed species 1 Minimisation by mere gradients, quasi-Newon method L-BFGS (Large dimensional Broyden Fletcher Goldfarb Shanno), and preconditioned (transformed) L-BFGS application Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation 2 outstanding problems: 1. With linear estimation: How to treat the background error covariance matrix B (O(1012))? 2. How can this be treated for preconditioning? (need B-1, B1/2, B-1/2) With variational methods: Solution: Diffusion Approach Transformation of cost-function: minimisation procedure => Inverse of B and B-1/2 are not needed, if xb= 1. guess. Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Background Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Background Tbilisi, 10.07.2014 Observation: 3 ppm Ozone GGSWBS'14 Background error covariance matrix formulation Background Observation: 3 ppm Ozone Analysis (B diagonal) Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Background Tbilisi, 10.07.2014 Observation: 3 ppm Ozone GGSWBS'14 Background error covariance matrix formulation Background Observation: 3 ppm Ozone Analysis increment isotropic correlation The increment in initial values is spread out to neighbouring grid-points depending on the correlations that are known / assumed. Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Diffusion can be generalised to account for inhomogeneous and anisotropic correlations: Stratospheric case use PV field for anisotropic correlation modelling Assumption: Strong correlation along isolines of Potential Vorticity Enhancement of diffusion flow-dependent BECM Tbilisi, 10.07.2014 GGSWBS'14 Background error covariance matrix formulation Background Tbilisi, 10.07.2014 Observation: 3 ppm Ozone GGSWBS'14 Background error covariance matrix formulation Background Observation: 3 ppm Ozone Analysis increment Tbilisi, 10.07.2014 GGSWBS'14 SACADA assimilation-system 4D-Var 1 1 N T 1 T J ( x0 ) x0 xb B x0 xb H M i x0 yi R 1 H M i x0 yi 2 2 i 0 x0 J ( x0 ) B 1 N x0 xb M i* H T R 1Hxi yi i 0 x0 , J ( x0 ), x0 J ( x0 ) Quasi-Newton method L-BFGS x0 Adjoint Model Tbilisi, 10.07.2014 GGSWBS'14 Construction of the adjoint code (3 different possible pathways) forward model backward model (forward differential equation) (backward differential equation) algorithm (solver) adjoint algorithm (adjoint solver) code adjoint code Tbilisi, 10.07.2014 GGSWBS'14 Adjoint model A numerical model integration over a time interval [t0; ti] xi 1 M i ( xi ) M i ,i 1 M 2,1 M 1,0 ( x0 ). Accordingly, the tangent linear of this sequence of model operators is given by M i M i,i 1 M 2 ,1M 1,0 M i* M 1*, 0 M *i1,i2 M *i ,i1 Thus, the adjoint model operator Mi propagates the gradient of the cost function with respect to xi backwards in time, to deliver the gradient of the cost function with respect to x0. Tbilisi, 10.07.2014 GGSWBS'14 Adjoint model example z x * *2 a * y x x 3 3 F : R R , y y z x 2 ay . . . JAC . . . . . . Tbilisi, 10.07.2014 GGSWBS'14 Adjoint model example z x * *2 a * y x x 3 3 F : R R , y y z x 2 ay 1 0 2x * * M 0 1 a F : 0 0 0 Tbilisi, 10.07.2014 x* x* x* 2 xz* * * * * * y M y y az * * z z 0 GGSWBS'14 SACADA assimilation-system 4D-Var 1 1 N T 1 T J ( x0 ) x0 xb B x0 xb H M i x0 yi R 1 H M i x0 yi 2 2 i 0 x0 J ( x0 ) B 1 N x0 xb M i* H T R 1Hxi yi x0 , J ( x0 ), x0 J ( x0 ) i 0 Quasi-Newton method L-BFGS x0 Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm Tbilisi, 10.07.2014 GGSWBS'14 Gradient of the cost function h grad h grad x h g x T h h Dhx , xn x1 Hessian of the cost function H x DDh x Dg x T Tbilisi, 10.07.2014 2h 2h 2 x1xn x1 2h 2h xn x1 xn2 GGSWBS'14 BFGS algorithm (2) From an initial guess x0 and an approximate Hessian matrix H0 the following steps are repeated as xk converges to the solution. 1. Obtain a direction sk by solving: H k sk hxk k in the xk 1 xk k sk 2. Perform a line search to find an acceptable step size direction found in the first step, then update pk k sk qk hxk 1 hxk qk qkT H k pk pkT H k H k 1 H k 1 T T qk pk pk H k pk 3. Set 4. 5. Convergence can be checked by observing the norm of the gradient, Tbilisi, 10.07.2014 hxk . GGSWBS'14 BFGS example with MATLAB f x, y 100 y x Tbilisi, 10.07.2014 1 x 2 2 2 GGSWBS'14 BFGS example with MATLAB f x, y 100 y x Tbilisi, 10.07.2014 1 x 2 2 2 GGSWBS'14 BFGS example with MATLAB f x, y 100 y x Tbilisi, 10.07.2014 1 x 2 2 2 GGSWBS'14 BFGS example with MATLAB f x, y 100 y x Tbilisi, 10.07.2014 1 x 2 2 2 GGSWBS'14 BFGS example with MATLAB f x, y 100 y x Tbilisi, 10.07.2014 1 x 2 2 2 GGSWBS'14 BFGS example with MATLAB f x, y 100 y x Tbilisi, 10.07.2014 1 x 2 2 2 GGSWBS'14 BFGS example with MATLAB f x, y 100 y x Tbilisi, 10.07.2014 1 x 2 2 2 GGSWBS'14 BFGS example with MATLAB f x, y 100 y x 1 x 2 2 2 it= 40 f=1.497581e-13 ||g||=1.726061e-05 sig=1.200 step=BFGS it= 41 f=5.990317e-15 ||g||=3.452127e-06 Successful termination with ||g||<1.000000e-08*max(1,||g0||): Tbilisi, 10.07.2014 GGSWBS'14 Thank you for your attention! გმადლობთ ყურადღებისათვის! Vielen Dank für Ihre Aufmerksamkeit! Tbilisi, 10.07.2014 GGSWBS'14
© Copyright 2026 Paperzz