Proyectos en procesamiento de imágenes Grupo Imagine Grupo de Ingeniería Biomédica Ingeniería de Sistemas y Computación UNIVERSIDAD DE LOS ANDES Motivación y objetivo de la presentación Presentar algunos de los trabajos de investigación en curso en procesamiento de imágenes biomédicas Mostrar las dificultades de procesamiento inherentes a las modalidades de adquisición Descubrir los usos potenciales del MEDIPIX en estos tipos de proyectos Contenido Proyectos en curso Motivación Objetivos Método Limitaciones Retos con Medipix Contenido Proyectos en curso Motivación Objetivos Método Limitaciones Retos con Medipix • • • Segmentación de canales internos de corales Caracterización de la placa aterosclerótica en la arteria carótida Clasificación de tejido óseo en el maxilar inferior Extraction of axes from coral channels Context Marine enviroment changes Climatic changes Environmental pollution Ocean acidification Corals are more affected Why are corals important? Habitat for several animal species Great part of food chain Muricea Muricata 6 Image taken from: http://gorgonien.npage.de Context • Corals: Colonial animals called polyps Polyp Channel Gorgonian Axis Channel Muricea Muricata Sclerit 7 Images taken from: Illustrated Trilingual Glossary of Morphological and Anatomical Terms Applied to Octocorallia Objectives • Extract the axes of internal channels of corals on µCT images – – – Visualize the internal structure connections Count the number of channels and determine their sizes Avoid manual channel extraction 8 Images • – µCT Resolution: 4.5, 10, 14 and 25 microns Channel Sclerit Polyp 9 Gorgonian Axis Method • Segmentation of Gorgonian axis 3 stages Initialization of seed points for channels' axes Extraction of axes channels 10 Method • Segmentation of Gorgonian axis 3 stages Initialization of seed points for channels' axes Extraction of axes channels 11 Method Contours detection Axis-channels separation Axis extraction 3D image gradient 12 Method Contours detection Axis-channels separation Axis extraction Dilation with size mask equals to average channel radius 13 Method Contours detection Axis-channels separation Axis extraction Region growing. Seed inside the axis. 14 Method Contours detection Axis-channels separation Axis extraction Dilation to compensate 15 Method • Segmentation of channels' region Dilation with mask size equals to channels diameter XOR 16 Method • Segmentation of Gorgonian axis 3 stages Initialization of seed points for channels' axes Extraction of axes channels 17 Method Extract center line Obtain extern contour of channels Extract the channels' signal Detect seed points Gaussian smooth Iso contour 18 Method Extract center line Obtain extern contour of channels Extract the channels' signal Detect seed points Gaussian smooth Iso-contour 19 Method Extract center line Obtain extern contour of channels Extract the channels' signal Detect seed points Contour: Contour normals: Unwinding signal: 16 20 slices Method Extract center line Obtain extern contour of channels Extract the channels' signal Detect seed points Channels signal: Integrate 21 Method Extract center line Obtain extern contour of channels Extract the channels' signal Detect seed points Fourier transform, filter and reconstruction Filter: 22 Method Extract center line Obtain extern contour of channels Extract the channels' signal Detect seed points Problem: Sclerit near channels 23 Method Extract center line Obtain extern contour of channels Extract the channels' signal Detect seed points Solution: Weighted integral max ai ∆ min 24 Method Extract center line Obtain extern contour of channels Extract the channels' signal Detect seed points Sclerit presence is reduced Sclerit 25 Method Extract center line Obtain extern contour of channels Extract the channels' signal Detect seed points Initial channel points are the valleys of the signal 26 Method • Segmentation of Gorgonian axis 3 stages Initialization of seed points for channels' axes Extraction of axes channels 27 Method Calculate local orientation • Place the new point Local orientation computation using 2 cylinders (inspired filter HD) Rout Cin Cout h Seed point Cout Cin 28 h = 2*Rout Method Calculate local orientation • Place the new point Measurement of local orientations µIn : Mean intensity inside Cin Cin Cout µOut: Mean intensity inside Cout σIn: Standard deviation inside Cin 29 Method Calculate local orientation • Place the new point Next point position Forward direction 30 Results 4 Images 31 Results Bifurcation region Apex 32 Limitations • – µCT Acquisition constrains (size and temperature) – Low contrast µCT. Laboratory MATEIS 33 Connections between channels Carotid artery segmentation and characterization in 3D computed tomography (CT) images Motivation Medical problem: The type of atherosclerotic plaque, i.e. the composition and structure of the pathological vascular wall, is an important indicator of the risk of thromboembolic vascular events. It determines the plaque vulnerability to disruption. Courtesy of: Dr E. J. Tweedie, University of Western Ontario, Canada Objective Lumen Hypodense area In the long term: Study of morphological features of atherosclerotic plaques and the distinction between their components (lipids, fibers, calcifications, thrombus). At present: Attempt to extract lumen, wall thickness and calcifications from CT images. Calcification Due to current limitations of spatial resolution and of contrast in the vicinity of the vessel wall Method Step : Extraction of the vessel centerline Method Step : Extraction of the vessel contours in cross-sections locally perpendicular to the centerline Lumen Calcification Outer boundary Method: Step 1 Step : Extraction of the vessel centerline Image preprocessing Axis extraction Seeded bithresholding: • Upper threshold to remove calcifications. • Lower threshold to remove noncalcified (hypodense) plaque components. Method: Step 1 Step : Extraction of the vessel centerline Image preprocessing Axis extraction Extensible skeleton: • Tracking strategy based on a multi-scale analysis of the image moments. [Hernández Hoyos, IJCARS 2006] Method: Step 2 Step : Contour segmentation Discontinuity detection Search ray scheme: • Based on gradient analysis. [Lorenz, CARS 2005] Contour extraction: outer, lumen and calcifications Search ray scheme From a point belonging to the lumen a number of rays is cast. Directional derivative fr is computed along each ray. f f r r f r r Search ray scheme When a local minimum with fr < −t is found, the search is stopped: a discontinuity point is detected. Search ray scheme Otherwise … when a local maximum with fr > t is detected, it indicates a lumen-calcification transition. This discontinuity is marked and the search is continued. Search ray scheme Again … when a local minimum with fr < −t is found, the search is stopped: a discontinuity point is detected. Search ray scheme At the end of this phase: • Each detected region is represented by a set of points defining a polygon Pi. • The index i = 0 corresponds to the lumen. • The remaining indices i > 0 correspond to the calcifications (if any). P0 P2 P1 Search ray scheme At the end of this phase: • Approximate boundaries thus obtained are to be refined in order to improve continuity and to recover possibly missing parts of the lumen “hidden” behind the calcifications. • We also need to detect the outer boundary of the wall. P0 P2 P1 Method: Step 2 Step : Contour segmentation Discontinuity detection Contour extraction: outer, lumen and calcifications Iso-contours: • Adaptive isovalues based on local maximum of intensity. Outer boundary and calcifications For each polygon Pi we compute: fi: maximum intensity xi: gravity center of Pi P0 P2 P1 Outer boundary and calcifications For each Pi an iso-contour is calculated using an adaptive iso-value i (% of the local maximum of intensity) : For the outer boundary: P0 0 = out * f0 For calcifications: P2 i = calc * fi The iso-contour the closest to xi is automatically selected P1 Lumen PP00 A binary image is constructed: white (255) within P0 and black (0) outside of it. Lumen PP00 This image is eroded and low-pass filtered to obtain a smooth transition. Lumen PP00 An iso-contour is calculated with the isovalue initially fixed at 128. Lumen PP00 If the lumen contour intersects one of the other contours the iso-value is iteratively incremented by a unit ... Lumen PP00 … until the intersection disappears. Limitations Precise detection of outer wall and lumen contours Detection of hypondense zones Inferior Maxillary Bone Tissue Classification in 3D CT Images Motivation Bone regeneration research project: Dental implants are used to replace missing teeth. Atrophy of the jaw bone may occur. This would make the placement of dental implants difficult. Bone grafts have been used to achieve bone regeneration. Motivation Bone regeneration research project: It is interesting to study the regeneration process through Computed Tomography (CT) images. One objective of this study is to compare the density of the regenerated bone to normal values. Little is known about the total 3D density, or the bone tissues proportion in the anatomical zones of the mandible. Objective Bone tissue classification in 3D CT images to determine normal density values in 7 anatomical zones of the mandible. Cortical Bone Cancellous Bone Medical Context Anatomical zones of the mandible Method: Step 1 Step : Inferior Maxillary Bone Segmentation Method: Step 2 Step : Bone Tissue Classification Cancellous bone Cortical bone Method: Step 1 Step : Inferior Maxillary Bone Segmentation Bone outer shell segmentation Bone internal tissue segmentation 3D region growing technique • Lower threshold: Removes other tissues Method: Step 1 Step : Inferior Maxillary Bone Segmentation Bone outer shell segmentation Morphological operations • Closing: Fills holes Bone internal tissue segmentation Method: Step 1 Step : Inferior Maxillary Bone Segmentation Bone outer shell segmentation Bone internal tissue segmentation 3D Ray Casting: • Fills the segmented surface 3D Ray Casting Scheme Six rays are casted from every voxel in the main directions of the x, y and z axes. If all the rays intersect the external shell of the bone, the point is included in the region. Method: Step 1 Step : Inferior Maxillary Bone Segmentation Bone outer shell segmentation Bone internal tissue segmentation Logical Operations • AND: Obtains the original gray levels Method: Step 2 Step : Bone Tissue Classification Classification: cortical, cancellous, undetermined. Refining: cortical, cancellous. Clustering : • Fuzzy C Means. Method: Step 2 Fuzzy c-means Each point of the image has membership grade to a class or cluster. The membership grade is inversely related to the distance between the intensity value of the point and the gray level of the centroid of the class. Method: Step 2 Step : Bone Tissue Classification Classification: cortical, cancellous, undetermined. . Refining: cortical, cancellous. 2D Ray casting: • Determines the final types of bone tissue 2D Ray Casting Scheme From every point of undetermined tissue eight rays are casted. The ray analyzer searches for the first pixel with a different intensity level. If a ray intercepts the background, the point is classified as cortical bone. Limitations It was observed that narrow areas of dense cancellous bone may be mistakenly classified as cortical bone. Elimination of teeth from the image to take measurements of the alveolar zone. Retos con Medipix Retos con Medipix 1. Obtener imágenes con alta resolución espacial: De segmentos de corales, reemplazando el microTAC De especímenes de arterias carótida provenientes de donantes cadavéricos. De fragmentos de mandíbula de animales pequeños. 2. Distinguir diferentes componentes (tejidos) no visibles en las imágenes tradicionales, a partir de información de absorción para diversos rangos de energía, aprovechando los umbrales variables y ventanas de energía en rangos variables. Retos con Medipix 1. Distinguir diferentes componentes (tejidos) no visibles en las imágenes tradicionales, a partir de información de absorción para diversos rangos de energía, aprovechando los umbrales variables y ventanas de energía en rangos variables. En corales: Visualizar los tejidos que separan los canales entre sí y los canales del eje córneo Retos con Medipix 1. Distinguir diferentes componentes (tejidos) no visibles en las imágenes tradicionales, a partir de información de absorción para diversos rangos de energía, aprovechando los umbrales variables y ventanas de energía en rangos variables. En arterias: Lumen Estudiar las características morfológicas de las placas ateroscleróticas y distinguir sus componentes (lípidos, fibra, calcificaciones, trombos) Fibra Grasa Retos con Medipix 1. Distinguir diferentes componentes (tejidos) no visibles en las imágenes tradicionales, a partir de información de absorción para diversos rangos de energía, aprovechando los umbrales variables y ventanas de energía en rangos variables. En tejido óseo: Diferenciar tejido óseo cortical de los dientes
© Copyright 2026 Paperzz