Two of the ribosomal sequence from the bacterial isolates matched the representative sequence of 2 of 3 dominant OTUs assembled from the 454 pyrosequencing data. DNA from the isolates was isolated and amplified using the standard 27F -1492R primer pair. PCR conditions were as follows 5 minutes 94°C, 30 cycles of 94°C for 30 sec, 57°C for 45 sec and 72°C for 90 sec with the final elongation step at 72°C for 7 minutes. The PCR product was purified and sequenced using Sanger technology. Achromobacter isolated from the M. truncatula rhizosphere, when compared using BLAST, showed 99 % similarity against a representative sequence from OTU 19 (score of 544, e value = 1e159). Arthrobacter sp. isolated from the B. distachyon rhizosphere, when compared using BLAST, showed 100 % similarity against a representative sequence from OTU 39 (score of 556, e value = 7e-163). Alignments were based on the V1-V2 16S rRNA gene only. Genomic DNA was isolated from both strains and they were sequenced using half a plate of 454Flx each. Achromobacter gDNA sequencing produced 50 contigs (of which 14 were smaller than 100 bp in length). Arthrobacter gDNA sequencing produced 48 contigs (of which 17 were smaller than 100 bp in length). The bacterium isolated from the rhizosphere of Medicago was identified as Achromobacter xylosoxidans (top hit in the NCBI database – accession number: NR_074754.1, based on the full 16S rRNA sequence and the colony isolated from the Brachypodium rhizosphere was identified as Arthrobacter sp. (top hit in the NCBI database – accession number EF110914.1, based on the full 16S rRNA sequence – gDNA sequencing (Figure 1). Full 16S rRNA gene sequences were obtained from the genomic DNA FASTA file using online RNAmmer 1.2 server (a part of CBS prediction server) (Lagesen et al 2007). However, using the full 16S rRNA gene sequences would skew the results towards fully sequenced strains of these species, so in order to fully understand the phylogeny of these strains a partial 16S rRNA gene (1460 and 1486 bp of sequence starting at 27 bp from the start of the gene for Achromobacter and Arthrobacter, respectively) was compared (BLAST) against the GenBank database. A Achromobacter xylosoxidans Achromobacter xylosoxidans subsp. xylosoxidans strain A19 16S ribosomal RNA isolate 16S rRNA gene Achromobacter xylosoxidans A8 complete genome Achromobacter xylosoxidans A8 complete genome Achromobacter xylosoxidans A8 strain A8 16S ribosomal RNA Achromobacter sp. F32 16S Achromobacter sp. R-46660 Arsenite-oxidizing bacterium Alcaligenes fecalis (HLE) Alcaligenes sp. 16S rRNA Achromobacter spp. Alcaligenes faecalis strain N05 Achromobacter spp. Achromobacter spp. Achromobacter spp. Achromobacter spp. Achromobacter spp. Bordetella Pigmentiphaga daeguensis strain ML-3 Pusillimonas sp. YC6271 Rhodobacter Ochrobactrum pseudogrignonense strain 21-6PIN Tetrathiobacter kashmirensis strain 3T5F Denitrobacter sp. CHNCT17 Burkholderia sp. Kerstersia gyiorum strain HF2 Burkholderiales Limnobacter thiooxidans strain CS-K2 Cupriavidus sp. ASC-9842 Pseudomonas lemoignei strain ATCC 17989T Undibacterium sp. CMJ-15 Oxalobacteraceae Achromobacter isolate 16S rRNA sequence used for comparison: ACGCTAGCGGGATGCCTTACACATGCAAGTCGAACGGCAGCACGGACTTCGGTCTGGTGGCGAGTGGCGAACGGGTGAGTAAT GTATCGGAACGTGCCTAGTAGCGGGGGATAACTACGCGAAAGCGTAGCTAATACCGCATACGCCCTACGGGGGAAAGCAGGGG ATCGCAAGACCTTGCACTATTAGAGCGGCCGATATCGGATTAGCTAGTTGGTGGGGTAACGGCTCACCAAGGCGACGATCCGT AGCTGGTTTGAGAGGACGACCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGG ACAATGGGGGAAACCCTGATCCAGCCATCCCGCGTGTGCGATGAAGGCCTTCGGGTTGTAAAGCACTTTTGGCAGGAAAGAAA CGTCATGGGCTAATACCCCGTGAAACTGACGGTACCTGCAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACG TAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTCGGAAAGAAAGATGTGAAATCCCAGAGCTC AACTTTGGAACTGCATTTTTAACTACCGGGCTAGAGTGTGTCAGAGGGAGGTGGAATTCCGCGTGTAGCAGTGAAATGCGTAG ATATGCGGAGGAACACCGATGGCGAAGGCAGCCTCCTGGGATAACACTGACGCTCATGCACGAAAGCGTGGGGAGCAAACAGG ATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGCTGTTGGGGCCTTCGGGCCTTAGTAGCGCAGCTAACGCGTG AAGTTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGG ATTAATTCGATGCAACGCGAAAAACCTTACCTACCCTTGACATGTCTGGAATTCCGAAGAGATTTGGAAGTGCTCGCAAGAGA ACCGGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTC ATTAGTTGCTACGAAAGGGCACTCTAATGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGC CCTTATGGGTAGGGCTTCACACGTCATACAATGGTCGGGACAGAGGGTCGCCAACCCGCGAGGGGGAGCCAATCCCAGAAACCC GATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGTCGCGGTGAA TACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTTTACCAGAAGTAGTTAGCCTAACCGTAAGGGGGG CGATTACCACGGTAGGATTCATGACTGGGGTGAAGTCGTAACAA Arthrobacter sp. Arthrobacter sp. S21003 Arthrobacter sp. B1033 Arthrobacter sp. S21004 Arthrobacter sp. J3.31 Arthrobacter sp. S22236 B Arthrobacter humicola strain KV-653 Arthrobacter spp. Arthrobacter sp. J3.46 isolate 16S rRNA gene Arthrobacter sp. J3.16 Arthrobacter sp. J3.33 Actinobacterium EC5 Microbacterium sp. Arthrobacter spp. Arthrobacter sp. Arthrobacter spp. Actinobacterium MES16 Arthrobacter sp. bD37(2011) Arthrobacter spp. Bacterium W10 Arthrobacter spp. Arthrobacter spp. Arthrobacter globiformis Arthrobacter spp. Arthrobacter sp. RS-33Arthrobacter spp. Arthrobacter spp. Renibacterium Salmoninarum Zhihengliuella alba Arthrobacter globiformis Arthrobacter sp. RS-33 Psychrophilic marine bacterium PS32 Salmoninarum Renibacterium Citricoccus sp. PL13f S6 Zhihengliuella alba Psychrophilic marine bacterium PS32 Micrococcus lylae Citricoccus sp. PL13f S6 Antarctic bacterium R-9183 Micrococcus lylae Antarctic bacterium Nesterenkonia sp. AC84 R-9183 sp. AC84 Rothia sp.Nesterenkonia RV13 Rothia sp. RV13 Kocuria sp. IARI-R-30 Kocuria sp. IARI-R-30 Arthrobacter isolate 16S rRNA sequence used for comparison: AGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAACGATGATCCGGTGCTTGCACCGGG GATTAGTGGCGAACGGGTGAGTAACACGTGAGTAACCTGCCCTTAACTCTGGGATAAGCCTGGGAAACTGGGTCTAATACCGG ATATGACTCCTCATCGCATGGTGGGGGGTGGAAAGCTTTATTGTGGTTTTGGATGGACTCGCGGCCTATCAGCTTGTTGGTGA GGTAATGGCTCACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGTGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCC TACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGG TTGTAAACCTCTTTCAGTAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGT CCGGGGCTCAACTCCGGATCTGCGGTGGGTACGGGCAGACTAGAGTGATGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGA AATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTCTCTGGGCATTAACTGACGCTGAGGAGCGAAAGCATGGGGA GCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGTTGGGCACTAGGTGTGGGGGACATTCCACGTTTTCCGCGCCGT AGCTAACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGG CGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCAAGGCTTGACATGGACCGGACCGGGCTGGAAACAGTCCTT CCCCTTTGGGGCCGGTTCACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC AACCCTCGTTCCATGTTGCCAGCGCGTAATGGCGGGGACTCATGGGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGACGA CGTCAAATCATCATGCCCCTTATGTCTTGGGCTTCACGCATGCTACAATGGCCGGTACAAAGGGTTGCGATACTGTGAGGTGG AGCTAATCCCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTCGGAGTCGCTAGTAATCGCAGA TCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCAAGTCACGAAAGTTGGTAACACCCGAAGCCGGT GGCCTAACCCCTTGTGGGAGGGAGCTGTCGAAGGTGGGACTGGCGATTGGG-ACTAAGTCGTAACAAGGTA Figure 1. Tree alignment of fragments of 16S rRNA genes. A) Achromobacter isolate 16S rRNA gene trimmed to 1460 bp (16S rRNA gene sequence based on gDNA sequencing) aligned against the top 100 hits in the GenBank NCBI database and other Burkholderiales species (in order to root the tree). B) Arthrobacter isolate 16S rRNA gene trimmed to 1486 bp (16S rRNA gene sequence based on gDNA sequencing) aligned against the top 100 hits in the GenBank NCBI database and other Actinomycetales species (in order to root the tree). Sequences were aligned using ClustalW and trees were constructed using MEGA5 software using Neighbor-Joining with Bootstrap of 1000 replicates (bootstrap values are shown on next to the tree nodes) (Felsenstein 1985, Saitou and Nei 1987, Tamura et al 2004, Tamura et al 2011). A Neighbor-Joining tree is commonly used for this kind of analysis (Micallef et al 2009). For the Arthrobacter alignment the node containing the isolates 16S rRNA gene sequence is resolved next to the main tree (black arrow). The genome of Achromobacter xylosoxidans is 7.01 Mbp and that of Arthrobacter sp. is 3.815 Mbp. These are minimum sizes because the contigs have not been closed and there may be missing DNA. Felsenstein J (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution; international journal of organic evolution 39: 783-791. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: 31003108. Micallef SA, Shiaris MP, Colon-Carmona A (2009). Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60: 1729-1742. Saitou N, Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution 4: 406-425. Tamura K, Nei M, Kumar S (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101: 11030-11035. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28: 2731-2739.
© Copyright 2026 Paperzz