C H A P T E R Infinite Series 9 Section 9.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Section 9.2 Series and Convergence . . . . . . . . . . . . . . . . . . . 247 Section 9.3 The Integral Test and p-Series . . . . . . . . . . . . . . . . 260 Section 9.4 Comparisons of Series . . . . . . . . . . . . . . . . . . . . 270 Section 9.5 Alternating Series . . . . . . . . . . . . . . . . . . . . . . 277 Section 9.6 The Ratio and Root Tests . . . . . . . . . . . . . . . . . . 286 Section 9.7 Taylor Polynomials and Approximations . . . . . . . . . . 298 Section 9.8 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . 308 Section 9.9 Representation of Functions by Power Series Section 9.10 Taylor and Maclaurin Series . . . . . . . 321 . . . . . . . . . . . . . . . . 329 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 C H A P T E R Infinite Series Section 9.1 Sequences 2. an 1. an 2n a1 21 2 a2 4 22 a3 23 8 a4 24 16 a5 25 32 32 4. an a1 a2 n 2 3 21 3n n! 3. an 11 1 12 5 a4 34 81 27 4! 24 8 a4 a5 35 243 81 5! 120 40 a5 n 2 1 2 3 1 2 5 1 2 8. an 1n1 a1 2n 2 2 1 16 1 a3 32 9 2 a3 3 1 110 a4 42 16 2 1 a4 4 2 1 1 52 25 21 a3 2 a2 1 2 a5 4 33 27 9 3! 6 2 13 1 a2 22 4 15 21 a3 32 243 a1 3 a2 a5 sin 1nn12 n2 21 32 9 2! 2 a4 sin 2 0 7. an 2 a2 a3 sin 16 a4 81 21 a1 a2 sin 0 8 a3 27 1 3 3 1! 5. an sin a5 2 5 n 21 a1 a1 sin 4 9 a5 9 2n n3 a1 2 1 4 2 a2 4 5 a3 6 1 6 a4 8 7 a5 10 5 8 4 1 8 1 16 6. an 9. an 5 1 4 1 2 1 32 1 1 n n2 a1 5 1 1 5 a2 5 1 1 19 2 4 4 a3 5 1 1 43 3 9 9 a4 5 1 1 77 4 16 16 a5 5 1 121 1 5 25 25 233 234 Chapter 9 10. an 10 Infinite Series 6 2 n n2 12. a1 4, ak1 11. a1 3, ak1 2ak 1 a2 2a1 1 a1 10 2 6 18 23 1 4 3 25 a2 10 1 2 2 a3 2a2 1 24 1 6 2 2 34 a3 10 3 3 3 a4 2a3 1 1 3 87 a4 10 2 8 8 6 266 2 a5 10 5 25 25 1 13. a1 32, ak1 ak 2 1 1 a3 a2 16 8 2 2 1 1 a3 a22 122 48 3 3 1 1 a4 a3 8 4 2 2 1 1 a4 a32 482 768 3 3 1 1 a5 a4 4 2 2 2 1 1 a5 a42 7682 196,608 3 3 17. an 40.5n1, a1 4, a2 2, decreases to 0; matches (e). 19. an1n, a1 1, a2 1, a3 1, etc.; matches (d). 22. 8 20. an 6 a4 3 2 1a 12 a5 4 2 1a 30 2 3 4 4n , a 4, a2 8, n! 1 eventually approaches 0; matches (b). 18. an 23. 12 18 −1 12 12 −1 −3 2 an n, n 1, . . . , 10 3 24. 2 2 1a 1n 1 1 , a1 1, a2 , a3 , etc.; matches (c). n 2 3 4 −1 −1 a3 8 8 , a 4, a2 , n1 1 3 decreases to 0; matches (f). 1 1 a2 a12 62 12 3 3 21. 4 1 15. an 1 1 a2 a1 32 16 2 2 8n 16 , a 4, a2 , n1 1 3 increases towards 8; matches (a). 1 2 1a 210 1 18 1 14. a1 6, ak1 ak2 3 16. an k a2 26 1 10 a5 2a4 1 k 2 1a 4 an 2 , n 1, . . . , 10 n 25. an 3n 1 3 a5 35 1 14 −1 12 Add 3 to preceding term. −1 an a6 36 1 17 2n , n 1, 2, . . . , 10 n1 − 10 an 160.5n1, n 1, . . . , 10 26. an n6 2 a5 5 6 11 2 2 a6 66 6 2 Section 9.1 1 28. an an1, a1 1 2 27. an1 2an, a1 5 a5 240 80 1 1 ,a 16 6 32 a5 a6 280 160 29. an Sequences 235 3 2n1 a5 3 3 24 16 a6 3 3 25 32 Multiply the preceding term by 12. 3 30. an an1, a1 1 2 a5 33. 31. 10! 8!910 8! 8! 32. 25! 23!2425 23! 23! 910 90 81 243 ,a 16 6 32 n 1! n!n 1 n1 n! n! 34. 2425 600 n 2! n!n 1n 2 n! n! 35. 2n 1! 2n 1! 2n 1! 2n 1!2n2n 1 n 1n 2 36. 2n 2! 2n!2n 12n 2 2n! 2n! 37. lim n→ 5n2 5 2 38. lim 5 n2 n→ 1 2n2n 1 1 505 n2 2n 12n 2 39. lim n→ 2n 2 2 lim 2 n→ 1 1n2 1 n2 1 41. lim sin n→ 43. 1n 0 40. lim n→ 42. lim cos n→ 44. 3 −1 n→ 5 1 4n2 5 5 1 2n 1 2 −1 12 −1 The graph seems to indicate that the sequence converges to 1. Analytically, lim an lim 45. lim −1 12 n→ 5n n2 4 n→ The graph seems to indicate that the sequence converges to 0. Analytically, n1 x1 lim lim 1 1. x→ x→ n x lim an lim n→ 46. 2 −1 n→ 1 1 lim 0. n32 x→ x32 4 12 −1 −2 12 −1 The graph seems to indicate that the sequence diverges. Analytically, the sequence is an 0, 1, 0, 1, 0, 1, . . .. Hence, lim an does not exist. n→ The graph seems to indicate that the sequence converges to 3. Analytically, lim an lim 3 n→ n→ 1 3 0 3. 2n 236 Chapter 9 47. lim 1n n→ Infinite Series n n 1 48. lim 1 1n 3 n 3 n n→ 1 n→ 3n2 n 4 3 , converges 2n2 1 2 does not exist, (alternates between 0 and 2), diverges. does not exist (oscillates between 1 and 1), diverges. 50. lim 49. lim n→ 51. an 1, converges 13 5. . . 2n 1 1 2n 3 5 2nn 2n 2n . . . 2n 1 < 1 2n 2n Thus, lim an 0, converges. n→ 52. The sequence diverges. To prove this analytically, we use mathematical induction to show n1 0 k1 that an ≥ 32 . Clearly, a1 1 ≥ 32 1. Assume that ak ≥ 32 . Then, ak1 13 5. . . 2k 12k 1 2k 1 3 ak ≥ k 1! k1 2 2kk 11. k1 Since 2k 1 3 ≥ , k1 2 we have ak1 ≥ 32 k, which shows that an ≥ 32 n1 for all n. 1 1n 0, converges n→ n 54. lim 1 1n 0, converges n→ n2 lnn3 3 lnn lim n→ 2 2n n 56. lim 53. lim 55. lim n→ lim n→ n→ 3 1 0, converges 2 n lim n→ n→ 34 n 1 0, converges 2n (L’Hôpital’s Rule) (L’Hôpital’s Rule) 57. lim lnn 12 ln n lim n→ n n 58. lim 0.5n 0, converges 0, converges 59. lim n→ n→ n 1! lim n 1 n→ n! , diverges 60. lim n→ n 2! 1 lim 0, converges n→ nn 1 n! n n 1 n n 1 lim n nn1 1 n 2 61. lim n→ lim n→ 2nn 1 2nn 1 lim 4n2n 1 21, 2 62. lim n→ converges 2 2 n→ 2 np 0, converges n→ en 63. lim p > 0, n ≥ 2 2 n→ 1 2n 0, converges n2 n Section 9.1 64. an n sin Sequences 237 1 n 1 Let f x x sin . x lim x sin x→ 1x 2 cos1x 1 sin1x 1 lim lim lim cos cos 0 1 x→ x→ x x→ 1x 1x 2 x (L’Hôpital’s Rule) or, lim x→ sin1x sin y 1 lim 1. Therefore lim n sin 1. y →0 n→ 1x y n k n k n 65. an 1 lim 1 n→ n n 66. lim 21n 20 1, converges n→ lim 1 u1u k ek u→0 where u kn, converges 67. lim n→ sin n 1 lim sin n 0, n→ n n 68. lim n→ cos n 0, converges n2 69. an 3n 2 converges (because sin n is bounded) 70. an 4n 1 74. an 1n1 2n2 72. an 71. an n2 2 75. an 1 1 n1 n n 76. an 1 78. an 1 n! 79. an 81. an 2n!, n 1, 2, 3, . . . 1 3 1n1 n2 2n 1 2n 73. an n1 n2 77. an n n 1n 2 2n1 1 2n 1n1 5 . . . 2n 1 80. an xn1 n 1! 1n1 2nn! 2n! 82. an 2n 1!, n 1, 2, 3, . . . 83. an 4 1 1 < 4 an1, n n1 monotonic; an < 4, bounded 84. Let f x 3x 6 . Then f x . x2 x 22 Thus, f is increasing which implies an is increasing. an < 3, bounded 238 85. Chapter 9 Infinite Series n ? n1 ≥ 2n2 2n1 2 ? 2n3n ≥ 2n2n 1 ? 2n ≥ n 1 86. an nen2 a1 0.6065 a2 0.7358 a3 0.6694 n ≥ 1 Not monotonic; an ≤ 0.7358, bounded n ≥ 1 Hence, 2n ≥ n 1 2n3n ≥ 2n2n 1 n n1 ≥ n1 2 2n2 2 an ≥ an1. 1 True; monotonic; an ≤ 8, bounded 87. an 1n 1n 32 88. an a1 1 a2 a1 1 2 a3 a2 1 3 Not monotonic; an ≤ 1, bounded 90. an 32 < 32 n n1 an1 Monotonic; lim an , not n→ bounded n 89. an a3 8 27 Not monotonic; an ≤ 23, bounded 91. an sin n6 92. an cos a1 0.500 a1 cos a2 0.8660 a3 cos 94. an a3 0.3230 0 2 32 0 Not monotonic; an ≤ 1, bounded sinn n a1 sin1 0.8415 1 a4 sin4 0.1892 4 a2 sin2 0.4546 2 a5 sin5 0.1918 5 a3 sin3 0.0470 3 a6 sin6 0.0466 6 a4 0.1634 Not monotonic; an ≤ 1, bounded n2 a2 cos 1 a2 0.2081 an1 4 9 Not monotonic; an ≤ 1, bounded a1 0.5403 n1 a4 0.8660 cos n n n Monotonic; an ≤ 23, bounded 2 3 a3 1.000 93. an 23 > 23 Not monotonic, an ≤ 1, bounded Section 9.1 1 n 95. (a) an 5 5 4 1 1 > 5 n n1 an 5 Therefore, an converges. (b) 3 < 4 ⇒ bounded n 3 4 < 3 an1 ⇒ monotonic n n1 an 4 an1 ⇒ an, monotonic 239 3 n 96. (a) an 4 1 ≤ 6 ⇒ an, bounded n Sequences Therefore, an converges. (b) 8 7 −1 −1 −1 lim 5 n→ 97. (a) an an 1 1 1 n 3 3 n→ 1 5 n 98. (a) an 4 1 ⇒ an,bounded 3 < 4 < 131 3 1 1 1 > 4 n1 2n 2 Therefore, an converges. (b) 0.4 12 6 −1 −0.1 lim 1 2n an1 ⇒ an, monotonic Therefore, an converges. −1 3 4 n 1 ≤ 4.5 ⇒ an, bounded 2n an 4 n1 an1 ⇒ an, monotonic n→ lim 4 1 1 1 n 3 3 1 1 1 n 3 3 (b) 12 0 12 12 −1 131 31 31 lim 4 n n→ 99. an has a limit because it is a bounded, monotonic sequence. The limit is less than or equal to 4, and greater than or equal to 2. 2 ≤ lim an ≤ 4 1 4 2n 100. The sequence an could converge or diverge. If an is increasing, then it converges to a limit less than or equal to 1. If an is decreasing, then it could converge (example: an 1n) or diverge (example: an n). n→ 101. An P 1 r 12 n (a) No, the sequence An diverges, lim An . n→ The amount will grow arbitrarily large over time. (b) P 9000, r 0.055, An 9000 1 0.055 12 A1 9041.25 A6 9250.35 A2 9082.69 A7 9292.75 A3 9124.32 A8 9335.34 A4 9166.14 A9 9378.13 A5 9208.15 A10 9421.11 n 240 Chapter 9 Infinite Series 102. (a) An 1004011.0025n 1 103. (a) A sequence is a function whose domain is the set of positive integers. A0 0 (b) A sequence converges if it has a limit. See the definition. A1 100.25 A2 200.75 (c) A sequence is monotonic if its terms are nondecreasing, or nonincreasing. A3 301.50 A4 402.51 (d) A sequence is bounded if it is bounded below an ≥ N for some N and bounded above an ≤ M for some M. A5 503.76 A6 605.27 (b) A60 6480.83 (c) A240 32,912.28 104. The first sequence because every other point is below the x-axis. 107. an 105. an 10 3n 4n 1 1 n 106. Impossible. The sequence converges by Theorem 9.5. 108. Impossible. An unbounded sequence diverges. 109. (a) An 0.8n 2.5 billion (b) A1 $2 billion 110. Pn 16,0001.045n P1 $16,720.00 A2 $1.6 billion P2 $17,472.40 A3 $1.28 billion P3 $18,258.66 A4 $1.024 billion P4 $19,080.30 (c) lim 0.8 2.5 0 P5 $19,938.91 n n→ 111. (a) an 6.60n2 151.7n 387 112. (a) an 244.2n 3250 7000 1500 5 500 (b) For 2008, n 18 and a18 7646 million. 10n n! 114. an 1 (a) a9 a10 109 9! 1,000,000,000 362,880 13 0 (b) In 2008, n 18 and a18 979 endangered species. 113. an 2 13 1,562,500 567 1 n n a1 2.0000 a2 2.2500 a3 2.3704 a4 2.4414 a5 2.4883 (b) Decreasing a6 2.5216 (c) Factorials increase more rapidly than exponentials. lim 1 n→ 1 n n e Section 9.1 n 115. an n n1n Sequences 241 116. Since lim sn L > 0, a1 111 1 n→ there exists for each > 0, a2 2 1.4142 an integer N such that sn L < for every n > N. Let L > 0 and we have, 3 3 1.4422 a3 4 a4 4 1.4142 sn L 5 5 1.3797 a5 < L, L < sn L < L, or 0 < sn < 2L for each n > N. 6 6 1.3480 a6 Let y lim n1n. n→ ln y lim n→ 0 1n ln n lim lnnn lim 1n n n→ n→ Since ln y 0, we have y e 1. Therefore, n n 1. lim 0 n→ 117. True 118. True 119. True 120. True 121. an2 an an1 (a) a1 1 a7 8 5 13 a2 1 a8 13 8 21 a3 1 1 2 a9 21 13 34 a4 2 1 3 a10 34 21 55 a5 3 2 5 a11 55 34 89 a6 5 3 8 a12 89 55 144 a (b) bn n1, n ≥ 1 an b6 13 8 b2 2 2 1 b7 21 13 3 b3 2 34 b8 21 5 b4 3 55 b9 34 122. x0 1, xn 1 an1 an an an1 an1 bn an an (d) If lim bn , then lim 1 n→ n→ n→ 1 1 1 8 5 1 1 1 bn1 anan1 1 . bn1 Since lim bn lim bn1, we have b1 b5 (c) 1 b10 1 1 . n→ 1 2 0 2 1 1 ± 1 4 1 ± 5 2 2 Since an, and thus bn, is positive, 1 5 1.6180. 2 89 55 1 1 , n 1, 2, . . . x 2 n1 xn1 x1 1.5 x6 1.414214 x2 1.41667 x7 1.414214 x3 1.414216 x8 1.414114 x4 1.414214 x9 1.414214 x5 1.414214 x10 1.414214 The limit of the sequence appears to be 2. In fact, this sequence is Newton’s Method applied to f x x 2 2. 242 Chapter 9 Infinite Series 123. (a) a1 2 1.4142 (b) an 2 an1, n ≥ 2, a1 2 a2 2 2 1.8478 a3 2 2 2 1.9616 a4 2 2 2 2 1.9904 a5 2 2 2 2 2 1.9976 (c) We first use mathematical induction to show that an ≤ 2; clearly a1 ≤ 2. So assume ak ≤ 2. Then ak 2 ≤ 4 ak 2 ≤ 2 ak1 ≤ 2. Now we show that an is an increasing sequence. Since an ≥ 0 and an ≤ 2, an 2an 1 ≤ 0 an2 an 2 ≤ 0 an2 ≤ an 2 an ≤ an 2 an ≤ an1. Since an is a bounding increasing sequence, it converges to some number L, by Theorem 9.5. lim an L ⇒ 2 L L ⇒ 2 L L2 ⇒ L2 L 2 0 n→ ⇒ L 2L 1 0 ⇒ L 2 L 1 124. (a) a1 6 2.4495 (b) an 6 an1, n ≥ 2, a1 6 a2 6 6 2.9068 a3 6 6 6 2.9844 a4 6 6 6 6 2.9974 a5 6 6 6 6 6 2.9996 (c) We first use mathematical induction to show that an ≤ 3; clearly a1 ≤ 3. So assume ak ≤ 3. Then 6 ak ≤ 9 6 ak ≤ 3 ak1 ≤ 3. Now we show that an is an increasing sequence. Since an ≥ 0 and an ≤ 3, an 3an 2 ≤ 0 an2 an 6 ≤ 0 an2 ≤ an 6 an ≤ an 6 an ≤ an1. Since an is a bounded increasing sequence, it converges to some number L: lim an L. Thus, 6 L L ⇒ 6 L L2 ⇒ L2 L 6 0 ⇒ L 3L 2 0 ⇒ L 3 L 2 n→ Section 9.1 1 1 4k . 2 (c) lim an L implies that n→ [Note that if k 2, then an ≤ 3, and if k 6, then an ≤ 3.] Clearly, 1 4k a1 k ≤ 2 ≤ L k L ⇒ L2 k L ⇒ L2 L k 0 1 1 4k . 2 ⇒ L Before proceeding to the induction step, note that Since L > 0, L 2 21 4k 4k 2 21 4k 4k 1 ± 1 4k . 2 1 1 4k . 2 1 1 4k 1 21 4k 1 4k k 2 4 1 1 4k 1 1 4k k 2 2 1 1 4k 2 So assume an ≤ an k ≤ an k ≤ an1 ≤ k 2 1 1 4k . 2 1 1 4k . Then 2 1 1 4k k 2 1 1 4k 2 k 1 1 4k . 2 an is increasing because a 1 n 1 4k 2 a 1 n 1 4k 2 ≤0 an2 an k ≤ 0 an2 ≤ an k an ≤ an k an ≤ an1. 126. (a) a0 10, b0 3 a1 a0 b0 10 3 6.5 2 2 b1 a0b0 103 5.4772 a2 a1 b1 5.9886 2 b2 a1b1 5.9667 a3 a2 b2 5.9777 2 b3 a2b2 5.9777 a4 a3 b3 5.9777 2 b4 a3b3 5.9777 a5 a4 b4 5.9777 2 b5 a4b4 5.9777 The terms of an are decreasing, and those of bn are increasing. They both seem to approach the same limit. —CONTINUED— 243 (b) Since an is bounded and increasing, it has a limit L. 125. (a) We use mathematical induction to show that an ≤ Sequences 244 Chapter 9 Infinite Series 126. —CONTINUED— (b) For n 0, we need to show a0 > a1 > b1 > b0. Since a0 > b0, 2a0 > a0 b0 ⇒ a0 > a0 b0 a 1. 2 Since a0 b02 > 0, a02 2a0b0 b02 > 0 ⇒ a02 2a0b0 b02 > 4a0b0 ⇒ a0 b02 > 4a0b0 ⇒ a0 b0 > 2a0b0 ⇒ a1 > b1. Since a0 > b0, a0b0 > b02 ⇒ a0b0 > b0 ⇒ b1 > b0. Thus, we have shown that a0 > a1 > b1 > b0. Now assume ak > ak1 > bk1 > bk. Since ak1 > bk1, 2ak1 > ak1 bk1 ⇒ ak1 > ak1 bk1 ak2. 2 Since ak1 bk12 > 0, ak12 2ak1bk1 bk12 > 0 ⇒ ak12 2ak1bk1 bk12 > 4ak1bk1 ⇒ ak1 bk12 > 4ak1bk1 ⇒ ak1 bk1 > 2ak1bk1 ⇒ ak2 > bk2. Since ak1 > bk1, ak1bk1 > bk12 ⇒ ak1bk1 > bk1 ⇒ bk2 > bk1. Thus, we have shown that ak1 > ak2 > bk2 > bk1. (c) an converges because it is decreasing and bounded below by 0. bn converges because it is increasing and bounded above by a0. (d) Let lim an A and lim bn B. Then A n→ n→ 127. (a) f x sin x, an n sin AB ⇒ A B. 2 1 n f x cos x, f 0 1 lim an lim n sin n→ n→ (b) f 0 lim h→0 f 0 h f 0 h lim f h h lim f 1n 1n h→0 n→ lim n f n→ lim an n→ 1 sin1n lim 1 f 0 n n→ 1n 1n 128. an nr n 1 1 (a) r : an n 2 2 n n →0 2n (b) r 1: an n, diverges 3 3 2 , diverges (c) r : an n 2 2 (d) If r ≥ 1, diverges. If r < 1, nr n → n rn “” 1 rn → 0. rn lnr lnr The sequence converges for r < 1. Section 9.1 129. (a) y (b) y = ln x 2.0 y = lnx 2.0 1.5 1.0 1.0 0.5 2 3 4 x ... n 2 n ln x dx < ln 2 ln 3 . . . ln n 1 (c) y 1.5 0.5 3 ... 4 x n+1 n1 ln x dx > ln 2 ln 3 . . . ln n 1 ln1 23. . . n lnn! lnn! ln x dx x ln x x C n ln x dx n ln n n 1 ln nn n 1 1 From part (a): ln nn n 1 < lnn! n n1 eln n < n! nn < n! en1 n1 ln x dx n 1 lnn 1 n 1 1 lnn 1n1 n 1 From part (b): lnn 1n1 n > lnn! n 1 n elnn1 > n! n 1n1 > n! en (d) Sequences nn en1 n e1 1n < n! < n 1n1 en n n! < < (e) n 20: n 1n1n e n 50: n n! 1 n 11 1n < < e1 1n n ne lim n→ lim n→ n 100: 1 1 e1 1n e 20 20! 20 50 50! 50 100 1 0.3679 e n 11 1n n 1 n 11n lim n→ ne n e 1 1 1 e e By the Squeeze Theorem, lim n→ n n! n 1 . e 0.4152 0.3897 100! 0.3799 100 245 246 Chapter 9 130. an Infinite Series 1 n 1 n k1 1 kn (a) a1 1 1 0.5 11 2 a2 1 1 1 2 1 7 1 0.5833 2 1 12 1 1 2 3 2 12 a3 1 1 1 37 1 0.6167 3 1 13 1 23 1 1 60 a4 1 1 1 1 533 1 0.6345 4 1 14 1 24 1 34 1 1 840 a5 1 1 1 1 1 1 1627 0.6456 5 1 15 1 25 1 35 1 45 1 1 2520 1 n 1 n→ n k1 1 kn (b) lim an lim n→ 1 0 131. For a given > 0, we must find M > 0 such that 1 < n3 an L whenever n > M. That is, n3 > 1 1 or n > 13 . So, let > 0 be given. Let M be an integer satisfying M > 113. For n > M, we have n > n3 > > 1 n→ 1 132. For a given > 0, we must find M > 0 such that an L r n whenever n > M. That is, n ln r < ln or n > ln (since ln r < 0 for r < 1). ln r So, let > 0 be given. Let M be an integer satisfying M > ln . ln r n > 1 1 ⇒ 3 0 < . n3 n Thus, lim For n > M, we have 13 1 0 ln 2 1 dx ln 1 x 1x 1 0. n3 ln ln r lnrn < ln rn < r n 0 < . n ln r < ln Thus, lim r n 0 for 1 < r < 1. n→ 133. If an is bounded, monotonic and nonincreasing, then a1 ≥ a2 ≥ a3 ≥ . . . ≥ an ≥ . . . . Then a1 ≤ a2 ≤ a3 ≤ . . . ≤ an ≤ . . . is a bounded, monotonic, nondecreasing sequence which converges by the first half of the theorem. Since an converges, then so does an. 134. Define an xn1 xn1 , xn n ≥ 1. xn12 xn xn2 1 xn2 xn1xn1 ⇒ xn1xn1 xn1 xnxn xn2 xn1 xn1 xn2 xn xn xn1 an an1 Hence, a1 a2 . . . a. Thus, xn1 an xn xn1 axn xn1. Section 9.2 Series and Convergence 135. Tn n! 2n We use mathematical induction to verify the formula. T0 1 1 2 T1 1 2 3 T2 2 4 6 Assume Tk k! 2k. Then Tk1 k 1 4Tk 4k 1Tk1 4k 1 8Tk2 k 5k! 2k 4k 1k 1! 2k1 4k 4k 2! 2k2 k 5kk 1 4k 1k 1 4k 1k 2! k 54 8k 1 4k 12k2 k2 5k 4k 4 4k 1! 8 2k2 k 1! 2k1. By mathematical induction, the formula is valid for all n. Section 9.2 Series and Convergence 2. S1 16 0.1667 1. S1 1 S2 1 14 1.2500 S2 16 16 0.3333 S3 1 14 19 1.3611 3 S3 16 16 20 0.4833 1 S4 1 14 19 16 1.4236 3 2 S4 16 16 20 15 0.6167 1 1 S5 1 14 19 16 25 1.4636 1 1 3 2 5 S5 6 6 20 15 42 0.7357 4. S1 1 3. S1 3 S2 3 1.5 S2 1 13 1.3333 S3 3 92 27 4 5.25 S3 1 13 15 1.5333 81 S4 3 92 27 4 8 4.875 S4 1 13 15 17 1.6762 9 27 81 243 S5 3 2 4 8 16 10.3125 1 1 1 1 S5 1 3 5 7 9 1.7873 9 2 6. S1 1 5. S1 3 7. S2 3 32 4.5 S2 1 12 0.5 S3 3 32 34 5.250 S3 1 12 16 0.6667 S4 3 32 34 38 5.625 1 S4 1 12 16 24 0.6250 3 3 3 3 S5 3 2 4 8 16 5.8125 1 1 S5 1 12 16 24 120 0.6333 3 2 n 3 8. 4 3 n 9. 10001.055 n n0 n0 n0 Geometric series Geometric series Geometric series r 3 > 1 2 Diverges by Theorem 9.6 r 4 > 1 3 Diverges by Theorem 9.6 r 1.055 > 1 Diverges by Theorem 9.6 247 248 10. Chapter 9 Infinite Series 21.03 n 11. n0 lim n→ > 1 n 2 n1 n 10 n1 n2 1 Diverges by Theorem 9.9 2n 1 n1 n1 2 9 1 n0 4 4 n 1 n n0 4 4 15 1 n 9 5 45 ,S 4 16 2 4 S0 n 3 2 17 1 n 3 S0 17 1 n0 n 154 154 3 1 14 54 17 1 1 1 . . . 3 2 4 1 1 3 1 23 13 17 8 n 17 , S 0.63, S3 5.1, . . . 3 1 17 8 3 9 n0 5 22. 2 n n 1 n0 173 173 3 1 89 179 4 2 . . . 5 25 7 S0 1, S1 , . . . 5 Matches (e). The series is geometric: 5 2 n n0 1 5 1 25 3 nn 1 n n 1 1 2 2 3 3 4 4 5 . . ., n1 1 1 1 1 1 n1 1 1 lim Sn lim 1 1 n→ n→ n n 1 n 1 n1 17 8 64 . . . 1 3 9 81 Matches (d). Analytically, the series is geometric: 1 17 17 2 34 3 1 12 3 3 9 S0 2 4 . . . 3 9 n0 Matches (f). The series is geometric: n 3 9 20. 17 17 ,S , . . . 3 1 6 3 2 2 n0 n0 1 Matches graph (b). Analytically, the series is geometric: 15 1 1 . . . 1 4 4 16 n 5 S0 1, S1 , S2 2.11, . . . . 3 Matches graph (a). Analytically, the series is geometric: 15 1 4 n0 4 2 n0 21 2.95, . . . 16 15 45 , S , S 3.05, . . . 4 1 16 2 3 18. 94 94 3 1 14 34 n0 10 n! 2n lim 1 1 1n2 Diverges by Theorem 9.9 n→ n n→ 9 1 1 1 . . . 4 4 16 lim n! n1 44 9 n2 1 2 16. 2n 1 1 2n 1 0 lim n1 n→ 2 2 2 n lim Matches graph (c). Analytically, the series is geometric: 23. n 1 2 Diverges by Theorem 9.9 9 9 S0 , S1 4 4 21. n1 1 n 0 2n 3 2 Diverges by Theorem 9.9 n 14. Diverges by Theorem 9.9 19. lim n→ n→ lim n n1 2 n→ 17. 2n 3 n2 10 n→ n 1 lim 15. 12. Diverges by Theorem 9.9 Diverges by Theorem 9.6 13. n n1 Geometric series r 1.03 n1 1 1 1 1 1 Sn 1 1 n1 Section 9.2 24. Series and Convergence nn 2 2n 2n 2 2 6 4 8 6 10 8 12 10 14 . . . 1 n1 1 1 1 1 1 1 1 1 1 1 1 1 n1 1 1 1 1 1 1 1 3 lim Sn lim n→ n→ n n 2 2 4 2 n 1 2 n 2 2 4 4 n1 25. 2 4 3 n 26. 3 4 Geometric series with r n Geometric series with r 12 < 1 < 1 Converges by Theorem 9.6 Converges by Theorem 9.6 1 n0 n0 27. 2 2 0.9 n 28. 0.6 n n0 n0 Geometric series with r 0.9 < 1 Geometric series with r 0.6 < 1 Converges by Theorem 9.6 Converges by Theorem 9.6 29. (a) nn 3 2 n n 3 6 n1 1 1 n1 1 41 12 51 13 61 14 71 . . . 2 S n 1 1 1 1 1 2 3 n1 n2 n3 2 1 2 1 (b) 1 1 11 3.667 2 3 3 n 5 10 20 50 100 Sn 2.7976 3.1643 3.3936 3.5513 3.6078 (c) (d) The terms of the series decrease in magnitude slowly. Thus, the sequence of partial sums approaches the sum slowly. 30. (a) 0 11 0 nn 4 n n 4 4 n1 1 1 n1 1 1 (b) 5 1 1 1 1 1 1 1 1 1 1 1 . . . 5 2 6 3 7 4 8 5 9 6 10 1 1 1 25 2.0833 2 3 4 12 n 5 10 20 50 100 Sn 1.5377 1.7607 1.9051 2.0071 2.0443 (d) The terms of the series decrease in magnitude slowly. Thus, the sequence of partial sums approaches the sum slowly. (c) 4 0 11 0 249 250 Chapter 9 31. (a) Infinite Series 20.9 n1 n1 (b) 20.9 n n0 2 20 1 0.9 (c) n 5 10 20 50 100 Sn 8.1902 13.0264 17.5685 19.8969 19.9995 22 0 11 0 (d) The terms of the series decrease in magnitude slowly. Thus, the sequence of partial sums approaches the sum slowly. 32. (a) 30.85 n1 n1 (b) 3 20 1 0.85 (Geometric series) (c) n 5 10 20 50 100 Sn 11.1259 16.0625 19.2248 19.9941 19.999998 24 0 11 0 (d) The terms of the series decrease in magnitude slowly. Thus, the sequence of partial sums approaches the sum slowly. 33. (a) 100.25 n1 n1 (b) 10 40 13.3333 1 0.25 3 (c) n 5 10 20 50 100 Sn 13.3203 13.3333 13.3333 13.3333 13.3333 15 11 0 0 (d) The terms of the series decrease in magnitude rapidly. Thus, the sequence of partial sums approaches the sum rapidly. 34. (a) 5 3 1 n1 n1 (b) 5 15 3.75 1 13 4 (c) n 5 10 20 50 100 Sn 3.7654 3.7499 3.7500 3.7500 3.7500 7 0 11 0 (d) The terms of the series decrease in magnitude rapidly. Thus, the sequence of partial sums approaches the sum rapidly. 35. n n2 36. 2 12 1 12 1 1 1 1 n2 n 1 n 1 2 n2 n 1 n 1 1 2 1 3 1 1 2 2 4 1 1 1 1 1 1 nn 2 2 n n 2 2 1 3 2 4 3 5 . . . 21 2 3 4 1 1 1 1 1 1 1 1 n1 n 1n 2 8 n 1 n 2 8 2 3 3 4 4 5 . . . 82 4 8 n1 38. 1 31 2 4 3 5 4 6 . . . n1 37. 1 1 1 1 1 1 1 1 1 n1 2n 12n 3 2 2n 1 2n 3 2 3 5 5 7 7 9 . . . 23 6 n1 1 1 n1 1 1 1 1 1 1 1 1 1 1 1 1 Section 9.2 39. 1 2 n 1 2 1 12 n0 6 5 40. 4 n n0 Series and Convergence 6 30 1 45 41. 1 10 1 110 9 44. 2 1 n 251 1 2 1 12 3 8 32 1 34 n0 (Geometric) 42. 2 3 n n 2 n0 45. 1 3 3 n0 47. 2 6 1 23 5 1 1 1 2 3 2 n0 10 1 n n0 3 9 1 13 4 n 43. n n n0 46. 1 3 n 48. 1 2 n0 4 n 0.7n 0.9n n1 sin1 n 7 10 n 9 10 n0 3 1 2 2 49. Note that sin1 0.8415 < 1. The series n 4 8 1 12 3 1 1 1 12 1 13 2 3 n0 n0 8 4 n 2 n0 1 1 2 1 710 1 910 34 10 10 2 3 3 is geometric with r sin1 < 1. Thus, n1 sin1 n sin1 n1 50. Sn n n0 n k1 sin1 9k2 sin1 5.3080. 1 sin1 n 1 1 3k 2 k1 3k 13k 2 9k 3 9k 6 3 3k 1 3k 2 n 1 1 1 k1 n 1 1 k1 12 51 15 81 18 111 . . . 3n 1 1 3n 1 2 1 3 1 1 1 3 2 3n 2 lim Sn lim n→ n→ 51. (a) 0.4 1 1 1 1 3 2 3n 2 6 1010 4 1 n 52. (a) 0.9 n0 4 1 (b) Geometric series with a 10 and r 10 S 81 1 100 100 n0 S (b) 0.9 n (b) Geometric series with a 910 1 n n1 410 4 a 1 r 1 110 9 53. (a) 0.81 9 9 9 . . . 10 100 1000 100 1 n n1 and r a 81100 81 9 1 r 1 1100 99 11 1 100 n 9 1 1 10 1 110 54. (a) 0.01 81 100 9 1 10 n0 10 (b) 0.01 1 100 1 1 1 100 n0 100 1 n 1 1100 100 1 100 99 99 252 Chapter 9 Infinite Series 40100 55. (a) 0.075 3 1 n 56. (a) 0.215 n0 3 1 (b) Geometric series with a 40 and r 100 S 57. 340 5 a 1 r 99100 66 S 58. n 10 1 0 10n 1 10 n1 n1 1 0 2n 1 2 lim Diverges by Theorem 9.9 n n 2 1 3 2 4 3 5 4 6 . . . 1 1 a 1 3200 71 5 1 r 5 99100 330 2n 1 n→ Diverges by Theorem 9.9 59. 1 1 1 1 1 1 1 1 1 n1 60. 1 3 , converges 2 2 nn 3 3 n n 3 1 1 n1 61. 1 n1 n1 lim n 3 10n 1 n→ (b) Geometric series with a 200 and r 100 n 10 3 1 1 5 n0 200 100 1 1 n1 1 41 12 51 13 61 14 71 15 81 16 91 . . . 1 3 1 1 1 11 1 , converges 3 2 3 18 3n 1 2n 1 62. n1 lim n→ 3n n 3 n1 3n 1 3 0 2n 1 2 3n ln 23n lim 3 2 n→ n 3n lim n→ ln 22 3n ln n3 3n lim n→ n→ 6n 6 Diverges by Theorem 9.9 lim (by L’Hôpital’s Rule); diverges by Theorem 9.9 63. 4 2 n0 n 4 2 1 n 64. n0 1 n0 1 65. 4 n 1 Geometric series with r 2 Geometric series with r 4 Converges by Theorem 9.6 Converges by Theorem 9.6 1.075 n 66. 2n 100 n0 n1 Geometric series with r 1.075 Geometric series with r 2 Diverges by Theorem 9.6 Diverges by Theorem 9.6 67. Since n > lnn, the terms an n lnn do not approach 0 as n → . Hence, the series n lnn diverges. n2 68. Sn ln k lnk n k1 1 n k1 0 ln 2 ln 3 . . . lnn Since lim Sn diverges, n→ lnn diverges. n1 1 Section 9.2 69. For k 0, e 70. n n1 k lim 1 n→ n n lim n→ k 1 n e 1 n Series and Convergence 71. lim arctan n converges since n→ n1 it is geometric with nk k Hence, 1 r e < 1. ek 0. 253 0 2 arctan n diverges. n1 For k 0, lim 1 0n 1 0. n→ 1 n Hence, k n diverges. n1 ln n 72. Sn k1 ln k1 k 21 ln32 . . . lnn n 1 ln 2 ln 1 ln 3 ln 2 . . . lnn 1 ln n lnn 1 ln1 lnn 1 Diverges 73. See definition on page 606. 74. lim an 5 means that the limit of the sequence an is 5. n→ a n 75. The series given by ar a1 a2 . . . 5 means that the limit of the a ar ar 2 . . . ar n . . . , a 0 n n0 n1 partial sums is 5. is a geometric series with ratio r. When 0 < r < 1, the series converges to a1 r. The series diverges if r ≥ 1. 76. If lim an 0, then n→ n→ n diverges. n1 n lim an lim n→ a n n1 an 77. a 78. (a) a n a1 a2 a3 . . . k a1 a2 a3 . . . n1 n1 1 n an converges (b) These are the same. The third series is different, unless a1 a2 . . . a is constant. diverges because lim an 0. n→ n1 a k1 (c) a k ak ak . . . n1 79. xn 2 n1 n 2 x n n1 x x 2 n0 2 n Geometric series: converges for f x x x 2 n0 2 n 80. n 3x n1 x < 1 or x < 2 2 x x 2 1 x , 2 1 x2 2 2 x 2 x 3x n n0 Geometric series: converges for 3x < 1 ⇒ x < f x 3x 3x n0 x < 2 3x n 3x 1 3x , 1 3x 1 3x 1 3 1 x < 3 254 81. Chapter 9 x 1 n Infinite Series x 1 n1 x 1 n0 n0 Geometric series: converges for x 1 < 1 ⇒ 0 < x < 2 f x x 1 x3 4 1 x n n n 1 x1 , 1 x 1 2 x f x 0 < x < 2 n0 4 n n0 n 4 1 x 34 16 4 , 1 < x < 7 4 x 34 7 x 1 x 84. x3 4 n 2n n0 x 2 n n0 Geometric series: converges for Geometric series: converges for x < 1 x 2 < 1 ⇒ x < 1 ⇒ 1 < x < 1 f x x n n0 85. n0 x n x3 < 1 ⇒ x 3 < 4 ⇒ 1 < x < 7 4 x 1 83. Geometric series: converges for n0 x 1 4 82. n x 1 1 , 1x f x 1 < x < 1 n0 n1 1 < 1 Geometric series: converges if x x n0 1 2 n 2 x2 4 n x2 1 1 , 1 x2 1 x2 x2 x2 2 4 n0 x 4 Geometric series: converges for ⇒ x > 1 ⇒ x < 1 or x > 1 f x x 86. n x n0 n ⇒ 1 < x < 1 ⇒ 1 x , x > 1 or x < 1 1 1x x 1 x2 f x < x2 n x2 < 1 x2 4 4 ⇒ converges for all x x2 x2 1 < x < 1 4 1 1 x2 x2 x2 4 x2 x2 4 x2 4 4 4 88. Neither statement is true. The formula 87. (a) Yes, the new series will still diverge. 1 1 x x2 . . . x1 (b) Yes, the new series will converge. holds for 1 < x < 1. (c) y1 89. (a) x is the common ratio. (b) 1 x x 2 . . . xn n0 1 , 1x x < 1 1 1x 3 f y2 S3 1 x x 2 y3 S5 1 x x 2 x 3 x 4 S5 S3 −1.5 1.5 0 90. (a) 2x is the common ratio. (c) y1 x x2 x3 x (b) 1 . . . 2 4 8 2 n0 n 1 1 x2 2 , 2x x < 2 2 2x 5 f x2 x y2 S3 1 2 4 y3 S5 1 x x2 x3 x4 2 4 8 16 S5 S3 −5 5 −5 Section 9.2 1 0.5x 1 0.5 91. f x 3 7 11 0.8 0.8 1 S −2 2 5 10 S 1 < 0.0001 nn 1 2 10 1 45 10,000 < 2n 12 This inequality is true when n 14. 0.01n < 0.0001 4110,000 2 10,000 < 10n Choosing the positive value for n we have n 99.5012. The first term that is less than 0.0001 is n 100. 18 16 −2 1 < 0.0001 2n 94. 0 < n2 n 10,000 1 ± −2 The horizontal asymptote is the sum of the series. f n is the nth partial sum. 10,000 < n2 n n n n0 The horizontal asymptote is the sum of the series. f n is the nth partial sum. 93. 4 −1 3 6 1 12 y = 10 12 Horizontal asymptote: y 10 n n0 255 x 92. f x 2 y=6 Horizontal asymptote: y 6 3 2 Series and Convergence This inequality is true when n 5. This series converges at a faster rate. n < 0.0001 10,000 < 8n This inequality is true when n 5. This series converges at a faster rate. 80001 0.9n1 1 1 0.9 n1 95. 80000.9 i i0 96. Vt 225,0001 0.3n 0.7n225,000 V5 0.75225,000 $37,815.75 80,0001 0.9n, n > 0 1001 0.75n1 1 1 0.75 n1 97. 1000.75 i i0 n1 98. 1000.60i i0 4001 0.75n million dollars Sum 400 million dollars 100. The ball in Exercise 99 takes the following times for each fall. D2 0.8116 0.8116 320.81 down D3 160.812 160.812 320.812 D 16 320.81 320.812 . . . 16 320.81 n0 152.42 feet n 2501 0.6n million dollars Sum 250 million dollars 99. D1 16 up 1001 0.6n 1 0.6 16 32 1 0.81 s1 16t 2 16 s1 0 if t 1 s2 16t 2 160.81 s2 0 if t 0.9 s3 16t 2 160.812 s3 0 if t 0.92 sn 16t 2 160.81 n1 sn 0 if t 0.9n1 Beginning with s2, the ball takes the same amount of time to bounce up as it takes to fall. The total elapsed time before the ball comes to rest is t12 0.9 n1 1 n 1 2 0.9 n0 2 19 seconds. 1 0.9 n 256 Chapter 9 101. Pn P2 1 1 2 2 1 1 2 2 22 1 1 n n0 Infinite Series n 102. Pn 2 1 8 P2 1 2 3 3 33 12 1 1 12 1 2 3 3 1 2 n0 n n 103. (a) 1 2 n n1 2 4 27 n0 1 1 2 2 1 1 1 2 1 12 (b) No, the series is not geometric. 13 1 1 23 (c) n 2 1 n 2 n1 1 1 1 1 1 4 7. . . 2 2 2 2 n0 8 104. Person 1: n 1 1 1 1 1 . . . 22 25 28 4 n0 8 n Person 2: 1 1 1 1 1 . . . 23 26 29 8 n0 8 n Person 3: Sum: 1 4 1 2 1 18 7 1 1 2 4 1 18 7 1 1 1 8 1 18 7 4 2 1 1 7 7 7 105. (a) 64 32 16 8 4 2 126 in.2 1 2 (b) n 64 n0 64 128 in.2 1 12 16 in. Note: This is one-half of the area of the original square! 16 in. 106. (a) sin Yy1 z x1y1 Yy1 x1y2 sin x1y1 sin ⇒ Yy1 z sin (b) If z 1 and ⇒ x1y2 x1 y1 sin z sin3 Total: z sin z sin2 z sin3 . . . z 50,0001.06 20 107. 1 n 12 , then total 1. 6 1 12 ⇒ x1y1 Yy1 sin z sin2 50,000 19 1 1.06 i0 1.06 50,000 1 1.0620 , 1.06 1 1.061 n1 sin 1 sin i n 20, r 1.061 573,496.06 1 108. Surface area 4 12 94 3 2 109. w n1 0.012 i i0 92 4 19 2 . 0.011 2n 0.012n 1 12 (a) When n 29: w $5,368,709.11 (b) When n 30: w $10,737,418.23 (c) When n 31: w $21,474,836.47 n . . 4 . . . Section 9.2 P1 12 12t1 110. r n n0 12t1 12r 12 12 r r P 1 1 P 1 r r 12 r 12 1 1 12 12t n0 111. P 50, r 0.03, t 20 (b) A 1220 1 $16,415.10 (a) A 75 50 e0.0320 1 $16,421.83 e0.0312 1 (b) A 12 0.05 1 0.05 12 1225 1 $44,663.23 75e0.0525 1 $44,732.85 e0.0512 1 114. P 20, r 0.06, t 50 113. P 100, r 0.04, t 40 (b) A 1 112. P 75, r 0.05, t 25 12 0.03 1 0.03 12 (a) A 100 12t P1 e r1212t Pe rt 1 r12 1 e r12 e 1 Pe r12n (a) A 50 257 12t P 1 1 Series and Convergence 12 0.04 1 0.04 12 1240 (a) A 20 1 $118,196.13 100e0.0440 1 $118,393.43 e0.0412 1 (b) A 115. (a) an 3484.13631.0502n 3484.1363e0.04897n 12 0.06 1 0.06 12 1250 1 $75,743.82 20e0.0650 1 $76,151.45 e0.0612 1 (b) Adding the ten values a3, a4, . . . , a12 you obtain 12 a 6500 n 50,809, or $50,809,000,000. n3 12 (c) 3484.1363e 0.04897n 50,803, or $50,803,000,000 n3 2 3500 13 (Answers will vary.) 116. T 40,000 40,0001.04 . . . 40,0001.0439 39 40,0001.04 n 40,000 n0 117. False. lim n→ 11 1.04 $3,801,020 1.0440 118. True 119. False; ar n1 n 1 a r a The formula requires that the geometric series begins with n 0. 121. True 122. True 0.74999 . . . 0.74 1 1 0, but diverges. n n1 n 9 9 . . . 103 104 0.74 9 1 103 n0 10 0.74 9 103 1 110 0.74 9 103 0.74 1 0.75 100 1 10 9 n 120. True lim n→ n 1 0 1000n 1 1000 258 Chapter 9 Infinite Series 124. Let Sn be the sequence of partial sums for the convergent series 123. By letting S0 0, we have n a an k n1 a k k1 n1 a n an Sn Sn1. Thus, k1 Sn Sn1 Rn n1 S c S n1 ak L Sn, we have n1 n→ kn1 Sn1 c c n L. Then lim Sn L and since n1 lim Rn lim L Sn c Sn. n→ n1 n→ lim L lim Sn L L 0. n→ 125. Let a 1 and b n n n0 126. If an bn converged, then an bn an bn would converge, which is a contradiction. Thus, an bn diverges. 1. n0 Both are divergent series. a n n0 n0 1 1 1 1 0 bn 127. Suppose, on the contrary, that can converges. Because c 0, c ca 1 n a n converges. This is a contradiction since can diverged. Hence, can diverges. 129. (a) 128. If an converges, then lim an 0. Hence, n→ 1 lim 0, n→ an which implies that 1an diverges. an3 an1 1 1 an1an2 an2an3 an1an2an3 n k0 1 an1an3 k1ak3 n 1 1 a a k1 k2 k2ak3 k0 a 1a 1 2 1 1 1 1 1 . . . a2a3 a2a3 a3a4 an1an2 an2an3 1 1 a1a2 an2an3 1 1 an2an3 1 1 lim Sn lim 1 1 n→ n→ a a n1 n3 n2an3 a n0 an2 an1an2an3 a 1 a (b) Sn n→ Section 9.2 Series and Convergence 259 130. S2n 1 2x x 2 2x3 . . . x2n 2x2n1 1 x 2 x 4 . . . x2n 2x 2x3 . . . 2x2n1 n x 2 k 2x k0 n x 2 k k0 As n → , the two geometric series converge for x < 1: 1 1 2x 1 lim S2n 2x , n→ 1 x2 1 x2 1 x2 131. 1 1 1 1 1 2 3. . . r r r n0 r r n 132. The entire rectangle has area 2 because the height is 1 1 1 and the base is 1 2 4 . . . 2. The squares all lie inside the rectangle, and the sum of their areas is 1r 1 1r 1 r1 1 since < 1 r This is a geometric series which converges if x < 1 1 1 1 1 . . .. 22 32 42 Thus, 1 n n1 2 < 2. 1 < 1 ⇔ r > 1. r 133. Let H represent the half-life of the drug. If a patient receives n equal doses of P units each of this drug, administered at equal time interval of length t, the total amount of the drug in the patient’s system at the time the last dose is administered is given by Tn P Pekt Pe2kt . . . Pen1kt where k ln 2H. One time interval after the last dose is administered is given by Tn1 Pekt Pe2kt Pe3kt . . . Penkt. Two time intervals after the last dose is administered is given by Tn2 Pe2kt Pe3kt Pe4kt . . . Pen1kt and so on. Since k < 0, Tns→ 0 as s → , where s is an integer. 135. f 1 0, f 2 1, f 3 2, f 4 4, . . . 134. The series is telescoping: Sn n k1 k1 6k 3 3 n k1 k 2k1 3k 3k 3k1 k1 k 2 3 2k1 3n1 3 n1 3 2n1 lim Sn 3 1 2 In general: f n 2k n24, n 14, n odd. n even 2 (See below for a proof of this.) x y and x y are either both odd or both even. If both even, then f x y f x y n→ x y2 x y2 xy. 4 4 If both odd, f x y f x y x y2 1 x y2 1 4 4 xy. Proof by induction that the formula for f n is correct. It is true for n 1. Assume that the formula is valid for k. If k is even, then f k k24 and f k 1 f k k k2 k 2 4 2 k2 2k k 12 1 . 4 4 The argument is similar if k is odd. 260 Chapter 9 Infinite Series Section 9.3 1. The Integral Test and p-Series 1 n1 2. n1 Let f x 1 1 . x1 Let f x 1 dx lnx 1 x1 1 2 . 3x 5 f is positive, continuous, and decreasing for x ≥ 1. 1 Diverges by Theorem 9.10 3. 2 n1 f is positive, continuous, and decreasing for x ≥ 1. 3n 5 n 4. ne n2 n1 n1 Let f x ex. Let f x xex2. f is positive, continuous, and decreasing for x ≥ 1. ex dx ex 1 1 1 Diverges by Theorem 9.10 e 2 2 dx ln3x 5 3x 5 3 f is positive, continuous, and decreasing for x ≥ 3 since 2x f x < 0 for x ≥ 3. 2e x2 1 e Converges by Theorem 9.10 xex2 dx 2x 2ex2 3 3 10e32 Converges by Theorem 9.10 5. n n1 2 1 1 Let f x 6. 1 . x2 1 1 x2 1 dx arctan x 1 1 4 1 lnn 1 n1 n1 8. 1 1 ln n n n2 lnx 1 . x1 Let f x f is positive, continuous, and decreasing for x ≥ 2 since f x 1 dx ln 2x 1 2x 1 Diverges by Theorem 9.10 Let f x 1 . 2x 1 f is positive, continuous, and decreasing for x ≥ 1. Converges by Theorem 9.10 7. 1 Let f x f is positive, continuous, and decreasing for x ≥ 1. 2n 1 n1 1 lnx 1 < 0 for x ≥ 2. x 12 lnx 1 lnx 1 2 dx x1 2 Diverges by Theorem 9.10 1 ln x 2 ln x , f x . 2x32 x f is positive, continuous, and decreasing for x > e2 7.4. 2 ln x dx 2xln x 2 x 2 , diverges Hence, the series diverges by Theorem 9.10. Section 9.3 9. 1 n n 1 10. n1 Let f x 1 x x 1 , f x 1 2x < 0. x 12 1 1 dx 2 lnx 1 xx 1 1 2 n 3 Let f x 2x32 x . x2 3 f x is positive, continuous, and decreasing for x ≥ 2 since f is positive, continuous, and decreasing for x ≥ 1. n n1 The Integral Test and p-Series , diverges 3 x2 < 0 for x ≥ 2. x 2 3 fx Hence, the series diverges by Theorem 9.10. 1 x dx lnx2 3 3 x2 1 Diverges by Theorem 9.10 11. 1 n 1 12. n1 Let f x n2 1 x 1 1 < 0. 2x 132 , f x 1 1 x 1 dx 2x 1 1 ln n n3 Let f x f is positive, continuous, and decreasing for x ≥ 1. ln x 1 3 ln x , f x . x3 x4 f is positive, continuous, and decreasing for x > 2. , diverges 2 2 ln x 1 ln x dx x2 4x 4 Hence, the series diverges by Theorem 9.10. 2 2 ln 2 1 , converges 16 Hence, the series converges by Theorem 9.10. 13. ln n 2 n1 n 14. 1 n2 ln x 1 2 ln x . Let f x 2 , f x x x3 Let f x f is positive, continuous, and decreasing for x > e12 1.6. f is positive, continuous, and decreasing for x ≥ 2. 1 ln x ln x 1 dx x2 x 1, converges 1 2 Hence, the series converges by Theorem 9.10. 15. nln n arctan n 2 n1 n 1 Let f x 1 1 dx 2ln x xln x 2 , diverges Hence, the series diverges by Theorem 9.10. 16. 1 n ln n lnln n n3 arctan x 1 2x arctan x , f x < 0 for x ≥ 1. x2 1 x2 12 f is positive, continuous, and decreasing for x ≥ 1. 1 2 ln x 1 , f x 2 . 2x ln x32 xln x arctan x arctan x2 dx x2 1 2 1 3 2 , converges 32 Hence, the series converges by Theorem 9.10. Let f x f x 1 , x ln x lnln x ln x 1 lnln x 1 . x2ln x2lnln x2 f is positive, continuous, and decreasing for x ≥ 3. 3 1 dx lnlnln x x ln x lnln x 3 , diverges Hence, the series diverges by Theorem 9.10. 261 262 17. Chapter 9 n1 Infinite Series 2n n2 1 Let f x 18. n1 2x 1 , f x 2 2 < 0 for x > 1. 1 x 12 x2 x2 1 x2 2x dx lnx 2 1 1 1 , diverges nk1 k c n n1 Let f x 1 20. 1 x 1 dx arctanx 2 1 2 x4 1 , converges 8 ne k n n1 x k1 . xk c Let f x x k2 ck 1 x k c2 xk f x < 0 x k1k x < 0 for x > k. ex We use integration by parts. x k1 xk . ex f is positive, continuous, and decreasing for x > k since k ck 1. for x > x 1 3x 4 , f x 4 < 0 for x > 1. x4 1 x 12 Hence, the series converges by Theorem 9.10. f is positive, continuous, and decreasing for k ck 1 x > since f x n 1 f is positive, continuous, and decreasing for x > 1. Hence, the series diverges by Theorem 9.10. 19. 4 Let f x f is positive, continuous, and decreasing for x > 1. n 1 dx lnx k c xk c k 1 1 Diverges by Theorem 9.10 x kex dx x kex 1 k x k1ex dx 1 1 k kk 1 . . . k! e e e e Converges by Theorem 9.10 21. Let f x 1x , f n an. x 22. Let f x ex cos x, f n an. The function f is not positive for x ≥ 1. The function f is not positive for x ≥ 1. 23. Let f x 2 sin x , f n an. x 24. Let f x The function f is not decreasing for x ≥ 1. 25. 1 n n1 1 1 1 dx 2 x3 2x 1 1 2 Converges by Theorem 9.10 n 1 13 Let f x f is positive, continuous, and decreasing for x ≥ 1. n n1 1 Let f x 3. x 2 The function f is not decreasing for x ≥ 1. 26. 3 sinx x , f n a . 1 . x13 f is positive, continuous, and decreasing for x ≥ 1. 1 1 13 x dx 2 x 3 23 1 Diverges by Theorem 9.10 Section 9.3 27. 1 n 1 x , f x 1 < 0 for x ≥ 1. 2x32 1 1 x dx 2x 1 1 1 , diverges 1 n n n1 5 1 n1 Divergent p-series with p 32. 30. 15 1 33. 2 n1 1 n 1 1 1, converges 3 31. 53 34. 32 Convergent p-series with p 1.04 > 1 1 n 23 n1 1 n n1 1 12 1 Divergent p-series with p 2 < 1 > 1 1 n n n1 5 3 3 Convergent p-series with p 2 > 1 36. 1.04 n1 n n1 Convergent p-series with p 2 > 1 35. x x dx Convergent p-series with p < 1 n 2 Hence, the series converges by Theorem 9.10. n1 1 5 1 2 , f x 3 < 0 for x ≥ 1. x2 x f is positive, continuous, and decreasing for x ≥ 1. Hence, the series diverges by Theorem 9.10. 29. 2 Let f x f is positive, continuous, and decreasing for x ≥ 1. 1 n1 Let f x 2 Divergent p-series with p 3 < 1 37. 2 n 34 n1 S1 2 Convergent p-series with p > 1 S2 3.1892 S3 4.0666 S4 4.7740 Matches (c), diverges 38. 2 n 39. 2 n 2 n n1 40. 2 2 n n1 25 n1 n1 S1 2 S1 2 S1 2 S2 3 S2 2.6732 S2 3.5157 S3 3.6667 S3 3.0293 S3 4.8045 S4 4.1667 S4 3.2560 Matches (a), diverges Matches (f), diverges Matches (b), converges Note: The partial sums for 39 and 41 are very similar because 2 32. 41. 2 2 nn n n1 n1 263 n 28. n1 The Integral Test and p-Series 32 42. 2 n n1 2 S1 2 S1 2 S2 2.7071 S2 2.5 S3 3.0920 S3 2.7222 S4 3.3420 Matches (e), converges Matches (d), converges Note: The partial sums for 39 and 41 are very similar because 2 32. 264 Chapter 9 43. (a) Infinite Series 8 n 5 10 20 50 100 Sn 3.7488 3.75 3.75 3.75 3.75 The partial sums approach the sum 3.75 very rapidly. 0 11 0 (b) 5 n 5 10 20 50 100 Sn 1.4636 1.5498 1.5962 1.6251 1.635 The partial sums approach the sum 26 1.6449 slower than the series in part (a). N 44. 1 1 1 1 1 n1234. . .N 0 11 0 > M n1 (a) M 2 4 6 8 N 4 31 227 1674 (b) No. Since the terms are decreasing (approaching zero), more and more terms are required to increase the partial sum by 2. 45. Let f be positive, continuous, and decreasing for x ≥ 1 and an f n. Then, a n 46. A series of the form n1 n1 1 is a p-series, p > 0. np The p-series converges if p > 1 and diverges if 0 < p ≤ 1. and f x dx 1 either both converge or both diverge (Theorem 9.10). See Example 1, page 618. 48. No. Theorem 9.9 says that if the series converges, then the terms an tend to zero. Some of the series in Exercises 37–42 converge because the terms tend to 0 very rapidly. 47. Your friend is not correct. The series 1 1 1 . . . n 10,000 10,001 n10,000 is the harmonic series, starting with the 10,000th term, and hence diverges. 49. The area under the rectangles is greater than the area under the graph of y 1x, x ≥ 1. Since 1 1 x dx 0.5 a n ≥ n1 f x dx ≥ a 1 x 1 dx 2x 7 6 50. 1.0 1 > n n1 y diverges, the series 1 n diverges. n x n1 7 n2 1 1 51. 1 3 4 5 n 1 nln n n2 2 p If p 1, then the series diverges by the Integral Test. If p 1, y 1 2 x 1 2 3 4 5 6 7 1 dx xln x p 2 ln xp 1 ln xp1 dx x p 1 Converges for p 1 < 0 or p > 1 2 . Section 9.3 52. The Integral Test and p-Series 265 ln n p n2 n If p 1, then the series diverges by the Integral Test. If p 1, 2 ln x dx xp xp ln x dx 2 xp1 p 1 2 1 p 1 ln x . (Use integration by parts.) 2 Converges for p 1 < 0 or p > 1 53. n 1 n 2 p n1 If p 1, n 1n f x diverges (see Example 1). Let 2 n1 x , p1 1 x2 p f x 1 2p 1x2 . 1 x2 p1 For a fixed p > 0, p 1, f x is eventually negative. f is positive, continuous, and eventually decreasing. 1 x 1 dx 1 x2 p x2 1 p12 2p 1 For p > 1, this integral converges. For 0 < p < 1, it diverges. 54. n1 n 2 p 55. n1 1 nln n n2 Since p > 0, the series diverges for all values of p. Hence, p converges for p > 1. 1 n ln n, diverges. n2 56. 1 nln n n2 Hence, p 1 nln n 3 1 nln n n2 Hence, 57. p 2 1 nln n n2 23 , diverges. converges for p > 1. 1 1 2 n2 1 1 , diverges 2 n2 n lnn Hence, p converges for p > 1. 1 nln n , converges. n2 2 59. Since f is positive, continuous, and decreasing for x ≥ 1 and an f n, we have, 1 n lnn 2n ln n n2 nln n n2 n2 58. converges for p > 1. RN S SN a n n1 N a n n1 an ≤ aN1 nN1 ≤ Thus, 0 ≤ RN ≤ N f x dx. f x dx N1 N an > 0. nN1 Also, RN S SN f x dx. 266 Chapter 9 Infinite Series 61. S6 1 60. From Exercise 59, we have: 0 ≤ S SN ≤ f x dx R6 ≤ N SN ≤ S ≤ SN N n ≤ S ≤ n1 N a n f x dx n1 62. S4 1 R4 ≤ 4 1 n 5 ≤ 1.0811 0.0015 1.0826 4 f x dx 4 0.0010 1 dx arctan x x 1 n 0.9818 ≤ n1 2 10 arctan 10 0.0997 2 1 ≤ 0.9818 0.0997 1.0815 1 1 1 1 1 . . . 1.9821 2ln 23 3ln 33 4ln 43 11ln 113 1 1 dx x 1lnx 1 3 2lnx 1 2 10 1 n 1lnn 1 1.9821 ≤ 3 n1 R4 ≤ 0.0015 ≤ 1.0363 0.0010 1.0373 2 10 65. S4 1 n1 6 1 1 1 1 1 1 1 1 1 1 0.9818 2 5 10 17 26 37 50 65 82 101 R10 ≤ n 1.0811 ≤ N 64. S10 1 1 dx 4 x5 4x n1 R10 ≤ 1 1 dx 3 x4 3x 1 1 1 1.0363 25 35 45 1.0363 ≤ 63. S10 6 N a 1 1 1 1 1 1.0811 24 34 44 54 64 10 4 nen 0.4049 ≤ 2 1 2 2 xex d x ex 2 4 1 0.0870 2ln 113 ≤ 1.9821 0.0870 2.0691 1 2 3 4 4 9 16 0.4049 e e e e 66. S4 e 16 5.6 108 2 ≤ 0.4049 5.6 108 R4 ≤ 1 1 1 1 2 3 4 0.5713 e e e e 4 0.5713 ≤ N 1 < 0.003 N3 N 3 > 333.33 N > 6.93 N ≥ 7 e n 0.0183 4 ≤ 0.5713 0.0183 0.5896 n0 n1 67. 0 ≤ RN ≤ ex dx ex 1 1 dx 3 x4 3x N 1 < 0.001 3N 3 68. 0 ≤ RN ≤ N 1 32 x N12 < 0.0005 N > 2000 N ≥ 4,000,000 dx 2 12 x N 2 N < 0.001 Section 9.3 69. RN ≤ N 1 e5x dx e5x 5 N e5N < 0.001 5 RN ≤ 70. ex2 dx 2ex2 N 1 < 0.005 e5N 2 < 0.001 e N2 e5N > 200 e N2 > 2000 5N > ln 200 N 267 2 < 0.001 e N2 N > ln 2000 2 ln 200 5 N > The Integral Test and p-Series N > 2 ln 2000 15.2 N ≥ 16 N > 1.0597 N ≥ 2 71. RN ≤ N 1 dx arctan x x2 1 72. Rn ≤ N N arctan N < 0.001 2 2 1 x arctan dx 2 x2 5 5 5 N < 0.001 2 N arctan 2 5 5 arctan N < 1.5698 N arctan < 0.001118 2 5 arctan N > 1.5698 N > tan 1.5698 1.56968 < arctan N ≥ 1004 N 5 N5 > tan 1.56968 N ≥ 2004 73. (a) 1 n n2 1.1 . f x 2 6 (b) 6 1 n ln n is a divergent series. Use the Integral Test. n2 1 is positive, continuous, and decreasing for x ≥ 2. x ln x 1 dx ln ln x x ln x 1 n n2 This is a convergent p-series with p 1.1 > 1. 1.1 2 1 1 1 1 1 0.4665 0.2987 0.2176 0.1703 0.1393 21.1 31.1 41.1 51.1 61.1 1 1 1 1 1 1 n ln n 2 ln 2 3 ln 3 4 ln 4 5 ln 5 6 ln 6 0.7213 0.3034 0.1803 0.1243 0.0930 n2 For n ≥ 4, the terms of the convergent series seem to be larger than those of the divergent series! 1 1 < n1.1 n ln n (c) n ln n < n1.1 ln n < n0.1 This inequality holds when n ≥ 3.5 1015. Or, n > e40. Then ln e40 40 < e400.1 e4 55. 74. (a) 10 xp1 1 dx p x p 1 10 1 , p > 1 p 110 p1 (c) The horizontal asymptote is y 0. As n increases, the error decreases. (b) f x 1 xp R10 p n11 1 np ≤ Area under the graph of f over the interval 10, 268 Chapter 9 Infinite Series 75. (a) Let f x 1x. f is positive, continuous, and decreasing on 1, . Sn 1 ≤ n 1 y 1 dx x 1 Sn 1 ≤ ln n 1 2 Hence, Sn ≤ 1 ln n. Similarly, Sn ≥ n1 1 1 dx lnn 1. x 1 3 ... n −1 2 x n n+1 Thus, lnn 1 ≤ Sn ≤ 1 ln n. (b) Since lnn 1 ≤ Sn ≤ 1 ln n, we have lnn 1 ln n ≤ Sn ln n ≤ 1. Also, since ln x is an increasing function, lnn 1 ln n > 0 for n ≥ 1. Thus, 0 ≤ Sn ln n ≤ 1 and the sequence an is bounded. (c) an an1 Sn ln n Sn1 lnn 1 n1 n 1 1 dx ≥ 0 x n1 Thus, an ≥ an1 and the sequence is decreasing. (d) Since the sequence is bounded and monotonic, it converges to a limit, . (e) a100 S100 ln 100 0.5822 (Actually 0.577216.) 76. ln1 n ln 1 2 n2 n2 n2 1 n 1(n 1 ln lnn 1 lnn 1 2 ln n 2 2 n n n2 n2 ln 3 ln 1 2 ln 2 ln 4 ln 2 2 ln 3 ln 5 ln 3 2 ln 4 ln 6 ln 4 2 ln 5 ln 7 ln 5 2 ln 6 ln 8 ln 6 2 ln 7 ln 9 ln 7 2 ln 8 . . . ln 2 77. x ln n n2 1 (a) x 1: n2 n2 1, diverges (c) Let x be given, x > 0. Put x ep ⇔ ln x p. n2 1 (b) x : e ln n 1 e ln n eln n n2 x 1 , diverges n2 n ln n n2 e p ln n n2 n p n2 1 n n2 p 1 This series converges for p > 1 ⇒ x < . e 78. x n x n1 1 n n1 x Converges for x > 1 by Theorem 9.11 79. 1 2n 1 80. n1 Let f x n2 1 . 2x 1 1 1 dx ln 2x 1 2x 1 Diverges by Theorem 9.10 1 2 Let f x f is positive, continuous, and decreasing for x ≥ 1. nn 1 1 1 . xx 2 1 f is positive, continuous, and decreasing for x ≥ 2. 2 1 xx 2 1 Converges by Theorem 9.10 dx arcsec x 2 2 3 Section 9.3 81. nn n 1 p-series with p 5 4 1 4 n1 n1 82. 3 54 2 3 0.95 p-series with p 0.95 Diverges by Theorem 9.11 n 84. 1.075 n n0 n0 Geometric series with r 3 Geometric series with r 1.075 Converges by Theorem 9.6 Diverges by Theorem 9.6 2 85. n n 1 86. 2 n1 n n1 n lim n→ n2 1 1 lim 1 1n2 n→ 1 2 1 1 1 2 3 n3 n n1 n1 n Since these are both convergent p-series, the difference is convergent. 10 Diverges by Theorem 9.9 87. 1 n 1 n 88. 1 n lim 1 lnn n2 n1 n→ n lim lnn e0 n→ Diverges by Theorem 9.9 Fails nth-Term Test Diverges by Theorem 9.9 89. 1 nln n 3 n2 Let f x 1 . xln x3 f is positive, continuous and decreasing for x ≥ 2. 2 1 dx xln x3 ln x3 2 1 ln x2 dx x 2 2 1 2ln x2 2 1 2ln 22 Converges by Theorem 9.10. See Exercise 51. 90. n2 ln n n3 Let f x ln x . x3 f is positive, continuous, and decreasing for x ≥ 2 since fx 2 269 1 n n1 Converges by Theorem 9.11 83. The Integral Test and p-Series ln x ln x dx 2 x3 2x 2 1 2 2 1 ln 2 1 2 dx x3 8 4x Converges by Theorem 9.10. See Exercise 30. 2 1 3 ln x < 0 for x ≥ 2. x4 1 ln 2 (Use integration by parts.) 8 16 270 Chapter 9 Infinite Series Section 9.4 1. (a) 6 n n1 32 6 6 . . . ; S1 6 1 232 an 6 an = 3/2 n 6 n n1 Comparisons of Series 6 6 6 3 . . . ; S1 3 4 232 3 2 5 32 an = 4 3 6 6 6 6 . . . ; S1 4.9 2 0.5 2 n n 1 1.5 4.5 1.5 n1 (b) The first series is a p-series. It converges p an = 3/26 n +3 2 1 n > 1. 3 2 6 n n 2 + 0.5 (c) The magnitude of the terms of the other two series are less than the corresponding terms at the convergent p-series. Hence, the other two series converge. 6 4 2 Sn n Σ k=1 12 8 10 6 k 3/2 n Σ 10 (d) The smaller the magnitude of the terms, the smaller the magnitude of the terms of the sequence of partial sums. k=1 6 k k 2+ 0.5 8 6 4 n Σ 2 6 k 3/2 + 3 k=1 n 2. (a) 2 2 n 2 2 . . . S 1 2 an an = n1 6 4 2 8 10 2 n − 0.5 4 2 2 2 . . . S1 4 0.5 2 0.5 n1 n 0.5 3 2 4 4 4 . . . S1 3.3 1.5 2.5 n1 n 0.5 (b) The first series is a p-series. It diverges p 1 2 4 n + 0.5 an = an = 2 n 1 < 1. n 2 (c) The magnitude of the terms of the other two series are greater than the corresponding terms of the divergent p-series. Hence, the other two series diverge. 4 6 Sn 20 (d) The larger the magnitude of the terms, the larger the magnitude of the terms of the sequence of partial sums. Σ 16 2 n − 0.5 8 10 Σ 4 n + 0.5 12 8 4 Σ 2 n 8 10 n 2 3. 0 < 1 1 < 2 n2 1 n Therefore, n n1 2 1 1 converges by comparison with the convergent p-series 1 n. n1 2 4. 1 1 < 3n2 2 3n2 Therefore, 3n n1 2 1 2 5. 4 6 1 1 > > 0 for n ≥ 2 n1 n Therefore, 1 n1 n2 converges by comparison with the convergent p-series diverges by comparison with the divergent p-series 1 1 . 3 n1 n2 n. n2 1 Section 9.4 6. 1 n 1 > 1 n for n ≥ 2 7. 0 < Therefore, 1 1 < n 3n 1 3 8. Therefore, 1 n 1 n n0 diverges by comparison with the divergent p-series converges by comparison with the convergent geometric series n2 n 1 ln n 1 > > 0. n1 n1 10. 1 n3 1 ln n n n1 < 1 n32 1 1 diverges by comparison with the divergent series n n1 n1 1 n! 3 n1 1 1 1 > > 0. n2 n! Therefore, converges by comparison with the convergent p-series 3 n . 4 11. For n > 3, n1 n 1. 3n 4 5 n n0 Therefore, Therefore, n converges by comparison with the convergent geometric series n0 9. For n ≥ 3, n0 3 . 1 3n 3 < 5 4 n2 n. 4n 271 Therefore, 1 1 3 Comparisons of Series n0 converges by comparison with the convergent p-series 1 1 n. 32 . 2 n1 1 n 1 diverges by the Note: n1 Integral Test. 12. 1 1 3 n 4 > 1 4 n 4 Therefore, 1 3 n1 4 n 1 diverges by comparison with the divergent p-series 1 1 . 4 n 4 n1 13. 0 < 1 1 ≤ n e n2 e Therefore, n1 1 n. n1 4n 1 n1 converges by comparison with the convergent geometric series diverges by comparison with the divergent geometric series e . 1 3 . n n0 n 1 diverges by a limit comparison with the divergent p-series n n0 Therefore, 2 4n 4n > n 1 3 3 2 nn2 1 n2 lim 2 1 n→ n→ n 1 1n 3n Therefore, 1 en 15. lim n 14. 4 n n1 23n 5 2 3n lim n 2 n n→ n→ 3 5 13 16. lim Therefore, 3 n1 n 2 5 converges by a limit comparison with the convergent geometric series 3 . n1 1 n 272 Chapter 9 Infinite Series 1n2 1 n lim 1 n→ n2 1 1n 17. lim n→ Therefore, n 1 1 diverges by a limit comparison with the divergent p-series n→ Therefore, 2 n0 3n2 4 3n 3 lim n→ n2 4 1n 18. lim 1 n. n 3 4 2 n3 diverges by a limit comparison with the divergent harmonic series 1 n. n1 n3 2n2 1 2 2n 1 2n5 n3 lim 3 5 n→ 3n 2n 1 1n 3 3n5 19. lim n→ Therefore, Therefore, 3n 2n2 1 2n 1 5 n1 converges by a limit comparison with the convergent p-series 1 . 3 n1 n n 2 n1 5n 3 2n 5 diverges by a limit comparison with the divergent p-series 1 n. n1 n3 n2 3n nn 2 lim 2 1 21. lim n→ n→ 1n n 2n 1 n3 nn2 1 22. lim lim 3 1 3 n→ n→ 1n n n Therefore, Therefore, n3 5n 3 n2 2n 5 5n2 3n 20. lim lim 2 5 n→ n→ n 2n 5 1n nn 2 nn 2 1 1 n1 n1 diverges by a limit comparison with the divergent p-series converges by a limit comparison with the convergent p-series 1 n. n1 23. lim n→ 1nn2 1 n2 lim 1 n→ nn2 1 1n2 2 n1 1 converges by a limit comparison with the convergent p-series 1 n. n1 2 n→ nn 12n1 n lim 1 n→ n 1 12n1 1 nn 24. lim 3 Therefore, Therefore, 1 n. n1 n n 12 n1 n1 converges by a limit comparison with the convergent geometric series 2 n1 1 n1 . Section 9.4 25. lim n→ nk1nk 1 nk lim k 1 n→ n 1 1n n→ Therefore, nk1 n 2 n1 diverges by a limit comparison with the divergent p-series 5 n n 1 k n1 1 1 . n n1 n1 sin1n 1n2 cos1n lim n→ n→ 1n 1n2 tan1n 1n2 sec21n lim n→ n→ 1n 1n2 27. lim lim cos n→ 28. lim 1n 1 lim sec2 n→ Therefore, 1n 1 Therefore, sinn tann 1 1 n1 n1 diverges by a limit comparison with the divergent p-series diverges by a limit comparison with the divergent p-series 1 n. n1 n n1 1 n. n1 29. 4 diverges by a limit comparison with the divergent harmonic series n. n 1 n 30. n1 Diverges 1 p-series with p 2 5 5 1 n 3 31. n 1 2 n0 n1 Converges Converges 1 Geometric series with r 5 Direct comparison with 3 n1 32. 3n 2 n4 1 2n 15 33. n Diverges; nth-Term Test Limit comparison with 1 n n1 2n 3 n1 Converges 34. lim 2 n→ n 1 0 2n 3 2 n 1 n 2 2 3 3 4 4 5 . . . 2 1 1 1 1 1 1 1 1 1 n1 Converges; telescoping series 35. 273 5n n2 4 5n 5 lim n→ n n2 4 2 1n 26. lim Therefore, Comparisons of Series n n1 2 n 12 Converges; Integral Test 36. 3 nn 3 n1 Converges; telescoping series n n 3 n1 1 1 1 n 274 Chapter 9 Infinite Series an lim na . By given conditions lim nan n→ 1n n→ n is finite and nonzero. Therefore, 37. lim n→ 38. If j < k 1, then k j > 1. The p-series with p k j converges and since lim n→ an Pn PnQn L > 0, the series 1nkj n1 Qn n1 converges by the Limit Comparison Test. Similarly, if j ≥ k 1, then k j ≤ 1 which implies that diverges by a limit comparison with the p-series 1 n. Pn Qn n1 n1 diverges by the Limit Comparison Test. 39. 3 4 5 1 2 n . . . , 2 1 2 5 10 17 26 n n1 40. which diverges since the degree of the numerator is only one less than the degree of the denominator. 41. n n1 3 1 1 42. 5n n 3 lim 4 Therefore, n→ 5n n1 45. 3 n4 1 0 3 5 5n4 44. lim n→ n3 diverges. 3 n 1 lim lim n 0 ln n n→ 1n n→ Therefore, 4 46. 1 1 1 1 . . . 200 210 220 200 10n n0 48. 1 1 1 1 1 . . . 3 201 208 227 264 n1 200 n converges converges 49. Some series diverge or converge very slowly. You cannot decide convergence or divergence of a series by comparing the first few terms. 50. See Theorem 9.12, page 624. One example is n 2 n1 1 n n1 51. See Theorem 9.13, page 626. One example is 1 n 1 diverges because lim 1 diverges ( p-series). n2 n 1 diverges 1 1 1 1 1 201 204 209 216 n1 200 n2 n2 ln n diverges. n2 1 1 1 1 . . . 200 400 600 200n n1 n2 1 diverges since the degree of the numerator is only one less than the degree of the denominator. diverges, (harmonic) 47. n n1 3 n→ which converges since the degree of the numerator is two less than the degree of the denominator. converges since the degree of the numerator is three less than the degree of the denominator. 43. lim n 1 1 1 1 1 1 . . . , 2 1 3 8 15 24 35 n n2 n→ 1n 1 1 and 1n 2 1 1 1 converges because 2 < and 1 n 1 n2 converges ( p-series). 52. This is not correct. The beginning terms do not affect the convergence or divergence of a series. In fact, 1 1 1 . . . diverges (harmonic) 1000 1001 n n1000 and 1 1 1 1 . . . 2 converges ( p-series). 4 9 n1 n Section 9.4 53. 1.0 Comparisons of Series 275 Terms of ∞ Σ an 0.8 n=1 0.6 Terms of ∞ 2 Σ an 0.4 n=1 0.2 n 4 8 12 16 20 For 0 < an < 1, 0 < an2 < an < 1. Hence, the lower terms are those of an2. 1 2n 1 54. (a) 2 n1 1 4n 1 4n n1 2 (b) converges since the degree of the numerator is two less than the degree of the denominator. (See Exercise 38.) 1 2n 1 (c) 2 n3 55. False. Let an (d) 2 S2 0.1226 8 n 5 10 20 50 100 Sn 1.1839 1.02087 1.2212 1.2287 1.2312 1 2 S9 0.0277 2 8 n10 2n 1 1 1 1 1 and bn 2. 0 < an ≤ bn and both and converge. 3 3 2 n n n1 n n1 n 56. True 57. True 58. False. Let an 1n, bn 1n, cn 1n2. Then, an ≤ bn cn, but c n 59. True converges. n1 60. False. a n 61. Since could converge or diverge. For example, let b n n1 1 n, which diverges. n1 ab n series a n converges, then n1 a n an 1 2 n1 converge, and hence so does converges by comparison to the convergent n a n. i1 a 2 63. n n1 1 n 2 1 n and 3 both converge, and hence so does n n n . converges by Exercise 61. n n→ n1 1 1 1 0 < 2 < and 2 converges. n n n1 n 64. converges, lim bn 0. There exists N such that bn < 1 for n > N. Thus, anbn < an for n > N and 1 1 1 < and diverges, but n n n1 n 62. Since n n1 n1 0 < b n 1 2 2 1 n . 4 1 1 1 2 3 5 65. Suppose lim n→ an 0 and bn converges. bn From the definition of limit of a sequence, there exists M > 0 such that an 0 < 1 bn whenever n > M. Hence, an < bn for n > M. From the Comparison Test, an converges. 276 Chapter 9 66. Suppose lim n→ Infinite Series an and bn diverges. From the definition of limit of a sequence, there exists M > 0 such that bn an > 1 bn for n > M. Thus, an > bn for n > M. By the Comparison Test, an diverges. a 67. (a) Let n lim n→ 1 n 1 , and b n 3 1 n 1 a lim 2 a (b) Let n n ln n , and n lim n→ converges. 3 n1 n→ 1 n , converges. an 1n 13 n2 lim lim 0 n→ n 13 bn n→ 1n2 By Exercise 65, 68. (a) Let n1 b n 1 n, diverges. (b) Let sinan 1 and n→ an a n 1 n n 1 ln n, and b n By Exercise 66, 70. 1 , converges. n converges. 1 n, diverges. an n lim bn n→ ln n lim n→ ln n diverges. n an 1n n 1 lim lim 0 n→ n bn n→ 1 n n1 69. Since lim an 0, the terms of sinan are positive for n→ sufficiently large n. Since lim n n By Exercise 65, an ln nn lim ln n lim n→ bn n→ 1n By Exercise 66, 1 n , and b 1 ln n diverges. 1 1 1 2 . . . n nn 12 n1 n1 an 2 nn 1 n1 Since 1n2 converges, and converges, so does sinan. lim n→ 2nn 1 2n2 lim 2, n→ nn 1 1n2 1 1 2 . . . n converges. 72. Consider two cases: 71. The series diverges. For n > 1, n < 2n n1n 1 n1n 1 nn1n Since If an ≥ < 2 > annn1 1 2 If an ≤ 1 > 2n 1 diverges, so does 2n n 1 n1n . 1n1 2 1 nn1 1 1 , then an1n1 ≥ n1 2n1 2 1 , and 2 an ≤ 2an. an1n1 1 n1 , 2 then annn1 ≤ combining, annn1 ≤ 2an 1 , and 2n 1 . 2n 1 annn1 by n converges, so does 2 n1 n1 the Comparison Test. Since n1 2a n Section 9.5 Section 9.5 1. 4. Alternating Series 6 n 2. 2 n1 Alternating Series 1n16 n2 n1 3. 3 n! n1 S1 6 S1 6 S1 3 S2 7.5 S2 4.4 S2 4.5 S3 8.1667 S3 5.1667 S3 5.0 Matches (d). Matches (f ). Matches (a). 1n13 n! n1 5. 10 n2 n1 6. n 1n10 n2n n1 S1 3 S1 5 S1 5 S2 1.5 S2 6.25 S2 3.75 S3 2.0 Matches (e). Matches (c). Matches (b). 7. 1n1 0.7854 4 n1 2n 1 (a) (b) n 1 2 3 4 5 6 7 8 9 10 Sn 1 0.6667 0.8667 0.7238 0.8349 0.7440 0.8209 0.7543 0.8131 0.7605 1.1 0 11 0.6 (c) The points alternate sides of the horizontal line that represents the sum of the series. The distance between successive points and the line decreases. (d) The distance in part (c) is always less than the magnitude of the next term of the series. 8. 1n1 1 n 1! e 0.3679 n1 (a) (b) n 1 2 3 4 5 Sn 1 0 0.5 0.3333 0.375 6 0.3667 7 8 9 10 0.3681 0.3679 0.3679 0.3679 2 0 11 0 (c) The points alternate sides of the horizontal line that represents the sum of the series. The distance between successive points and the line decreases. (d) The distance in part (c) is always less than the magnitude of the next series. 277 278 9. Chapter 9 Infinite Series 1n1 2 0.8225 n2 12 n1 (a) (b) n 1 2 3 4 5 6 7 8 9 10 Sn 1 0.75 0.8611 0.7986 0.8386 0.8108 0.8312 0.8156 0.8280 0.8180 1.1 0 11 0.6 (c) The points alternate sides of the horizontal line that represents the sum of the series. The distance between successive points and the line decreases. (d) The distance in part (c) is always less than the magnitude of the next term in the series. 10. 1n1 2n 1! sin1 0.8415 n1 (a) (b) n 1 2 3 4 5 6 7 8 9 10 Sn 1 0.8333 0.8417 0.8415 0.8415 0.8415 0.8415 0.8415 0.8415 0.8415 2 0 11 0 (c) The points alternate sides of the horizontal line that represents the sum of the series. The distance between successive points and the line decreases. (d) The distance in part (c) is always less than the magnitude of the next series. 11. 1n1 n n1 an1 lim n→ 12. 1 1 < an n1 n 1n1 n n1 2n 1 lim n→ 1 0 n n 1 2n 1 2 Diverges by the nth-Term Test Converges by Theorem 9.14 13. 1n1 n1 2n 1 an1 lim n→ 1 1 < an 2n 1 1 2n 1 1 0 2n 1 Converges by Theorem 9.14 14. 1n lnn 1 n1 an1 lim n→ 1 1 < an lnn 2 lnn 1 1 0 lnn 1 Converges by Theorem 9.14 Section 9.5 15. 1n n2 2 n1 n 1 16. n2 1. Thus, lim an 0. n→ n 1 n→ lim 1n1n 2 n1 n 1 an1 2 Diverges by the nth-Term Test Alternating Series lim n→ n n1 < 2 an n 12 1 n 1 n 0 n2 1 Converges by Theorem 9.14 17. 1n n1 n an1 lim n→ 18. 1 1 < an n 1 n 1 n 1n1n2 2 n1 n 5 lim n→ n2 n2 1 5 Diverges by nth-Term Test 0 Converges by Theorem 9.14 19. 1n1n 1 lnn 1 n1 lim n→ 20. n1 1 lim n 1 lim lnn 1 n→ 1n 1 n→ 1n1 lnn 1 n1 n1 an1 Diverges by the nth-Term Test lim n→ lnn 1 1 lnn 1 < for n ≥ 2 n 1 1 n1 1n 1 lnn 1 lim 0 n→ n1 1 Converges by Theorem 9.14 21. sin n1 2n 1 1n1 2 n1 22. n1 n1 cos n 1 n 1 n1 Diverges by the nth-Term Test 23. n sin 1n1 2n 1 2 n n1 Converges; (See Exercise 11.) 24. 1n n n1 1 n cos n n1 Diverges by the nth-Term Test 25. Converges; (See Exercise 11.) 1n n! n0 an1 lim n→ 1 1 < an n 1! n! 1 0 n! Converges by Theorem 9.14 26. 1n 2n 1! n0 an1 lim n→ 1 1 < an 2n 3! 2n 1! 27. 1n1n n2 n1 an1 1 0 2n 1! Converges by Theorem 9.14 < lim n→ n 1 n 1 2 n for n ≥ 2 n2 n 0 n2 Converges by Theorem 9.14 28. 1n1n 3 n n1 lim n→ n12 lim n16 n13 n→ Diverges by the nth-Term Test 279 280 29. Chapter 9 Infinite Series 1n1n! 1 3 5 . . . 2n 1 n1 an1 1 35. lim an lim n→ n→ lim n→ n 1! . . 2n 12n 1 1 35. 1 123. . .n 3 5 . . . 2n 1 n→ n! . . 2n 1 n1 n1 2n 1 an 2n 1 < an n! . . 2n 1 1 lim 2 35. 33 45 57 . . . 2n n 3 2n 1 1 0 Converges by Theorem 9.14 30. 1 n1 n1 an1 1 1 13 14 35. 47. 5. 7. . . . 2n 1 . 3n 2 . . 2n 12n 1 2n 1 . . 3n 23n 1 an 3n 1 < an 1 1 0 54 77 109 . . . 2n 3n 5 3n 2 lim an lim 3 n→ n→ Converges by Theorem 9.14 31. 1n12en 1n12 n n e2n 1 n1 e e n1 Let f x 2ex . Then e2x 1 lim n→ e2n 1 lim n→ 2en 2e2n lim n→ 1 0. en The series converges by Theorem 9.14. 2ex . Then e2x 1 2e2x 1 e2x < 0 for x > 0. e2x 12 f x Thus, f x is decreasing. Therefore, an1 < an , and 2en 1n12en 21n1 n n e2n 1 n1 e e n1 Let f x 2ex e2x 1 < 0. e2x 12 f x 32. Thus, f x is decreasing for x > 0 which implies an1 < an. lim n→ 2en 2en 1 lim 2n lim n 0 n→ e 1 n→ 2e e2n The series converges by Theorem 9.14. 33. S6 31n1 2.4325 n2 n1 6 2.4325 0.0612 ≤ S ≤ 2.4325 0.0612 3 R6 S S6 ≤ a7 49 0.0612 34. S6 6 41n1 lnn 1 2.7067 n1 4 R6 S S6 ≤ a7 ln 8 1.9236 0.7831 ≤ S ≤ 4.6303 2.3713 ≤ S ≤ 2.4937 35. S6 21n 0.7333 n! n0 5 0.7333 0.002778 ≤ S ≤ 0.7333 0.002778 2 R6 S S6 ≤ a7 6! 0.002778 0.7305 ≤ S ≤ 0.7361 36. S6 1n1n 0.1875 2n n1 6 7 R6 S S6 ≤ a7 27 0.05469 0.1328 ≤ S ≤ 0.2422 Section 9.5 37. 1n n! n0 38. (a) By Theorem 9.15, RN ≤ aN1 1n n n0 2 n! (a) By Theorem 9.15, 1 < 0.001. N 1! Rn This inequality is valid when N 6. (b) We may approximate the series by 1 1 1 1 1 1 11 n! 2 6 24 120 720 n0 1n 1 1 1 1 1 0.607. n 2 8 48 348 n0 2 n! n 1 < 0.001. 2N1N 1! ≤ aN1 This inequality is valid when N 4. (b) We may approximate the series by 6 Alternating Series 4 0.368. (5 terms. Note that the sum begins with n 0.) (7 terms. Note that the sum begins with n 0.) 39. 1n n0 1n n0 2n! (a) By Theorem 9.15, (a) By Theorem 9.15, 2n 1! RN 40. ≤ aN1 1 < 0.001. 2N 1 1! RN This inequality is valid when N 2. (b) We may approximate the series by 2n 1! 1 6 120 0.842. n0 1n 1 1 1 1 0.540. 2n ! 2 24 720 n0 (3 terms. Note that the sum begins with n 0.) (4 terms. Note that the sum begins with n 0.) 2 41. 1 < 0.001. 2N 2! This inequality is valid when N 3. (b) We may approximate the series by 1n ≤ aN1 1 3 1 1n1 n n1 42. (a) By Theorem 9.15, RN ≤ aN1 1n1 4n n n1 (a) By Theorem 9.15, 1 < 0.001. N1 RN This inequality is valid when N 1000. ≤ aN1 1 < 0.001. 4N1N 1 This inequality is valid when N 3. (b) We may approximate the series by (b) We may approximate the series by 1n1 1 1 1 1 1 . . . n 2 3 4 1000 n1 1n1 1 1 1 0.224. nn 4 4 32 192 n1 1000 3 0.693. (3 terms) (1000 terms) 43. 1n1 n3 n1 44. By Theorem 9.15, By Theorem 9.15, 1 RN ≤ aN1 N 13 < 0.001 ⇒ N 13 > 1000 ⇒ N 1 > 10. Use 10 terms. 1n1 n2 n1 1 RN ≤ aN1 N 12 < 0.001 ⇒ N 12 > 1000 ⇒ N 31. Use 31 terms. 281 282 45. Chapter 9 Infinite Series 1n1 3 n1 2n 1 46. By Theorem 9.15, RN ≤ aN1 1n1 n4 n1 By Theorem 9.15, RN ≤ aN1 1 < 0.001. 2N 13 1 1 < 0.001. N 14 This inequality is valid when N 5. This inequality is valid when N 7. Use 7 terms. 47. 1n1 n 1 n1 1 n 1 2 n1 48. 2 The given series converges by the Alternating Series Test, but does not converge absolutely since the series converges by comparison to the p-series 2 n1 diverges by the Integral Test. Therefore, the series converges conditionally. Therefore, the given series converges absolutely. 49. 1n1 n n1 50. 1n1 nn n1 The given series converges by the Alternating Series Test, but does not converge absolutely since 1 n1 1 n. n1 1n1 n1 n 1 1 1 nn n n1 1 n1 32 which is a convergent p-series. Therefore, the given series converges absolutely. n n1 is a divergent p-series. Therefore, the series converges conditionally. 51. 1n1 n2 2 n1 n 1 52. n→ Therefore, the series diverges by the nth-Term Test. Therefore, the series diverges by the nth-Term Test. lim 1n n2 ln n 54. 1 diverges by comparison to the harmonic series ln n n 2 1 . Therefore, the series converges conditionally. n1 n 1n n 3 n2 n 1 n converges by a limit comparison to 1 n2 1 . the convergent p-series 2 Therefore, the given series n2 n converges absolutely. 3 converges by a comparison to e . Therefore, the 1 n n0 given series converges absolutely. 56. n 2 the convergent geometric series 1 en n0 1n n2 n0 e The given series converges by the Alternating Series Test but does not converge absolutely since the series 55. 2n 3 2 n 10 n2 1 n→ n 12 lim 53. 1n12n 3 n 10 n1 1n1 n1.5 n1 1 n n1 1.5 is a convergent p-series. Therefore, the given series converges absolutely. Section 9.5 57. 1n 2n 1! 58. n0 Alternating Series 283 1n n 4 n0 1 n0 The given series converges by the Alternating Series Test, but is convergent by comparison to the convergent geometric series n0 n 2n 1! 2 1 1 4 n diverges by a limit comparison to the divergent p-series n0 1 n. since n1 1 1 < n for n > 0. 2n 1! 2 Therefore, the given series converges conditionally. Therefore, the given series converges absolutely. 59. 1n cos n n0 n 1 n0 n 1 60. cos n n1 n0 n1 arctan n n1 The given series converges by the Alternating Series Test, but 1 lim arctan n n→ 1 n1 0 2 Therefore, the series diverges by the nth-Term Test. n0 diverges by a limit comparison to the divergent harmonic series, 1 n. n1 cos nn 1 1, therefore the series lim 1n converges conditionally. n→ 61. 1n cos n 2 n n2 n1 n1 1 n n1 2 62. 1n1 sin2n 12 n n n1 n1 The given series converges by the Alternating Series Test, but is a convergent p-series. Therefore, the given series converges absolutely. n1 1 sin2n 12 n n1 n is a divergent p-series. Therefore, the series converges conditionally. 63. An alternating series is a series whose terms alternate in sign. See Theorem 9.14. 65. an is absolutely convergent if an converges. an is conditionally convergent if an diverges, but an converges. 1n . n an converges and a converges. 1 But, a diverges. n n 66. (b). The partial sums alternate above and below the horizontal line representing the sum. 67. False. Let an Then 64. S Sn Rn ≤ an1 (Theorem 9.15) n 68. True. If an converged, then so would an by Theorem 9.16. 284 Chapter 9 Infinite Series 69. True. S100 1 1 1 1 . . . 2 3 100 70. False. Let a 1 Since the next term 101 is negative, S100 is an overestimate of the sum. n b n 1n . n Then both converge by the Alternating Series Test. But, a b n n 71. 1 1 n n n1 72. p 1 n n1 1 If p 0, then n 1 n If p < 0, then n p n→ 1 np lim an lim diverges. n→ n1 If p > 0, then lim 1 n, which diverges. Assume that n p 0 so that an 1n p are defined for all n. For all p, diverges. n1 an1 1 0 and np n→ an1 1 0 np 1 1 < < an. n1p np Therefore, the series converges for all p. 1 1 < an. n 1 p n p Therefore, the series converges for p > 0. 73. Since a n n1 an for all n converges we have lim an 0. Thus, there must exist an N > 0 such that aN < 1 for all n > N and it follows that a n→ an2 ≤ > N. Hence, by the Comparison Test, 2 n n1 converges. Let an 1n to see that the converse is false. 74. 1 1n1 converges, but diverges. n n1 n1 n 76. (a) xn n1 n converges absolutely (by comparison) for 1 < x < 1, since xn < xn and n x n is a convergent geometric series for 1 < x < 1. (b) When x 1, we have the convergent alternating series 1n . n n1 When x 1, we have the divergent harmonic series 1n. Therefore, xn converges conditionally for x 1. n1 n 75. 1 n n1 2 converges, hence so does 1 n. n1 4 77. (a) No, the series does not satisfy an1 ≤ an for all n. For example, 19 < 18. (b) Yes, the series converges. S2n 1 1 1 . . . 1 n n 2 3 2 3 12 . . . 21 13 . . . 31 n 1 n 1 . . . 1 1 1 n 1 . . . n 2 2 3 3 As n → , 1 1 3 1 2 . S2n → 1 12 1 13 2 2 Section 9.5 78. (a) No, the series does not satisfy an1 ≤ an: 1 n1a n 1 n1 Alternating Series (b) No, the series diverges because 1 n diverges. 1 1 1 . . . and 8 3 64 1 1 < . 8 3 79. 10 n n1 32 10 n 1 32 , n1 80. n n1 convergent p-series 2 3 5 converges by limit comparison to convergent p-series 1 . n2 81. Diverges by nth-Term Test lim an n→ 82. Converges by limit comparison to 1 . convergent geometric series 2n 83. Convergent geometric series 85. Convergent geometric series r 1e or Integral Test 86. Converges (conditionally) by Alternating Series Test 87. Converges (absolutely) by Alternating Series Test 88. Diverges by comparison to Divergent Harmonic Series: 89. The first term of the series is zero, not one. You cannot regroup series terms arbitrarily. 90. Rearranging the terms of an alternating series can change the sum. ln n 1 > for n ≥ 3 n n 91. s 1 S1 r 87 < 1 84. Diverges by nth-Term Test lim an n→ 1 1 1 . . . 2 3 4 1 1 1 1 1 1 1 1 . . . 3 2 5 7 4 9 11 6 (i) s4n 1 1 1 1 1 1 . . . 1 1 2 3 4 5 6 4n 1 4n 1 1 1 1 1 1 1 1 s . . . 2 2n 2 4 6 8 10 4n 2 4n Adding: s4n (ii) lim sn s n→ 1 1 1 1 1 1 1 1 1 s 1 . . . S3n 2 2n 3 2 5 7 4 4n 3 4n 1 2n (In fact, s ln 2.) 1 s 0 since s > . 2 S lim S3n s4n n→ Thus, S s. 3 1 1 s s s s 2 2n 2 2 3 2 285 286 Chapter 9 Section 9.6 1. Infinite Series The Ratio and Root Tests n 1! n 1nn 1n 2! n 2! n 2! 2. 2k 2! 2k 2! 2k! 2k2k 12k 2! n 1nn 1 1 2k2k 1 3. Use the Principle of Mathematical Induction. When k 1, the formula is valid since 1 13 5. . . 2n 1 2n! 2n n! 21! . Assume that 21 1! and show that 1 35. . . 2n 12n 1 2n 2! . 2n1n 1! To do this, note that: 1 35. . . 2n 12n 1 1 35. . . 2n 12n 1 2n! 2n 1 Induction hypothesis 2n n! 2n!2n 1 2n 2 2n 1 2n n! 2n!2n 12n 2 2n1n!n 1 2n 2! 2n1n 1! The formula is valid for all n ≥ 1. 4. Use the Principle of Mathematical Induction. When k 3, the formula is valid since 1 2n n!2n 32n 1 . . . 135 2n 5 2n! and show that 1 2n1n 1!2n 12n 1 . . . . 135 2n 52n 3 2n 2! To do this, note that: 13 5. 1 . . 2n 52n 3 1 The formula is valid for all n ≥ 3. 1 . . 2n 5 2n 3 2n n!2n 32n 1 2n! 2n 3 2n n!2n 1 2n! 2n 2n 1n!2n 12n 1 2n!2n 12n 2 2n1n 1!2n 12n 1 2n 2! 35. 1 1 2n 12n 2 2n 12n 2 1 233!35 1. Assume that 1 6! Section 9.6 5. 3 4 n n 1 n1 8. 34 2169 . . . 6. The Ratio and Root Tests 3 1 3 9 1 4 n! 4 16 2 . . . n 7. n1 3 S1 , S2 1.875 4 3 S1 , S2 1.03 4 Matches (d). Matches (c). 1n1 4 4 4 . . . (2n! 2 24 n1 9. 5n 3 4n n n1 33 3n1 9 . . . n! 2 n1 S1 9 Matches (f). 8 4 2 7 2 . . . 10. 4e n 4 n0 S1 2 S1 2, S2 3.31 S1 4 Matches (b). Matches (a). Matches (e). 11. (a) Ratio Test: lim n→ (b) (c) 287 an1 n 125 8n1 n1 lim lim n→ n→ an n25 8n n n 5 10 15 20 25 Sn 9.2104 16.7598 18.8016 19.1878 19.2491 2 4 . . . e 5 5 < 1. Converges 8 8 20 0 12 0 (d) The sum is approximately 19.26. (e) The more rapidly the terms of the series approach 0, the more rapidly the sequence of the partial sums approaches the sum of the series. 12. (a) Ratio Test: lim n→ (b) (c) an1 an n 12 1 n 1! n2 2n 2 lim lim 2 n→ n→ n 1 n2 1 n! n 5 10 15 20 25 Sn 7.0917 7.1548 7.1548 7.1548 7.1548 n 1 1 0 < 1. Converges (d) The sum is approximately 7.15485 10 (e) The more rapidly the terms of the series approach 0, the more rapidly the sequence of the partial sums approaches the sum of the series. 0 11 0 13. n! 3 n0 lim n→ 14. n an1 n 1! lim n→ an 3n1 lim n→ 3n n! n1 3 Therefore, by the Ratio Test, the series diverges. 3n n! n0 lim n→ an1 3n1 lim n→ n 1! an lim n→ n! 3n 3 0 n1 Therefore, by the Ratio Test, the series converges. 288 15. Chapter 9 n 4 3 n1 Infinite Series n 16. an1 n 13 4n1 lim lim n→ an n3 4n n→ lim n→ 3n 1 3 4n 4 lim lim n→ n→ 2n n n1 1 n→ 2n 2 n1 lim n→ 2n lim n→ lim n→ n2 2n 2n2 2 n 12 n 13 1 2n3 2 Therefore, by the Ratio Test, the series converges. 20. 2 an1 2n1 lim n→ n 12 an an 1 n 13 2n1 lim n→ an n3 2n n→ n n1 n lim Therefore, by the Ratio Test, the series converges. 3n 1 3 2n 2 n3 2 lim 19. 2n n3n Therefore, by the Ratio Test, the series diverges. 18. an1 n1 lim n→ 2n1 an n→ n n1 n an1 n 13n1 lim n→ an 2n1 lim n 2 3 n1 Therefore, by the Ratio Test, the series converges. 17. n 2 1n1n 2 nn 1 n1 an1 lim n→ Therefore, by the Ratio Test, the series diverges. n3 n2 ≤ an n 1n 2 nn 1 n2 0 nn 1 Therefore, by Theorem 9.14, the series converges. Note: The Ratio Test is inconclusive since lim n→ The series converges conditionally. 21. 1n 2n n! n0 lim n→ 22. an1 2n1 lim n→ n 1! an lim n→ n! 2n 2 0 n1 lim n→ n→ n n→ 3 n3n n! lim Therefore, by the Ratio Test, the series diverges. n2 3 2n 3n2 2n2 2n 1 3 > 1 2 Therefore, by the Ratio Test, the series diverges. 24. n an1 3 2n1 lim 2 n→ n 2n 1 an lim n! an1 n 1! lim n→ n 13n1 an lim n3 n1 n→ Therefore, by the Ratio Test, the series converges. 23. 1n13 2n n2 n1 2n! 5 n1 n lim n→ an1 2n 2! lim n→ n 15 an n5 2n! 2n 22n 1n5 n→ n 15 lim Therefore, by the Ratio Test, the series diverges. an1 1. an Section 9.6 25. 4n n! n0 lim n→ n! 4n 4 0 n1 nn n! 26. a 4n1 lim n1 lim n→ n→ n 1! an n1 The Ratio and Root Tests an1 n 1n1 lim n→ an n 1! lim n→ lim n 1n 1 n 1n!nn lim n n 1 n→ Therefore, by the Ratio Test, the series converges. n! nn n→ n n! n e > 1 Therefore, by the Ratio Test, the series diverges. 27. 3n n 1 n n0 lim n→ an1 3n1 lim n→ n 2n1 an n 1n 3n 1n 3 n1 lim lim n→ n 2n1 n→ n 2 n 2 3n n→ n 0 1e 0 nn 12 , let y lim nn 12 . Then, n To find lim n n→ ln y lim n ln n→ ln y lim n→ 1 n 2 0 nn 12 lim lnn 1 n 0 n→ 1 n 1 1 n 2 1 by L’Hôpital’s Rule 1 n2 1 y e1 . e Therefore, by the Ratio Test, the series converges. 28. n!2 3n! n0 lim n→ 3 29. an1 n 1! lim n→ 3n 3! an lim n→ 3n! 2 n!2 n0 lim n n→ n 12 0 3n 33n 23n 1 4n 1 an1 4n1 lim n1 n→ 3 an 1 3n 1 4n lim 43n 1 3n1 1 lim 41 1 3n 4 3 1 3n 3 n→ Therefore, by the Ratio Test, the series converges. n→ Therefore, by the Ratio Test, the series diverges. 30. 1n 24n 2n 1! n0 lim n→ an1 24n4 lim n→ 2n 3! an 24 2n 1! lim 0 4n n→ 2n 32n 2 2 Therefore, by the Ratio Test, the series converges. 31. 1n1n! 1 3 5 . . . 2n 1 n0 lim n→ an1 lim n→ 1 an 35. n 1! . . 2n 12n 3 1 35. . . 2n 1 n! Therefore, by the Ratio Test, the series converges. Note: The first few terms of this series are 1 1 1 3 2! 1 35 3! 1 lim n→ 357 1 n1 2n 3 2 . . .. 289 290 32. Chapter 9 Infinite Series 1n 2 4 6 . . . 2n 2 5 8 . . . 3n 1 n1 an1 2 4 . . . 2n2n 2 lim n→ 2 5 . . . 3n 13n 2 an lim n→ 2 5 . . . 3n 1 2 4 . . . 2n Therefore, by the Ratio Test, the series converges. 2 24 2 Note: The first few terms of this series are 2 25 2 33. 1 n lim n→ an1 1 lim n→ n 13 2 an lim n→ n n 1 3 2 n3 2 1 n→ n→ 37. 2n 1 n n4 n lim n→ n 1 1 4 1 n→ 38. n→ n→ 2n n 1 n 2n 1 n→ n n→ 4n 3 2n 1 n 2n 1 n n 2n 2 n1 n 1n ln n n→ n a lim n lim n→ n 1n ln nn 1 lim 0 n→ ln n Therefore, by the Root Test, the series converges. n→ lim n→ 4n2n 31 n n 4n 3 2 2n 1 Since 2 > 1, the series diverges. 42. n n a lim n lim n Since 2 > 1, the series diverges. n1 2nn 11 2 n→ np n lim n→ n 1 1 Therefore, by the Root Test, the series diverges. 40. lim n2 n n→ 2nn 11 2n lim n n→ 41. an1 1 lim n→ n 1 p an n 1 2n 1 2 n lim an lim n→ p n 1 n→ n2 1 1 n a lim n lim n Therefore, by the Root Test, the series converges. n1 n1 lim 39. lim n n a lim n lim n→ 1 2 n1 2 1 n n1 n1 n n 1 Ratio Test is inconclusive. 36. an1 1 lim n→ n 11 2 an n→ 4 an1 1 lim n→ n 14 an 1 1 2 lim 1 lim lim 2n 2 2 3n 2 3 . .. 1 n n1 n→ n n1 Ratio Test is inconclusive. 35. lim 46. 58 34. 3 2 n1 3n 2n 1 3n n1 lim n→ n lim an n→ lim n→ 2n3n 1 n 3n 2n3n 1 32 3 3 27 8 Therefore, by the Root Test, the series diverges. p 1 Section 9.6 43. The Ratio and Root Tests 291 2n 1 n n n1 n a lim n lim n→ n→ n 2 n n 1 lim 2 n n 1n n→ n n, let y lim n n . Then To find lim n→ n→ n n lim ln y lim ln n→ n→ 1 ln n 1 n ln n lim lim 0. n→ n n→ 1 n n n 1 21 1 3. Therefore, by the Root Test, the series diverges. Thus, ln y 0, so y e0 1 and lim 2 n→ 44. e n 45. n0 n n n1 e1 1e n a lim n lim n→ 4 n n→ n lim an lim n→ n n→ 4n n n n1 n 1 n→ 4 4 Therefore, by the Root Test, the series converges. lim 1 Since 4 < 1, the series converges. Note: You can use L’Hôpital’s Rule to show lim n1 n 1. n→ Let y n1 n lim n→ ln n ⇒ ln y n ln n 1 n lim 0. n→ 1 n Hence, ln y → 0 ⇒ y n1 n → 1. 46. 500 n n 47. n1 500n n n→ ln n 49. lnnn n n lim an lim n n→ n!n n1 n 2 n!n n n1 nn! lim n! n2 n→ n→ n 2 n The series diverges. n→ lnnn n n n1 n 0 n→ ln n Since 0 < 1, the series converges by the Root Test. 51. 2 n n lim an lim n→ 2 lim By the Root Test, the series converges. 1n n1 0 0 0 < 1 n ln n 0 < 1 n→ n n 2 n lim 50. n n ln n n2 n→ 1n n1 Hence, the series converges. n n a lim n lim n→ n→ n1 n→ lim The series diverges. n 2 n 500 n→ n 1 n a lim n lim n n→ lim 48. 1 n1 n a lim n lim n→ n n 1n1 5 n n1 an1 lim 5 5 < an n1 n n→ 5 0 n Therefore, by the Alternating Series Test, the series converges (conditional convergence). 292 52. Chapter 9 5 Infinite Series 1 n 5 n n1 53. n1 4 3 n1 This is the divergent harmonic series. 54. 1 nn 3 n n1 3 2 This is convergent p-series. n 55. 2n n1 n1 n1 Since 4 < 1,this is convergent geometric series. lim n→ 2n 20 n1 This diverges by the nth-Term Test for Divergence. 56. 2n 2 n1 n 1 57. 1n 3n 32 1 1n 3n2 3 n 2 2n 2 n1 n1 n1 9 n 3 Since r 2 > 1, this is a divergent geometric series. 1 n 2n2 1 n2 lim > 0 n→ n→ 2n2 1 1 n 2 lim This series diverges by limit comparison to the divergent harmonic series 1 n. n1 58. 10 3n 3 n1 10n 3 n2n n1 lim 10 3n3 2 10 n→ 1 n3 2 3 10n 3 n2n 10n 3 lim 10 n→ n→ 1 2n n Therefore, the series converges by a Limit Comparison Test with the p-series Therefore, the series converges by a Limit Comparison Test with the geometric series n n1 60. 59. 4n lim n→ 2 . 1 3 2 . 2n 1 2 n1 lim 1 n n0 61. n1 cos n 2n 2n ln 22n ln 222n lim lim n→ 4n2 1 n→ 8n 8 cos n 1 ≤ n 2n 2 Therefore, the series Therefore, the series diverges by the nth-Term Test for Divergence. n1 cos n 2n converges by comparison with the geometric series 2 . 1 n n0 62. 1n n2 n ln n an1 lim n→ 1 1 ≤ an n 1 lnn 1 n lnn 1 0 n lnn Therefore, by the Alternating Series Test, the series converges. 63. n7n n1 n! lim n→ an1 n 17n1 lim n→ an n 1! n! n7n lim n→ 7 0 n Therefore, by the Ratio Test, the series converges. Section 9.6 64. lnn 2 n1 n 1n 3n1 n! n1 lim n→ n n1 66. 3 2 an1 3n lim n→ n 1! an n! 3n1 lim n→ 3 0 n1 Therefore, by the Ratio Test, the series converges. Therefore, the series converges by comparison with the p-series 1 293 65. 1 lnn ≤ 3 2 n2 n The Ratio and Root Tests (Absolutely) . 1n 3n n2n n1 lim n→ an1 3n1 lim n→ n 12n1 an 3n 3 n2n lim n→ 2n 1 3n 2 Therefore, by the Ratio Test, the series diverges. 67. 3n 3 5 7 . . . 2n 1 n1 lim n→ an1 lim n→ 3 an 57. 3n1 . . 2n 12n 3 3 57. 3 57. . . 2n 1 3 lim 0 n→ 2n 3 3n Therefore, by the Ratio Test, the series converges. 68. 3 n1 lim n→ 57. . . 2n 1 18n 2n 1n! an1 3 5 7 . . . 2n 12n 3 lim n→ an 18n12n 12n 1n! 1 18n 2n 1n! 2n 32n 1 lim . . 2n 1 n→ 18 2n 1 2n 1 18 Therefore, by the Ratio Test, the series converge. 69. (a) and (c) 70. (b) and (c) n 15n1 n5n n! n 1! n1 n0 n 14 5 3 n n0 25 35 45 . . . 2! 3! 4! 2 3 4 n 4 3 n1 12 71. (a) and (b) are the same. n1 34 334 2 4 34 3 . . . 72. (a) and (b) are the same. 1n n 12 n2 n1 1 1 1 . . . 2 2 22 3 23 1n1 1 1 1 . . . n2n 2 2 22 3 23 n1 73. Replace n with n 1. n1 n n n1 4 n1 n0 4 74. Replace n with n 2. 2 2 n 2 ! n2 n0 n! n n2 75. Since 310 1.59 105, 2 10! 10 use 9 terms. 3k 0.7769 k k1 2 k! 9 294 76. Chapter 9 Infinite Series 3k 3k 2k k! 1 3 5 . . . 2k 1 2k!2k 1 k0 an1 4n 1 3n 2an lim n→ an an n→ k0 77. lim 6 k! 4n 1 4 lim > 1 n→ 3n 2 3 k 2k 1! k0 0.40967 The series diverges by the Ratio Test. (See Exercise 3 and use 10 terms, k 9.) 78. lim an1 2n 1 5n 4an lim n→ an an n→ 2n 1 2 < 1 5n 4 5 lim n→ n→ an1 cos n 1 nan lim n→ an an n→ lim n→ an1 sin n 1 nan lim n→ an an lim n→ The series converges by the Ratio Test. 80. lim 79. lim sin n 1 0 < 1 n The series converges by the Ratio Test. 81. lim n→ cos n 1 0 < 1 n an1 1 1 nan lim n→ an an lim 1 n→ The series converges by the Ratio Test. 1 1 n The Ratio Test is inconclusive. But, lim an 0, so the series diverges. n→ 82. The series diverges because lim an 0. 83. lim n→ a1 1 4 1 2 1 3 1 a2 4 1 a3 2 n→ lim 1 2 an1 1 lim n→ an n→ 1 2 . . . nn 1 3 . . . 2n 12n 1 1 2. . .n 1 3 . . . 2n 1 n1 1 < 1 2n 1 2 The series converges by the Ratio Test. 0.7937 In general, an1 > an > 0. 84. n1 3n n0 85. n3 n 3 1 lim n lim an lim n→ n n→ n n→ n n 1 3 n n 1 y lim Let n→ ln y lim n→ n n ln 1 lim 1 lnn 1 n lim lnn 1 1 0. n n1 n→ n→ Since ln y 0, y e0 1, so lim n→ n 1 3 1 . 3 Therefore, by the Root Test, the series converges. 1 ln n n n a lim n lim n→ n→ ln1n n n lim n→ 1 0 ln n Therefore, by the Root Test, the series converges. a 1 86. lim n1 lim n→ an n→ 1 3 5 . . . 2n 12n 1 2 3 . . . 2n 12n2n 1 1 3 5 . . . 2n 1 1 2 3 . . . 2n 1 2n 1 lim 0 < 1 n→ 2n2n 1 Section 9.6 87. lim The Ratio and Root Tests n→ an1 2x 3n1 lim n→ 2x 3n an lim n→ x x 3 3 For the series to converge: The series converges by the Ratio Test. x < 1 ⇒ 3 < x < 3. 3 For x 3, the series diverges. For x 3, the series diverges. Answer: 3 < x < 3 88. lim n→ x 4 1 n a lim n n→ n 89. lim n n→ x1 x1 4 4 lim n→ lim n→ x 1 < 1 x1 < 1 ⇒ 4 < x 1 < 4 4 For x 0, 1 , diverges. For x 3, n n0 For x 5, ⇒ 1 < x 1 < 1 1n , converges. n n1 n 1 1n1n , diverges. n n1 n1 n Answer: 2 < x ≤ 0 n0 Answer: 5 < x < 3 a 91. lim n1 lim n→ n→ an lim x 1 x 1 n→ n→ ⇒ 1 < x 1 < 1 21 , diverges. n n0 For x 0, 21 , diverges. n n0 Answer: 0 < x < 2 92. lim n→ n! x 2 x 1 n1 an1 lim n→ n 1! an x 1n n! lim n→ x 1 0 n1 The series converges for all x. 93. See Theorem 9.17, page 597. x 2 n1 n x 2 The series converges only at x 0. ⇒ 0 < x < 2. For x 2, n 1! lim n 1 For the series to converge, x 1 < 1 For x 2, 1 , diverges. 2 x 1 n1 a 90. lim n1 lim n→ n→ 2 x 1 n an ⇒ 2 < x < 0. ⇒ 5 < x < 3. n x 1 x 1 n1 For the series to converge, For the series to converge, an1 x 1n1 n 1 lim n→ an x n n 94. See Theorem 9.18. 295 296 Chapter 9 95. No. Let an Infinite Series 1 . n 10,000 96. One example is 100 n. 1 n1 1 n 10,000 diverges. The series n1 97. The series converges absolutely. See Theorem 9.17. 98. Assume that lim an1 an L > 1 or that lim an1 an . n→ n→ Then there exists N > 0 such that an1 an > 1 for all n > N. Therefore, an1 > an, n > N ⇒ lim an 0 ⇒ n→ a n diverges. 99. First, let Second, let n a lim n r < 1 n→ and choose R such that 0 ≤ r < R < 1. There must n exist some N > 0 such that an < R for all n > N. n Thus, for n > N an < R and since the geometric series n a lim n r > R > 1. n→ a R n n n a Then there must exist some M > 0 such that n > R for infinitely many n > M. Thus, for infinitely many n > M, n we have an > R > 1 which implies that lim an 0 n→ which in turn implies that diverges. n1 n0 converges, we can apply the Comparison Test to conclude that a n n1 converges which in turn implies that a n converges. n1 100. 1 , p-series np lim n n1 n→ n lim an n→ 101. Ratio Test: 1 1 lim 1 n p n→ n p n Hence, the Root Test is inconclusive. Note: lim n p n 1 because if y n p n, then ln y lim n→ Root Test: n a lim n lim n→ n→ p p ln n and ln n → 0 as n → . n n n→ Hence y → 1 as n → . an1 nln np lim 1, inconclusive. n→ n 1lnn 1p an n→ nln1n n p lim n→ 1 n1 nln n p n lim n1 n 1. Furthermore, let y ln np n ⇒ ln y p p ln ln n ln ln n. lim ln y lim n→ n→ n n lim n→ p 0 ⇒ lim ln n p n 1. n→ lnn1 n Thus, lim n→ 1 1, inconclusive. n1 nln n p n Section 9.6 102. n!2 xn!, The Ratio and Root Tests x positive integer n1 n!2 n! (a) x 1: n!, diverges (b) x 2: 2n! converges by the Ratio Test: n!2 n 1!2 n!2 n 12 1 lim < 1 n→ 2n 2! 2n! n→ 2n 22n 1 4 lim (c) x 3: lim n→ n!2 3n! converges by the Ratio Test: n 1!2 n!2 n 12 lim 0 < 1 3n 3! 3n! n→ 3n 33n 23n 1 (d) Use the Ratio Test: n 1!2 n!2 xn! lim n 12 n→ xn 1! xn! n→ xn x! lim The cases x 1, 2, 3 were solved above. For x > 3, the limit is 0. Hence, the series converges for all integers x ≥ 2. 103. For n 1, 2, 3, . . . , an ≤ an ≤ an ⇒ Taking limits as k → , k n n1 a ≤ a n ≤ n n1 k a ≤ a n1 n ≤ n1 a ⇒ a n n1 n n1 k a . n n1 ≤ a . n n1 104. The differentiation test states that if U n n1 is an infinite series with real terms and f x is a real function such that f 1 n Un for all positive integers n and d 2 f dx 2 exists at x 0, then U n n1 converges absolutely if f 0 f0 0 and diverges otherwise. Below are some examples. Convergent Series 1 Divergent Series 1 n , f x x n, f x x 1 cos n, f x 1 cos x sin n, f x sin x 3 3 1 1 105. Using the Ratio Test, lim n→ nn 1! 197 an1 n! 19 lim n→ n 1n an 7 n n 197 n 1 n1 lim n→ lim n 1 11 n 197 n n→ 19 7 1 e < 1 Hence, the series converges. n1 n n1 297 298 Chapter 9 Infinite Series 106. We first prove Abel’s Summation Theorem: If the partial sums of Let Sk a n a b are bounded and if bn decreases to zero, then n n converges. k a . Let M be a bound for S . i k i1 a1b1 a2b2 . . . anbn S1b1 S2 S1b2 . . . Sn Sn1bn S1b1 b2 S2b2 b3 . . . Sn1bn1 bn Snbn n1 S b b i i Snbn i1 i1 is absolutely convergent because Sibi bi1 ≤ Mbi bi1 and S b b The series i i i1 i1 b b i converges to b1. i1 i1 Also, lim Snbn 0 because Sn bounded and bn → 0. Thus, n→ 1 i i i1 1 1 2. y 8 x 4 2 x 2 1 y-axis symmetry Three relative extrema Matches (c) Parabola Matches (d) 1 4. y e123 x 13 x 1 1 3. y e12x 1 1 Cubic Matches (b) Linear Matches (a) f 1 4 4x12 fx 2x32 f 1 2 P1x f 1 f1x 1 6. f x 4 3 x f8 1 12 P1x f 8 f8x 8 2 P1x 2x 6 P1x 10 f 8 2 4x13 4 fx x43 3 4 2x 1 P1 n→ Taylor Polynomials and Approximations 1. y 2 x 2 1 4 n a b converges. lim 1 to finish the problem. n Section 9.7 x n n n1 Now let bn 5. f x a b (1, 4) 1 x 8 12 8 1 x 12 3 8 f −2 6 −2 P1 is called the first degree Taylor polynomial for f at c. (8, 2) −4 14 −4 P1 is called the first degree Taylor polynomial for f at c. Section 9.7 f 4 2 f 4 2 7. f x sec x fx sec x tan x Taylor Polynomials and Approximations fx sec2 x 4 f 4 x 4 P1x f P1x 2 2 x 4 P1 f f 4 2 12 x P1x 2x 1 f − 4 1 4 f4 x 4 5 ( π4 , 2) f 8. f x tan x 299 4 2 3 P1 4 2 − 2 −1 2 P1 is called the first degree Taylor polynomial for f at c. −3 P1 is called the first degree Taylor polynomial for f at c. 9. f x 4 x f 1 4 4x12 10 P2 fx 2x32 f1 2 f x 3x52 f 1 3 (1, 4) f −2 f 1 x 12 2 P2 f 1 f1x 1 6 −2 3 4 2x 1 x 12 2 x 0 0.8 0.9 1.0 1.1 1.2 2 f x Error 4.4721 4.2164 4.0 3.8139 3.6515 2.8284 P2x 7.5 4.46 4.215 4.0 3.815 3.66 3.5 f 4 2 fx sec x tan x f 4 2 f x sec3 x sec x tan2 x f 10. f x sec x P2x f 4 4 3 2 −3 4 f4 x 4 f 24 x 4 P2x 2 2 x 3 2 x 4 2 4 3 0 2 2 0.585 0.685 4 0.885 0.985 1.785 f x 1.8270 1.1995 1.2913 1.4142 1.5791 1.8088 4.7043 P2x 15.5414 1.2936 1.4142 1.5761 1.7810 4.9475 x 2.15 1.2160 300 11. Chapter 9 Infinite Series f x cos x (b) P2x 1 1 2 2x P4x 1 1 2 2x P6x 1 1 2 2x (a) 1 4 24 x 1 4 24 x P2x x f x cos x P2 x 1 f 0 P2 0 1 1 6 720 x f x sin x P4 x x f 4x cos x 2 P6 −3 fx sin x f 40 1 P440 f 5x sin x P65x x P4 3 f P44x 1 P2 f 6x cos x −2 P6x 1 f 60 1 P660 (c) In general, f n0 Pnn0 for all n. 12. f x x 2ex, f 0 0 (a) fx x 2 2xex f x f0 0 ex f 0 2 fx x 2 6x 6ex f0 6 x2 4x 2 f 4x x 2 8x 12ex P3x x 2 3! 13. f x ex f 4! 3 P3 −1 x 2 x3 f 0 2 P20 f0 6 P30 x 2 x3 P4x x 2 x3 P2 −3 (c) 12x 4 2 P4 f 40 12 2x 2 x2 P2x 2! 6x3 (b) f 40 12 P440 x4 2 f 0 1 (d) f n0 Pnn0 14. f x ex f 0 1 f0 1 fx ex f0 1 fx f x ex f 0 1 f x ex f 0 1 fx ex f0 1 f x ex f0 1 P3x f 0 f0x 1x 2 f 4x f 0 2 f0 3 x x 2! 3! ex f 40 1 e x f 5x ex x 2 6 P5x f 0 f0x 15. f 50 1 x3 f0 2 f0 3 f 40 4 x x x 2! 3! 4! f 50 5 x 2 x3 x4 x5 x 1x 5! 2 6 24 120 f x e3x f 0 1 f0 2 fx 3e3x f0 3 f x 4e2x f 0 4 f x 9e3x f 0 9 fx 8e2x f0 8 fx 27e f0 27 f 4x 162x f 40 16 f x e2x f 0 1 fx 2e2x P4x 1 2x 4 2 8 16 4 x x3 x 2! 3! 4! 1 2x 2x 2 4 3 2 4 x x 3 3 16. 3x f 4x 81e3x f 40 81 P4x 1 3x 1 3x 9 2 27 3 81 4 x x x 2! 3! 4! 9 2 9 3 27 4 x x x 2 2 8 Section 9.7 17. f x sin x f 0 0 f0 1 fx cos x f0 f x sin x f 0 0 f x 2 sin x f 0 0 fx cos x f0 1 fx cos x f0 3 f x sin x f 0 0 fx cos x 3 f 40 0 f 5x cos x f 50 1 P5x 0 1x 0 2 1 3 0 1 x x x 4 x5 2! 3! 4! 5! fx xex f x xex fx xex xex f 0 0 20. f x x 2ex f 0 0 f0 1 fx 2xe 2ex f 0 2 f x 2e 3ex f0 3 fx 6ex 6xex x 2ex 4ex f 40 x 4 f 0 1 1 x 12 2 f x x 13 f0 1 f 0 2 fx 6 x 14 f 4x 24 x 15 f0 0 x e 2 x 4xe x f 0 2 xe 2 x f 4x 12ex 8xex x 2ex f0 6 f 40 24 2 2 6 3 24 4 x x x 2! 3! 4! f0 6 f 40 12 2 2 6 3 12 4 x x x 2! 3! 4! 1 x 2 x3 x 4 2 P4x 0 0x 1 3 1 4 x x 2 6 1 x1 P4x 1 x x 2 2 3 4 x x3 x 4 2! 3! 4! x x2 fx 3 3 0 2 3 3 x x x x 2! 3! 6 ex P4x 0 x f x P3x 0 x 1 3 1 5 x x 6 120 f x xex f 4x 21. 18. f 4x sin x x 19. Taylor Polynomials and Approximations 22. f x x x11 x1 x1 f 0 0 1 x 11 fx x 12 f0 1 f x 2x 13 f 0 2 fx 6x 14 f0 6 f 4x 24x 1 f 40 24 5 2 6 24 P4x 0 1x x2 x3 x4 2 6 24 x x2 x3 x4 1 x x 2 x3 x 4 23. f x sec x f 0 1 24. f x tan x f 0 0 fx sec x tan x f0 0 fx sec2 x f x sec3 x sec x tan2 x f 0 1 f x 2 sec x tan x P2x 1 0x 1 2 1 x 1 x2 2! 2 f0 1 f 0 0 2 fx 4 sec2 x tan2 x2 sec4 x f0 2 2 1 P3x 0 1x 0 x3 x x3 6 3 301 302 25. Chapter 9 f x 1 x f 1 1 fx f x 1 x2 2 x3 fx f 4x Infinite Series 6 x4 f 2 f1 1 fx 4x3 f2 f 1 2 f x 12x4 f 2 f 41 24 P4x 1 x 1 2 6 x 12 x 13 2! 3! 1 2 3 4 3 2 15 f 4x 240x6 f 4x 4 1 1 3 1 P4x x 2 x 22 x 23 2 2 8 4 fx 48x5 f1 6 24 x5 1 2 f x 2x2 26. 24 x 14 4! fx 5 x 24 32 1 x 1 x 12 x 13 x 14 27. f x x fx f 1 1 1 2 x f1 1 2 f x 1 4x x f 1 fx 3 f1 8x 2 x f 4x 15 16x3 x 29. f 41 1 x 2 x3 f 4x f 1 0 f1 1 1 f x 2 x fx 1 fx x23 3 f8 2 f x x53 9 f 8 fx 15 16 f 8 2 10 83 x 27 P3x 2 f8 1 12 1 144 10 27 1 5 28 3456 1 1 5 x 8 x 82 x 83 12 288 20,736 1 5 x 13 x 14 16 128 f x ln x fx 1 4 3 8 1 1 P4x 1 x 1 x 12 2 8 28. f x x13 f 1 1 f1 2 6 x4 f 41 6 1 P4x 0 x 1 x 12 2 1 1 x 13 x 14 3 4 30. f x x 2 cos x fx cos x x 2 sin x f 2 f 2 f x 2 cos x 4x sin x x 2 cos x f 2 2 P2x 2 2x 2 2 x 2 2 Section 9.7 f x tan x 31. Taylor Polynomials and Approximations (a) n 3, c 0 fx sec2 x P3x 0 x f x 2 sec2 x tan x fx 4 sec2 x tan2 x 2 sec4 x (b) n 3, c f 4x 8 sec2 x tan3 x 16 sec4 x tan x 0 2 2 1 x x3 x x3 2! 3! 3 4 4 x 4 2! 4 2 x 4 4 2 Q3x 1 2 x f 5x 16 sec2 x tan4 x 88 sec4 x tan2 x 16 sec6 x 6 12 x − P5 2 P3 2 f 303 2 16 x 3! 4 8 x 3 4 Q3 −6 32. f x 1 x2 1 2 P4 2x fx 2 x 12 f x 23x 2 1 x 2 13 fx 24x1 x 2 x 2 14 f 4x f −3 3 Q4 P2 −2 245x 4 10x 2 1 x 2 15 (a) n 4, c 0 P4x 1 0x 2 2 0 24 4 x x3 x 1 x2 x 4 2! 3! 4! (b) n 4, c 1 Q4x 33. 1 1 1 1 12 0 3 1 1 x 1 x 12 x 13 x 14 x 1 x 12 x 14 2 2 2! 3! 4! 2 2 4 8 f x sin x P1x x P3x x 16 x3 1 1 P5x x 6 x3 120 x5 (a) x 0.00 0.25 0.50 0.75 1.00 sin x 0.0000 0.2474 0.4794 0.6816 0.8415 P1x 0.0000 0.2500 0.5000 0.7500 1.0000 P3x 0.0000 0.2474 0.4792 0.6797 0.8333 P5x 0.0000 0.2474 0.4794 0.6817 0.8417 (c) As the distance increases, the accuracy decreases. (b) 3 P1 P3 f −2 2 P5 −3 3 3 304 34. Chapter 9 Infinite Series f x ln x, c 1 P1x x 1 P2x x 1 12x 12 P4x x 1 12x 12 13x 13 14x 14 (a) (b) 2 f P1 x 1.00 1.25 1.50 1.75 2.00 ln x 0 0.2231 0.4055 0.5596 0.6931 P1x 0 0.2500 0.5000 0.7500 1.0000 P2x 0 0.2188 0.375 0.4688 0.5000 P4x 0 0.2230 0.4010 0.5303 0.5833 −1 5 P2 P4 −2 (c) As the degree increases, the accuracy increases. As the distance from x to 1 increases, the accuracy decreases. 35. f x arcsin x (a) P3x x (b) x3 6 (c) y π 2 x 0.75 0.50 0.25 0 0.25 0.50 0.75 f x 0.848 0.524 0.253 0 0.253 0.524 0.848 P3x 0.820 0.521 0.253 0 0.253 0.521 0.820 f x −1 1 P3 − 36. (a) f x arctan x P3x x (b) y (c) π 2 x3 3 π 4 x 0.75 0.50 0.25 0 0.25 0.50 0.75 f x 0.6435 0.4636 0.2450 0 0.2450 0.4636 0.6435 P3x 0.6094 0.4583 0.2448 0 0.2448 0.4583 0.6094 37. f x cos x π 2 P8 x −1 1 2 −π 4 f 1 −π 2 38. f x arctan x y P4 P3 y P7 P5 P1 6 2 4 f(x) = cos x 2 1 x −6 6 f (x) = arctan x 8 x −3 −2 −4 1 3 −6 P6 P2 −2 P9 P13 39. f x) lnx2 1 y 40. f x 4xex 4 P11 P3 2 P6 y P2 3 2 f(x) = ln (x 2 + 1) 1 2 y = 4xe(−x /4) 4 2 x −4 −3 −2 2 −3 P8 P4 3 4 −4 x 4 Section 9.7 41. f x ex 1 x f x 2 x3 2 6 f x x 2ex x 2 x3 42. 12 0.6042 Taylor Polynomials and Approximations f 1 4 x 2 15 0.0328 f x ln x x 1 12 x 12 13 x 13 14 x 14 43. f 1.2 0.1823 f x x 2 cos x 2 2x 44. f 2 2 x 2 2 78 6.7954 45. f x cos x; f 5x sin x ⇒ Max on 0, 0.3 is 1. 1 0.35 2.025 105 5! Note: you could use R5 x: f 6x cos x, max on 0, 0.3 is 1. R4x ≤ R5 x ≤ 1 0.36 1.0125 10 6 6! Exact error: 0.000001 1.0 10 6 46. f x ex; f 6x ex ⇒ Max on 0, 1 is e1. R5x ≤ e1 6 1 0.00378 3.78 103 6! 47. f x arcsin x; f 4x R3x ≤ x6x 2 9 ⇒ Max on 0, 0.4 is f 40.4 7.3340. 1 x 272 7.3340 0.44 0.00782 7.82 103. The exact error is 8.5 104. Note: You could use R4. 4! 48. f x arctan x; f 4x 24xx 2 1 1 x 24 49. gx sin x gn1x ⇒Max on 0, 0.4 is f 40.4 22.3672. R3x ≤ Rnx ≤ 22.3672 0.44 0.0239 4! ≤ 1 for all x. 1 0.3n1 < 0.001 n 1! By trial and error, n 3. 50. f x cos x 51. f n1x ≤ 1 for all x and all n. Rnx ≤ f n1zx n1 n 1! 0.1 < 0.001 n 1! n1 By trial and error, n 2. f x ex f n1x ex Max on 0, 0.6 is e0.6 1.8221. Rn ≤ 1.8221 0.6n1 < 0.001 n 1! By trial and error, n 5. 305 306 Chapter 9 Infinite Series 52. f x e x 53. f x lnx 1 f n1x e x f n1x The maximum value on 0, 0.3 is e0.3 1.3499. Rn Rn ≤ 1.3499 ≤ 0.3n1 < 0.001 n 1! f x cos x2 55. f x ex, f (1.3 gx cos x 1 f x g 0.5n1 n! < 0.0001 0.5n1 n 1! n1 By trial and error, n 9. (See Example 9.) Using 9 terms, ln1.5 0.4055. By trial and error, n 3. 54. 1n n! ⇒ Max on 0, 0.5 is n!. x 1n1 fx ex x2 x 4 x6 . . . 2! 4! 6! f n1x n1ex ≤ n1 on 0, 1.3 x2 Rn x 22 x 24 x 26 . . . 1 2! 4! 6! ≤ 1.3n1 < 0.0001 n 1! n1 By trial and error, n 16. 2x 4 4x8 6x12 . . . 1 2! 4! 6! 2 4 6 0.64 0.68 0.612 . . . 2! 4! 6! f 0.6 1 Since this is an alternating series, Rn ≤ an1 2n 0.64n < 0.0001. 2n! By trial and error, n 4. Using 4 terms f 0.6 0.4257. 56. f x ex 57. fx ex f n1x Rn ≤ 1 n1ex ≤ 1 on 0, 1 1 1n1 ≤ 0.0001 n 1! By trial and error, n 7. f x ex 1 x R3x x 2 x3 , x < 0 2 6 ez 4 x < 0.001 4! ez x 4 < 0.024 xe z4 x < 0.3936 < 0.3936 < 0.3936, z < 0 e z4 0.3936 < x < 0 58. f x sin x x R3x x4 sin z 4 x ≤ < 0.001 4! 4! x 4 < 0.024 x x3 3! < 0.3936 0.3936 < x < 0.3936 59. f x cos x 1 x4 x2 , fifth degree polynomial 2! 4! f n1x ≤ 1 for all x and all n. 1 R5x ≤ 6! x6 < 0.001 x6 x < 0.72 < 0.9467 0.9467 < x < 0.9467 Note: Use a graphing utility to graph y cos x 1 x22 x 424 in the viewing window 0.9467, 0.9467 0.001, 0.001 to verify the answer. Section 9.7 Taylor Polynomials and Approximations 4 60. f x e2x 1 2x 2x2 x 3 3 fx 2e2x, f x 4e2x, f x 8e2x, f 4x 16e2x R3 x f 4z 16e2z 4 2 2z 4 x 04 x e x < 0.001 4! 24 3 e2zx 4 < 0.0015 0.0015 e 14 x < 2z 0.1970e2z < 0.1970, for z < 0. Thus 0 < x < 0.1970. In fact, by graphing f x e2x and y 1 2x 2x 2 43 x 3, you can verify that f x y < 0.001 on 0.19294, 0.20068 61. The graph of the approximating polynomial P and the elementary function f both pass through the point c, f c and the slopes of P and f agree at c, f c. Depending on the degree of P, the nth derivatives of P and f agree at c, f c. 62. f c P2c, fc P2c, and f c P2 c 63. See definition on page 650. 64. See Theorem 9.19, page 654. 65. The accuracy increases as the degree increases (for values within the interval of convergence). 66. y P2 10 f P1 8 6 4 2 −20 x P3 −2 10 20 −4 68. (a) P5x x 67. (a) f x e x P4x 1 x 1 2 1 3 1 4 x x x 2 6 24 gx xe x 1 1 1 5 x Q5x x x x3 x 4 2 6 24 2 Q5x x P4x (b) f x sin x P5x x x2 x 4 2! 4! This is the Maclaurin polynomial of degree 4 for gx cos x. (b) Q6x 1 x2 x 4 x6 for cos x 2 4! 6! Q6x x x5 x3 3! 5! Q6x x P5x x 2 x3 x5 P5x 3! 5! (c) Rx 1 x gx x sin x (c) gx P5x 1 x3 x5 for f x sin x 3! 5! x4 x6 3! 5! sin x 1 x2 x 4 P5x 1 x x 3! 5! x3 x4 x2 2! 3! 4! Rx 1 x x2 x3 2! 3! The first four terms are the same! 307 308 Chapter 9 Infinite Series 69. (a) Q2x 1 2x 22 32 (b) R2x 1 2x 62 32 (c) No. The polynomial will be linear. Translations are possible at x 2 8n. 70. Let f be an odd function and Pn be the nth Maclaurin polynomial for f. Since f is odd, f is even: fx lim h→0 f x h f x f x h f x f x h f x lim lim fx. h→0 h→0 h h h Similarly, f is odd, f is even, etc. Therefore, f, f , f 4, etc. are all odd functions, which implies that f 0 f 0 . . . 0. Hence, in the formula Pnx f 0 f0x f 0x2 . . . all the coefficients of the even power of x are zero. 2! 71. Let f be an even function and Pn be the nth Maclaurin polynomial for f. Since f is even, f is odd, f is even, f is odd, etc. All of the odd derivatives of f are odd and thus, all of the odd powers of x will have coefficients of zero. Pn will only have terms with even powers of x. f ic 72. Let Pn x a0 a1x c a2x c2 . . . an x cn where ai . i! Pnc a0 f c For 1 ≤ k ≤ n, Pnkc an k! f k!ck! f k k c. 73. As you move away from x c, the Taylor Polynomial becomes less and less accurate. Section 9.8 Power Series 2. Centered at 0 1. Centered at 0 5. 1 n n0 L lim n→ lim n→ x 7. xn n1 6. un1 1n1xn1 lim n→ un n2 n1 1n xn n1 x x n2 4. Centered at 3. Centered at 2 2x n n0 L lim n→ un 1 2xn1 lim 2x n→ un 2xn 2x < 1 ⇒ R 1 2 < 1⇒R1 2xn 2 n1 n L lim n→ lim n→ 8. un1 2xn1 lim n→ un n 12 2n2x n 12 2 x < 1⇒R 1 2 2x n2 2xn 1n xn 2n n0 L lim n→ 1 x 2 un1 1n1xn1 lim n→ un 2n1 1 x < 1⇒R2 2 2n 1n xn Section 9.8 9. 2x2n n0 2n! L lim n→ 10. un1 2x2n22n 2! lim n→ un 2x2n2n! lim n→ 2 x L lim n→ un 1 2n 2!x2n2n 1! lim n→ un 2n!x2nn! lim n→ 2n 22n 1 n 1 x2 The series only converges at x 0. R 0. n 12. 5 x n0 Since the series is geometric, it converges only if x2 < 1 or 2 < x < 2. is geometric, so it converges if x5 < 1 ⇒ x < 5 ⇒ 5 < x < 5. 1n x n n n1 lim n→ 14. un1 1n1xn1 lim n→ un n1 lim n→ n 1n xn nx x n1 Interval: 1 < x < 1 n1 lim n→ n 1xn un 1 1n2n 2xn1 lim n→ un 1nn 1xn lim n→ n 2x x n1 Interval: 1 < x < 1 1n When x 1, the alternating series converges. n n1 1 n0 n n0 13. 2n!x2n n! n0 309 2x2 0 2n 22n 1 Thus, the series converges for all x. R . 11. Power Series When x 1, the series 1 n1 n 1 diverges. n0 When x 1, the p-series 1 n diverges. When x 1, the series n1 n0 Therefore, the interval of convergence is 1 < x ≤ 1. 15. Therefore, the interval of convergence is 1 < x < 1. xn n! n0 16. lim n→ un1 x lim n→ n 1! un lim n→ n! xn lim 2n!2 x 3xn n→ x 0 n1 un1 3xn1 lim n→ 2n 1! un lim n→ The series converges for all x. Therefore, the interval of convergence is < x < . 17. 2n! n0 n1 lim n un1 2n 2!x n1 lim n→ un 2n1 2n 2n!x n Therefore, the series converges only for x 0. lim n→ 2n! 3xn 3x 0 2n 22n 1 Therefore, the interval of convergence is < x < n0 n→ n 1 diverges. 2n 22n 1 x 2 . 310 18. Chapter 9 Infinite Series 1n xn n 1n 2 n0 lim n→ un1 1n1xn1 lim n→ n 2n 3 un Interval: 1 < x < 1 When x 1, the alternating series n 1n 2 n 1x x lim n→ 1n xn n3 1n n 1n 2 converges. n0 1 1 n 1n 2 converges by limit comparison to n . When x 1, the series n0 n1 2 Therefore, the interval of convergence is 1 ≤ x ≤ 1. 19. 1n1x n 4n n1 Since the series is geometric, it converges only if x4 < 1 or 4 < x < 4. 20. 1n n!x 4n 3n n0 lim n→ un1 1n1n 1!x 4n1 lim n→ un 3n1 3n 1n n!x 4n R0 lim n→ n 1x 4 3 Center: x 4 Therefore, the series converges only for x 4. 21. 1n1x 5n n5n n1 lim n→ un1 1n2x 5n1 lim n→ un n 15n1 n5n 1n1x 5n R5 lim n→ nx 5 1 x5 5n 1 5 Center: x 5 Interval: 5 < x 5 < 5 or 0 < x < 10 When x 0, the p-series 1n1 1 diverges. When x 10, the alternating series converges. n n1 n n1 Therefore, the interval of convergence is 0 < x ≤ 10. 22. x 2n1 n 14 n0 lim n→ n1 un1 x 2n2 lim n→ n 24n2 un n 14n1 x 2n1 R4 lim n→ Center: x 2 Interval: 4 < x 2 < 4 or 2 < x < 6 When x 2, the alternating series 1n1 n 1 converges. n0 1 When x 6, the series diverges. n 1 n0 Therefore, the interval of convergence is 2 ≤ x < 6. x 2n 1 1 x 2 4n 2 4 Section 9.8 23. 1n1x 1n1 n1 n0 Power Series lim n→ un1 1n2x 1n2 lim n→ un n2 n1 1n1x 1n1 R1 lim n→ n 1x 1 x 1 n2 Center: x 1 Interval: 1 < x 1 < 1 or 0 < x < 2 When x 0, the series 1 n 1 diverges by the integral test. n0 When x 2, the alternating series 1n1 converges. n0 n 1 Therefore, the interval of convergence is 0 < x ≤ 2. 24. 1n1x 2n n2n n1 lim n→ 25. an1 1n2x 2n1 1n1x 2n lim n→ an n 12n1 n2n lim n→ x2 n x2 2 n1 2 n1 x3 3 12n 1 1n12n , diverges. n n n2 n2 n1 n1 n1 n At x 4, 1n1 1n1 2n , converges. n n2 n n1 n1 Interval of convergence: 0 < x ≤ 4 26. 1nx2n1 n0 2n 1 lim n→ un1 1n1x2n3 lim n→ un 2n 3 2n 1 1nx2n1 R1 lim n→ Interval: 1 < x < 1 When x 1, 1n 2n 1 converges. n0 When x 1, 1n1 2n 1 converges. n0 Therefore, the interval of convergence is 1 ≤ x ≤ 1. is geometric. It converges if Interval convergence: 0 < x < 6 At x 0, n1 x3 < 1 ⇒ x 3 < 3 ⇒ 0 < x < 6. 3 x2 < 1 ⇒ 2 < x 2 < 2 ⇒ 0 < x < 4 2 2n 1 2 x x2 2n 3 311 312 27. Chapter 9 Infinite Series n 2xn1 n 1 n1 28. u n 12xn lim n1 lim n→ n→ un n2 lim n→ 2xn 12 2x nn 2 1 R 2 Interval: n1 n2xn1 1n x 2n n! n0 lim n→ un1 1n1x 2n2 lim n→ un n 1! lim n→ x2 n1 n! 1n x 2n 0 Therefore, the interval of convergence is < x < . 1 1 < x < 2 2 1 n When x , the series diverges 2 n 1 n1 by the nth Term Test. 1n1n 1 When x , the alternating series diverges. 2 n1 n1 Therefore, the interval of convergence is 29. 1 1 < x < . 2 2 x 2n1 2n 1! n0 30. x 2n3 un1 lim n→ 2n 3! un lim n→ lim n→ 2n 1! x 2n1 2 n1 lim 34. lim n→ x2 0 2n 22n 3 n!xn un1 n 1!xn1 lim n→ un 2n 2! lim n→ . an1 n 2xn1 n2 x x lim lim n→ n 1xn n→ n 1 an Converges if x < 1 ⇒ 1 < x < 1. At x ± 1, diverges. Interval of convergence: 1 < x < 1 32. 2 46. . . 2n 3 5 7 . . . 2n 1 x n1 lim n→ 2n1 un1 2 4 . . . 2n2n 2x 2n3 lim n→ 3 5 7 . . . 2n 12n 3 un 3 2 5 . . . 2n 1 4 . . . 2nx 2n1 R1 When x ± 1, the series diverges by comparing it to Therefore, the interval of convergence is < x < 2n! n!xn n 1x 0 2n 22n 1 . . n 1xn n 1xn n! n1 n→ n1 Therefore, the interval of convergence is < x < 31. 2n! 1 2n 1 n1 which diverges. Therefore, the interval of convergence is 1 < x < 1. lim n→ 2n 2x 2 x 2 2n 3 . Section 9.8 33. Power Series 1n1 3 7 11 . . . 4n 1x 3n 4n n1 313 un1 1n2 3 lim n→ un lim n→ lim n→ 7 11 . . . 4n 14n 3x 3n1 4n1 1n1 3 7 4n 11 . . . 4n 1x 3n 4n 3x 3 4 R0 Center: x 3 Therefore, the series converges only for x 3. 34. n!x 1n 1 3 5 . . . 2n 1 n1 lim n→ an1 lim n→ 1 an lim n→ n 1!x 1n1 n!x 1n 3 5 . . . 2n 12n 1 1 3 5 . . . 2n 1 n 1x 1 1 x 1 2n 1 2 1 Converges if x 1 < 1 ⇒ 2 < x 1 < 2 ⇒ 3 < x < 1. 2 At x 1, an n!2n 2 4 6 . . . 2n > 1, diverges. . . . 135 2n 1 1 3 5 . . . 2n 1 At x 3, an n!2n 2 4 . . . 2n 1n , diverges. . . . 13 2n 1 1 3 . . . 2n 1 Interval of convergence: 3 < x < 1 35. x cn1 cn1 n1 lim n→ 36. un1 x cn lim n→ un cn cn1 x cn1 Rc 1 xc c n!kxn , k is a positive integer. n0 kn! lim n→ lim n→ Center: x c Interval: c < x c < c or 0 < x < 2c When x 0, the series 1 n1 diverges. Converges if n1 When x 2c, the series 1 diverges. n1 Therefore, the interval of convergence is 0 < x < 2c. 37. k x n n0 n an1 n 1!kxn1 n!kx lim n→ an kn 1! kn! Since the series is geometric, it converges only if xk < 1 or k < x < k.. x kk x < 1 kk n 1 x k nkk 1 nk . . . 1 nk k ⇒ R k k. 314 38. Chapter 9 Infinite Series 1n1x cn ncn n1 lim n→ un1 1n2x cn1 lim n→ un n 1cn1 ncn 1n1x cn Rc lim n→ nx c 1 xc cn 1 c Center: x c Interval: c < x c < c or 0 < x < 2c When x 0, the p-series n1 1 diverges. n 1n1 converges. Therefore, the interval of convergence is 0 < x ≤ 2c. n n1 When x 2c, the alternating series 39. kk 1 . . . k n 1x n n! n1 lim n→ un1 kk 1 . . . k n 1k nx n1 lim n→ un n 1! kk 1 . n! k nx lim x . . k n 1xn n→ n1 R1 When x ± 1, the series diverges and the interval of convergence is 1 < x < 1. kk 11 2 . .k .n n 1 ≥ 1 . . . 40. n!x cn 1 3 5 . . . 2n 1 n1 lim n→ un1 lim n→ 1 un n 1!x cn1 1 3 5 . . . 2n 1 n 1x c 1 lim x c . . . n→ 2n 12n 1 n!x c 2n 1 2 35 R2 Interval: 2 < x c < 2 or c 2 < x < c 2 The series diverges at the endpoints. Therefore, the interval of convergence is c 2 < x < c 2. 1 3n!c5. .2 .2nc 1 1 3 5 .n!.2. 2n 1 1 23 45 .6. . 2n2n 1 > 1 n 41. xn x2 x x n1 n! 1 1 2 . . . n 1! n0 43. . . . 2 42. x 2n1 x 2n1 n0 44. n1 n 1x n n1 n0 n1 2n 1! 2n 1! 1 1 nx n n1 n1 1n1x2n1 1nx2n1 2n 1 n0 2n 1 n1 Replace n with n 1. 45. (a) f x 2 , 2 < x < 2 n x (Geometric) 46. (a) f x n0 (b) fx 22 n x n1 1n1x 5n , 0 < x ≤ 10 n5n n1 (b) fx 1n1x 5n1 , 0 < x < 10 5n n1 , 2 < x < 2 (c) f x 1n1n 1x 5n2 , 0 < x < 10 5n n2 , 2 ≤ x < 2 (d) , 2 < x < 2 n1 (c) f x (d) 2 n n2 f x dx n1 2 2x 2 x n 1 2 n0 n2 n1 f x dx 1n1x 5n1 , 0 ≤ x ≤ 10 nn 15n n1 Section 9.8 1n1x 1n1 ,0 < x ≤ 2 n1 n0 47. (a) f x (b) fx 48. (a) f x 1n1x 2n ,1 < x ≤ 3 n n1 (d) 1n1x 1n2 f x dx ,0 ≤ x ≤ 2 n 1n 2 n1 (d) 3 1 n 1 n0 1 1 . . . 3 9 3 3.1 1 n1 f x dx n 1x 2n2, 1 < x < 3 3 2 1n1x 2n1 ,1 ≤ x ≤ 3 nn 1 n1 n 1 n0 2 4 . . . 3 9 S1 1, S2 1.67. Matches (a). n 52. g2 diverges. Matches (b). 3 alternating. Matches (d). 2 n n0 n0 53. g x 2n1, 1 < x < 3 n1 n2 50. g2 S1 1, S2 1.33. Matches (c). 51. g3.1 1 (c) f x 1n1nx 1n1, 0 < x < 2 n1 49. g1 n1 n0 (c) f x 315 (b) fx 1n1x 1n, 0 < x < 2 Power Series 18 218 n 4 n0 1 n 1 n0 1 1 . . ., converges 4 16 S1 1, S2 1.25, S3 1.3125 Matches (b). 81 2 81 54. g n n0 4 1 n 1 n0 1 1 . . ., converges 4 16 S1 1, S2 0.75, S3 0.8125 Matches (c). 55. g 169 2169 n n0 S1 1, S2 8 , diverges 9 n n0 17 Matches (d). 8 57. A series of the form a x c n n n0 is called a power series centered at c. 56. g 38 238 n n0 xn n1 2 n converges n0 60. You differentiate and integrate the power series term by term. The radius of convergence remains the same. However, the interval of convergence might change. 3 58. The set of all values of x for which the power series converges is the interval of convergence. If the power series converges for all x, then the radius of convergence is R . If the power series converges at only c, then R 0. Otherwise, according to Theorem 8.20, there exists a real number R > 0 (radius of convergence) such that the series converges absolutely for x c < R and diverges for x c > R. 61. Answers will vary. xn converges for 1 ≤ x < 1. At x 1, the convergence is conditional because n1 n n 4 , S1 1, S2 1.75 Matches (a). 59. A single point, an interval, or the entire real line. converges for 1 ≤ x ≤ 1. At x ± 1, the convergence is absolute. 1 n diverges. 316 Chapter 9 Infinite Series 62. Many answers possible. x n x < 1 ⇒ x < 2 (a) Geometric: 2 n1 2 (b) (c) 63. (a) f x n (d) 1n x 2n1 , < x < n0 2n 1! x 2n converges for 2 ≤ x < 6 n4n n1 1n x 2n , < x < 2n! n0 1 x 2n! n0 n (b) fx 2n xn (b) fx n1 n! xn x2 x3 x4 n1 x n1 n1 f 0 1 xn n0 1n1x 2n1 1n x 2n1 2n 1! n0 2n 1! n1 n! 1 x 2! 3! 4! . . . (c) f x (See Exercise 11) n 1! n! f x 65. y 1n x2n1 f x n0 2n 1! (d) f x sin x and gx cos x n0 nx n1 gx n!, < x < 64. (a) f x 1n1x 2n1 1n x 2n1 2n 1 ! 2n 1! n1 n0 (c) gx (See Exercise 29.) gx Geometric: 2x 1 < 1 ⇒ 1 < x < 0 n1 1nxn converges for 1 < x ≤ 1 n n1 2x 1 (d) f x ex 66. y 1n1x 2n2 1n x 2n 2n! 2n 2! n0 n1 y 1nx 2n 1n 2n 1x2n 2n 1 ! 2n! n0 n0 y 1nx 2n1 1n 2nx2n1 2n ! n1 n1 2n 1! y 1x 2n1 1n 2nx 2n1 2n ! n1 n1 2n 1! y 1nx 2n2 1n 2n 1x 2n2 2n 1 ! n1 n1 2n 2! y y 1n1x 2n1 1n x 2n1 0 2n 1! n1 2n 1! n1 x 2n1 x 2n1 n0 y y 2n 1! 2n 1! 67. y 68. y 1n1x 2n2 1n x 2n2 0 2n 2! n1 2n 2! n1 x 2n x 2n2 2n! 2n 2! n0 n1 n1 y 2n 1 n0 2n 1! n0 2n! y 2n 2x2n1 x 2n1 2n 2! n1 n1 2n 1! y x 2n1 2nx 2n1 y 2n! n1 n1 2n 1! y x 2n2 2n 1x 2n2 y 2n 1! n1 n1 2n 2! x2n x 2n x 2n n n! 2 n0 y y 0 y y 0 69. y y y xy y 2nx 2n1 n n1 2 n! y 2n2n 1x 2n2 2n n! n1 2nx 2n x 2n 2n2n 1x 2n2 n n! n n! n 2 2 n1 n1 n0 2 n! 2n 1x 2n 2n2n 1x 2n2 n 2 n! 2n n! n1 n0 n0 2n 22n 1x2n 2n 1x2n 2n 1 2n 1 2n1n 1! 2n n! 2n 1x 2n 2n 1 2n 1 0 2n1n 1! n0 Section 9.8 2 y1 70. 2n n1 2 y 2n n1 2 y 2n n1 n! 3 1n 4n4n 1 x 4n2 1n 4nx 4n2 x 2 2n . . . . . . 4n 5 n! 3 7 11 4n 1 n2 2 n! 3 7 11 2 n2 2 2n2 n1 71. J0x (a) lim 1n x 4n . . 4n 1 7 11 . 1n 4nx 4n1 n! 3 7 11 . . . 4n 1 y x 2y x 2 2n 1n 4nx 4n2 1n x 4n2 x2 2n . . . n! 3 7 11 4n 5 n1 2 n! 3 7 11 . . . 4n 1 1n1 4n 1x4n2 1n1 x 4n2 22n 1 0 n 1! 3 7 11 . . . 4n 1 n1 22n n! 3 7 11 . . . 4n 1 22n 1 1k x 2k 2k 2 k0 2 k! k→ Power Series uk1 1k1 x 2k2 lim 2k2 k→ 2 uk k 1!2 22k k!2 1k x 2k lim Therefore, the interval of convergence is < x < 1 J0 (b) k k0 2k2k 1x 2k2 2k 22k 1x 2k 1k1 4k k!2 4k1 k 1!2 k0 k k1 1 k1 k0 (c) P6x 1 4k k!2 1 x 2J0 xJ0 x 2J0 . x 2k 2kx 2k1 2k 2 x 2k1 1k1 k1 k 2 4 k! 4 k 1!2 k0 k k1 J0 1x 2 0 22k 12 1 J0 k→ 22k 1 x 2k2 2x 2k2 x 2k2 1k1 k1 1k k 2 k1 4 k 1!k! 4 k 1!k! k0 4 k! k0 2 1k x2k2 22k 1 1 1 1 4k k!2 4k 1 4k 1 k0 1k x 2k2 4k 2 2 4k 4 0 4k k!2 4k 4 4k 4 4k 4 k0 1 x2 x4 x6 4 64 2304 (d) 0 0 3 −6 1 J0dx 1k x 2k k 2 dx k0 4 k! x 4 1 k! 2k 1 k0 6 k k 2k1 1 2 0 1k kk!22k 1 4 k0 −5 1 1 1 0.92 12 320 (integral is approximately 0.9197304101) 72. J1x x k0 (a) lim k→ 1k x 2k 1k x 2k1 2k1 k 1! k0 2 k!k 1! 22k1k! uk1 1k1 x 2k3 lim 2k3 k→ 2 uk k 1!k 2! 22k1k!k 1! 1k x 2k1 Therefore, the interval of convergence is < x < —CONTINUED— . lim k→ 1x 2 0 22 k 2k 1 317 318 Chapter 9 Infinite Series 72. —CONTINUED 2 (b) J1x 1k x2k1 k 1! 2k1k! k0 J1x 1k 2k 1x2k 2k1k!k 1! k0 2 J1x 1k 2k 12kx 2k1 22k1k!k 1! k1 x 2J1 xJ1 x 2 1J1 1k2k 1x 2k1 1k 2k 12kx 2k1 2k1 2 k!k 1! 22k1k!k 1! k1 k0 1k2k 1x 2k1 1k2k 12kx 2k1 x 2k1 2 k!k 1! 2 k1 22k1k!k 1! k1 1kx 2k12k 12k 2k 1 1 1kx 2k3 2k1 2k1 2 k!k 1! k!k 1! k1 k0 2 1kx2k14kk 1 1kx2k3 2k1 2k1 2 k!k 1! k!k 1! k1 k0 2 1kx 2k1 1k x2k3 2k1 k 1!k! k0 2 k!k 1! 22k1 1k1x 2k3 1kx 2k3 2k1k!k 1! 2k1k!k 1! 2 k0 2 k0 1kx 2k31 1 0 22k1k!k 1! k0 x 1 3 1 5 1 x x x7 2 16 384 18,432 J0x 1 n n0 1k1x 2k1 1kx 2k1 k 1! k0 22k1k!k 1! 2 k0 4 1k1x 2k1 1k12k 1x 2k1 2k2 k 1!k 1! k0 22k1k!k 1! k0 2 J1x 73. f x k1 (d) 1kx2k1 1kx2k3 x 2k1k!k 1! 2 k1 22k1k!k 1! 2 k0 (c) P7x 2k1k! k0 1kx 2k3 1k x 2k1 2k1 k 1! k0 2 k!k 1! 2 2k1k! x 2n cos x 2n! −6 Note: J0x J1x 74. f x 2 1 n n0 − 2 −4 x 2n1 2n 1! sin x 2 1 x n n n0 x n Geometric 76. f x n0 1 n n0 1 for 1 < x < 1 1 x 1 x x 2n1 arctan x, 1 ≤ x ≤ 1 2n 1 2 3 −2.5 2.5 − 1 0 −2 1 −1 2 − −2 75. f x 6 2 Section 9.8 77. 2 x Power Series 319 n n0 2 (a) 34 n n0 8 3 n n0 1 8 1.6 1 38 5 (b) 34 2 n0 n 8 3 n n0 1.80 1 8 0.7272 1 38 11 1.10 −1 6 0 (c) The alternating series converges more rapidly. The partial sums of the series of positive terms approach the sum from below. The partial sums of the alternating series alternate sides of the horizontal line representing the sum. −1 6 0.60 2 N (d) 3 n > M n0 M 10 N 78. 3x n n0 100 1000 10,000 9 15 21 4 1 1 converges on , . 3 3 1 (a) x : 6 36 1 n n0 2 1 n n0 1 2 1 12 1 (b) x : 6 1 3 6 n n0 3 1 2 n n0 1 2 1 12 3 1.5 −1 6 0 −1 (c) The alternating series converges more rapidly. The partial sums in (a) approach the sum 2 from below. The partial sums in (b) alternate sides of the horizontal line y 23. 6 −0.5 3 3 N (d) 2 n n0 1 x n2n n0 1 0 100 1000 N 3 6 9 10,000 13 n xn n0 1 f x dx 10 a converges for x 2, then we know that it must converge on 2, 2. 81. True; the radius of convergence is R 1 for both series. > M M n n converges for x 2 but diverges for x 2. 82. True n n0 80. True; if 79. False; N 2 0 n0 an xn dx an xn1 n0 n 1 n a 1 1 0 n0 n 320 Chapter 9 83. lim n→ Infinite Series an1 n 1 p! n p! n n 1 px lim x n1 x lim 0 n→ n 1!n 1 q! n→ n 1n 1 q an n!n q! Thus, the series converges for all x : R . 84. (a) gx 1 2x x 2 2x3 x 4 . . . S2n 1 2x x 2 2x 3 x 4 . . . x 2n 2x 2n1 1 x 2 x 4 . . . x 2n 2x1 x 2 x 4 . . . x 2n lim S2n n→ x 2x 2n n0 x 2n n0 Since each series is geometric, R 1. (b) For x < 1, gx 85. (a) f x 1 1 1 2x 2x . 1 x2 1 x2 1 x2 c x ,c n n n3 cn n0 c0 c1x c2x 2 c0x3 c1x 4 c2x5 c0x6 . . . S3n c01 x3 . . . x3n c1x1 x3 . . . x3n c2 x 21 x3 . . . x3n lim S3n c0 n→ x 3n c1x n0 x 3n c2 x 2 n0 x 3n n0 Each series is geometric, R 1, and the interval of convergence is 1, 1. (b) For x < 1, f x c0 86. For the series lim n→ n→ c x , n n an1 c x n1 c cn lim n1 n lim n1 x < 1 ⇒ x < R n→ n→ an cn x cn cn1 For the series lim 1 c c1x c2 x 2 1 1 c1x c2 x 2 0 . 1 x3 1 x3 1 x3 1 x3 c x n 2n , bn1 c x 2n2 c cn lim n1 2n lim n1 x2 < 1 ⇒ x2 < R ⇒ x < R. n→ n→ bn cn x cn cn1 87. At x0 R, the series is c x n 0 x0 Rn n0 At x0 R, the series is c R n n which converges. n0 c R , which diverges. n n n0 Hence, at x0 R, we have c R n n converges, n0 ⇒ The series converges conditionally. c R c R n n0 n n n0 n diverges. Section 9.9 Section 9.9 1. (a) Representation of Functions by Power Series 1 12 a 2 x 1 x2 1 r Representation of Functions by Power Series 2 2 1 x n n0 2. (a) f x xn 2 n0 n1 3. (a) 1 12 a 2 x 1 x2 1 r 2 2 n0 1 x n 1n xn 2n1 n0 This series converges on 2, 2. 1 x x2 x3 . . . 2 4 8 16 (b) 2 x ) 1 x 1 2 x 2 x x2 2 4 x2 4 x 2 x3 4 8 x3 8 x3 x4 8 16 5 5 4 x n n0 This series converges on 2, 2. 1 x x2 x3 . . . 2 4 8 16 (b) 2 x ) 1 x 1 2 x 2 x x2 2 4 x2 4 x 2 x3 4 8 x3 8 x3 x4 8 16 4 45 a 5 x 1 x5 1 r 4xn 5 n0 n1 This series converges on 5, 5. 4 4 4 2 4x3 x x . . . 5 25 125 625 (b) 5 x ) 4 4 4 x 5 4 x 5 4 4 x x2 5 25 4 2 x 25 4 2 4x3 x 25 125 4x3 125 4x3 4x 4 125 625 4. (a) 1 1 a 1 x 1 x 1 r x n0 n 1 n xn n0 This series converges on 1, 1. 1 x x 2 x3 . . . (b) 1 x ) 1 1x x x x 2 x2 x 2 x3 x3 x3 x 4 321 322 Chapter 9 Infinite Series 6. Writing f x in the form a1 r, we have 5. Writing f x in the form a1 r, we have 1 13 1 2 x 3 x 5 1 13x 5 4 47 a 4 . 5 x 7 x 2 1 17x 2 1 r which implies that a 13 and r 13x 5. Therefore, the power series for f x is given by 1 1 1 ar n x 5 2 x n0 3 3 n0 x 5 3 n n1 , n0 x 5 n < 3 or 2 < x < 8. 3 ar n 32xn 2x 1 n0 n0 x 2 < 7 1 n which implies that a 1 and r 23x 2. Therefore, the power series for f x is given by < x < 1 . 2 x 2 9. Writing f x in the form a1 r, we have 2nx 2n , 3n n0 < 3 1 7 or < x < . 2 2 2 1 1 ar n 2x 5 n0 11 n0 112 x 3 n 1 1 ar n 2x 5 n0 5 n0 5 x x < 2 n 2n xn 5 n0 n1 , 5 5 5 or < x < . 2 2 2 2nx 3n , 11n1 n0 17 5 11 or < x < . 2 2 2 < 11. Writing f x in the form a1 r, we have 3 3 32 a x 2 2 x 1 12x 1 r which implies that a 32 and r 12x. Therefore, the power series for f x is given by 3 1 3 ar n x x 2 n0 2 n0 2 n 12. Writing f x in the form a1 r, we have 4 4 12 a 3x 2 8 3x 2 1 38x 2 1 r which implies that a 12 and r 38x 2. Therefore, the power series for f x is given by 1 3 4 arn x 2 3x 2 n0 8 n0 2 < 2 or 2 < x < 2. 1n x n 3 x n , n1 2 2 n0 2 n0 3 x which implies that a 15 and r 25x. Therefore, the power series for f x is given by which implies that a 111 and r 211x 3. Therefore, the power series for f x is given by x 3 1 1 15 a 2x 5 5 2x 1 25x 1 r 111 a 1 211x 3 1 r 10. Writing f x in the form a1 r, we have 1 1 2x 5 11 2x 3 or 9 < x < 5 2x , 2x < 1 or 2 4x 2n . 7n1 n0 n 2 3 ar n x 2 , 2x 1 n0 3 n0 n0 3 3 1 a 2x 1 3 2x 2 1 23x 2 1 r which implies that a 3 and r 2x. Therefore, the power series for f x is given by n 8. Writing f x in the form a1 r, we have 3 3 a 2x 1 1 2x 1 r 3 4 1 4 ar n x 2 5 x n0 n0 7 7 7. Writing f x in the form a1 r, we have Therefore, the power series for f x is given by x 2 < n 1 3n x 2n , 2 n0 8n 2 8 14 or < x < . 3 3 3 Section 9.9 13. Representation of Functions by Power Series 1 3x 2 1 2 1 1 x 2 x 2 x 2 x 1 2 x 1 x 1 12x 1 x Writing f x as a sum of two geometric series, we have 3x 1 x x 2 x 2 n0 2 n 1x n 2 n0 n→ 14. un1 1 2n1x n1 lim n→ un 2n1 1 x n. n n0 The interval of convergence is 1 < x < 1 since lim 1 2n 1 2n xn lim n→ 1 2n1x x. 2 2n1 4x 7 3 2 3 2 32 2 2x2 3x 2 x 2 2x 1 2 x 1 2x 1 12x 1 2x Writing f x as a sum of two geometric series, we have 3 4x 7 2x 2 3x 2 n0 2 2 x 15. 1 n 22x n n0 n0 31n 1 1 1 2n1 xn, x < or < x < . 2n1 2 2 2 2 1 1 1 x2 1 x 1 x Writing f x as a sum of two geometric series, we have 2 xn xn 1 1n x n 2x 2n. 2 1x n0 n0 n0 n0 The interval of convergence is x 2 < 1 or 1 < x < 1 since lim n→ un1 2 x 2n2 lim x2 . n→ un 2 x2n 16. First finding the power series for 44 x, we have 1 1 x 1 14x n0 4 n 1n xn 4n n0 Now replace x with x2. 1n x 2n 4 . 4 x2 n0 4n The interval of convergence is x 2 < 4 or 2 < x < 2 since lim n→ 17. un1 1 x lim n→ un 4n1 n1 2n2 4n 1n x 2n x2 x2 . 4 4 1 1n x n 1 x n0 1 1n xn 12n x n xn 1 x n0 n0 n0 hx 1 1 2 1n x n xn 1n 1 x n 1 1 x 1 x n0 n0 n0 x2 2 0x 2x2 0x3 2x4 0x5 2x6 . . . 2x n0 2n, 1 < x < 1 (See Exercise 15.) 323 324 Chapter 9 18. hx Infinite Series 1 1 n 1 x 1 1nxn x 2n0 x2 1 21 x 21 x 2n0 1 1 1n 1xn 0 2x 0x2 2x3 0x4 2x5 . . . 2n0 2 1 2x2n1 x2n1, 1 < x < 1 2n0 n0 19. By taking the first derivative, we have d 1 x 12 dx d 1 1 . Therefore, dx x 1 x 12 1 x 1 nx n n n0 n n1 n1 1 n1 n 1 x n, 1 < x < 1. n0 d2 2 x 13 dx 2 d dx 1 x n n n0 1 nx 1 nn 1x n n1 n1 21. By integrating, we have lnx 1 d2 1 2 . Therefore, dx 2 x 1 x 13 20. By taking the second derivative, we have n n2 n2 1 n 2n 1 x , 1 < x < 1. n n n0 1 dx lnx 1. Therefore, x1 1n x n dx C n0 1n x n1 , 1 < x ≤ 1. n1 n0 To solve for C, let x 0 and conclude that C 0. Therefore, lnx 1 1n x n1 , 1 < x ≤ 1. n1 n0 22. By integrating, we have 1 dx ln1 x C1 and 1x 1 dx ln1 x C2. 1x f x ln1 x 2 ln1 x ln1 x. Therefore, ln1 x 2 1 dx 1x 1 dx 1x 1n x n dx n0 C n0 x n dx C1 x2n2 n 1, 1 < x < 1. n0 23. x2 1 1n x 2n 1n x 2n, 1 < x < 1 1 n0 n0 2x 2n2 1x 2n2 1n 1 xn1 C C n1 n1 n0 n0 2n 2 n0 To solve for C, let x 0 and conclude that C 0. Therefore, ln1 x2 x n1 1n x n1 C2 n 1 n0 n0 n 1 Section 9.9 24. Representation of Functions by Power Series 325 2x 2x 1n x 2n (See Exercise 23.) x2 1 n0 1 2x n 2n1 n0 Since 2x d lnx 2 1 2 , we have dx x 1 lnx 2 1 1n 2x 2n1 dx C n0 1n x 2n2 , 1 ≤ x ≤ 1. n1 n0 To solve for C, let x 0 and conclude that C 0. Therefore, lnx 2 1 1 1 1 1 1n x n, we have 2 1n 4x 2n 1n 4n x 2n 1n 2x2n, < x < . x 1 n0 4x 1 n0 2 2 n0 n0 25. Since, 26. Since 1n x 2n2 , 1 ≤ x ≤ 1. n1 n0 1 1 dx arctan2x, we can use the result of Exercise 25 to obtain 4x 2 1 2 arctan2x 2 1 dx 2 4x 2 1 1n 4n x 2n1 1 1 , < x ≤ . 2n 1 2 2 n0 1n 4n x 2n dx C 2 n0 To solve for C, let x 0 and conclude that C 0. Therefore, 1n 4nx 2n1 1 1 , < x ≤ . 2n 1 2 2 n0 arctan2x 2 27. x x2 x 2 x3 ≤ lnx 1 ≤ x 2 2 3 x x 5 S3 f 2 lnx 1 −4 8 x S2 −3 28. x x2 x 2 x3 2 3 0.0 0.2 0.4 0.6 0.8 1.0 0.000 0.180 0.320 0.420 0.480 0.500 0.000 0.182 0.336 0.470 0.588 0.693 0.000 0.183 0.341 0.492 0.651 0.833 x 2 x3 x 4 ≤ lnx 1 2 3 4 5 S5 f x 2 x3 x 4 x5 ≤ x 2 3 4 5 −4 8 S4 −3 x x x 2 x3 x 4 2 3 4 lnx 1 x x2 2 x3 3 x4 4 x5 5 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.18227 0.33493 0.45960 0.54827 0.58333 0.0 0.18232 0.33647 0.47000 0.58779 0.69315 0.0 0.18233 0.33698 0.47515 0.61380 0.78333 326 29. Chapter 9 Infinite Series 1n1x 1n x 1 x 12 x 13 . . . n 1 2 3 n1 (a) (c) x 0.5: 3 n=3 12n 1n112n 0.693147 n n n1 n1 n=1 0 4 n=2 (d) This is an approximation of ln12 . The error is approximately 0. The error is less than the first omitted term, 151 251 8.7 1018. n=6 −3 (b) From Example 4, 1nx 1n1 1n1x 1n n n1 n1 n0 ln x, 30. 0 < x ≤ 2, R 1. 1nx2n1 x3 x5 x . . . 3! 5! n0 2n 1! (a) 1n122n1 0.4794255386 2n 1! n0 (c) 4 (d) This is an approximation of sin2 . 1 −6 6 The error is approximately 0. −4 (b) 1nx2n1 sin x, R n0 2n 1! 31. gx x line 32. gx x Matches (c) 33. gx x Matches (d) x3 x5 3 5 34. gx x Matches (a) x3 x5 x7 , 3 5 7 Matches (b) 1 In Exercises 35-38, arctan x n n0 35. arctan x3 , cubic with 3 zeros. 3 x2n1 . 2n 1 1 1 142n1 1n 1 1 1n . . . 2n1 4 n0 2n 1 4 192 5120 n0 2n 14 1 1 1 1 Since 5120 < 0.001, we can approximate the series by its first two terms: arctan 4 4 192 0.245. arctan x 2 36. 1 n x 4n2 2n 1 n x 4n3 C, C 0 4n 32n 1 n0 arctan x 2 dx 1 n0 34 arctan x 2 dx 0 1 n0 n 344n3 34n3 1n 4n 32n 1 n0 4n 32n 144n3 27 2187 177,147 192 344,064 230,686,720 Since 177,147230,686,720 < 0.001, we can approximate the series by its first two terms: 0.134. Section 9.9 12 0 1 arctan x 2 1 1 dx . . . 1n x 4n 22n 124n2 8 1152 n0 1 < 0.001, we can approximate the series by its first term: 1152 x 2 arctan x 38. x 2 arctan x dx n x 2n4 2n 42n 1 1 1 1 . . . 2n 42n 122n4 64 1152 n 1 < 0.001, we can approximate the series by its first term: 1152 In Exercises 39– 43, use 41. 1 n0 Since x nx , x < 1 n n0 n1 n1 x x nx n1 nx n, x < 1 2 1 x n1 n1 42. x1 x x 2n 1x n 2n 1x n1, x < 1 2 1 x n0 n0 (See Exercise 41.) x < 1 x n, n1 x 2 arctan x dx 0.016. 0 40. n1 1x 1 x 1 x2 1 x2 1 x2 12 nx 1 x n, x < 1. 1 x n0 d d 1 1 1 x2 dx 1 x dx 0 arctan x 2 dx 0.125. x x 2n3 2n 1 1 0 12 n n0 x 2 arctan x dx 1 n0 12 39. arctan x 2 x 4n2 1n C Note: C 0 dx x 4n 22n 1 n0 Since 2n 1x , x < 1 n n0 43. Pn En 12 n n1 n1 nPn n2 1 n 1 1 n 2 n1 2 n1 1 1 2 2 1 122 1 Since the probability of obtaining a head on a single toss is 2 , it is expected that, on average, a head will be obtained in two tosses. In Exercise 44, 44. (a) (b) 327 arctan x 2 1 x22n1 x 4n1 1n 12 x x n0 2n 1 2n 1 n0 37. Representation of Functions by Power Series 1 x n, x 1. 1 x n0 1 2 n 3 n1 3 n 1 9 n 10 n1 10 n 2 2 n 9 n1 3 n1 9 9 n 100 n1 10 2 1 2 9 1 232 n1 9 100 1 1 9102 9 328 Chapter 9 Infinite Series 45. Replace x with x. 47. Replace x with x and multiply the series by 5. 46. Replace x with x2. 48. Integrate the series and multiply by 1. 49. Let arctan x arctan y . Then, tanarctan x arctan y tan tanarctan x tanarctan y tan 1 tanarctan x tanarctan y xy tan 1 xy arctan 1x xyy . Therefore, arctan x arctan y arctan1x xyy for xy 1. 50. (a) From Exercise 49, we have 1 120 1 120 arctan arctan arctan 119 239 119 239 arctan arctan (b) 2 arctan 1239 28,561 arctan arctan 1 1120119 1201191239 28,561 4 10 1 1 215 5 1 arctan arctan arctan arctan arctan 5 5 5 24 12 1 152 4 arctan 120 1 1 5 5 2512 1 2 arctan 2 arctan arctan arctan arctan arctan 5 5 5 12 12 119 1 5122 4 arctan 1 1 120 1 arctan arctan arctan (see part (a).) 5 239 119 239 4 51. (a) 2 arctan 2 arctan 1 1 1 1 1 0.53 0.55 0.57 1 173 175 177 4 arctan 8 4 3.14 2 7 2 3 5 7 7 3 5 7 1 1 arctan 2 3 (b) 4 arctan 2 4 1 lnx 1 1 123 125 127 1 133 135 137 4 40.4635 40.3217 3.14 3 5 7 3 3 5 7 1n1xn 1n xn1 n1 n n0 n1 1n1xn . n n1 n1 1n112n 1 2n n n1 n ln 54. From Exercise 53, we have 53. From Exercise 21, we have n1 1 1 12 13 56 arctan arctan arctan 2 3 1 1213 56 4 52. (a) arctan 1 4 1 43 17 1 25 arctan arctan arctan arctan arctan 1 arctan 2 7 3 7 1 4317 25 4 (b) 8 arctan Thus, 1 1 4 1 2 2 arctan arctan arctan arctan 2 2 2 1 122 3 12 1 ln 23 0.4055. 1 n1 n1 1n113n 1 n 3 n n1 n ln 13 1 ln 34 0.2877. Section 9.10 1n1 n1 1 n n0 n0 2n1 2 x 2n1 . 2n 1 2n1 0.7854 4 58. From Exercise 56, we have 1 12 1n 2n 1 n0 2n 1 n 329 1 1 1n 2n 1 n0 2n 1 arctan 1 57. From Exercise 56, we have 1 n n0 1n125n 2n n 5 n n1 n 2 7 ln 1 ln 0.3365. 5 5 1 56. From Example 5, we have arctan x 55. From Exercise 53, we have Taylor and Maclaurin Series arctan 2n1 1 n1 n1 1 1 1n 2n1 2n 1 n0 3 2n 1 3 2n1 1 0.4636. 2 1 n n0 arctan 132n1 2n 1 1 0.3218. 3 59. f x arctan x is an odd function (symmetric to the origin). 60. The approximations of degree 3, 7, 11, . . . , 4n 1, n 1, 2, . . . have relative extrema. 61. The series in Exercise 56 converges to its sum at a slower rate because its terms approach 0 at a much slower rate. 62. Because 63. Because the first series is the derivative of the second series, the second series converges for x 1 < 4 and perhaps at the endpoints, x 3 and x 5. 64. Using a graphing utility, you obtain the following partial sums for the left hand side. Note that 1 0.3183098862. d a xn nan x n1, the radius of dx n0 n n1 convergence is the same, 3. n 0: S0 0.3183098784 n 1: S1 0.3183098862 65. 1n n2n 1 3 n0 66. From Example 5 we have arctan x 1 n0 1n 3 2n 1 n0 n n0 n x2n1 . 2n 1 3 1n 32n2n 1 3 1n1 32n1 2n 1 n0 3 3 arctan 3 Section 9.10 13 6 0.9068997 Taylor and Maclaurin Series 1. For c 0, we have: f x e2x f nx 2n e2x ⇒ f n0 2n e2x 1 2x 2xn 4x 2 8x3 16x 4 . . . . 2! 3! 4! n0 n! 1n 2n1 32n1 1n 2n 1! n0 2n 1! n0 3 2n1 sin 3 3 2 0.866025 330 Chapter 9 Infinite Series 2. For c 0, we have: f x e3x f nx 3ne 3x ⇒ f n0 3n e 3x 1 3x 3xn 9x2 27x3 . . . . 2! 3! n0 n! 3. For c 4, we have: f x cosx f 4 fx sinx f 4 22 f x cosx f 4 22 fx sinx f f 4x cosx f 4 2 2 4 2 4 2 2 2 and so on. Therefore, we have: cos x f n4x 4n n! n0 2 2 1 x 4 x 2!4 2 x 43 x 44 . . . 3! 4! 1nn12x 4n . 2 n0 n! 2 [Note: 1nn12 1, 1, 1, 1, 1, 1, 1, 1, . . .] 4. For c 4, we have: f x sin x f 4 2 fx cos x f 4 2 f x sin x f 4 22 fx cos x f 4 22 f 4 4 f 4x sin x 2 2 2 2 and so on. Therefore we have: sin x f n4x 4n n! n0 2 2 2 2 1 x 4 x 2!4 2 1 n0 x 43 x 44 . . . 3! 4! x 4n1 1 . n 1! nn12 Section 9.10 Taylor and Maclaurin Series 5. For c 1, we have, f x ln x fx 1 x f1 1 1 x2 f x f 1 1 2 x3 fx f 4x f 5x f 1 0 f1 2 6 x4 f 41 6 24 x5 f 51 24 and so on. Therefore, we have: ln x f n1x 1n n! n0 0 x 1 x 1 1 n n0 x 12 2x 13 6x 14 24x 15 . . . 2! 3! 4! 5! x 12 x 13 x 14 x 15 . . . 2 3 4 5 x 1n1 . n1 6. For c 1, we have: f x ex f nx ex ⇒ f n1 e ex x 1n f n1x 1n x 12 x 13 x 14 . . . e 1 x 1 e . n! 2! 3! 4! n! n0 n0 7. For c 0, we have: f x sin 2x f 0 0 fx 2 cos 2x f0 2 f x 4 sin 2x f 0 0 fx 8 cos 2x f0 8 f 4x 16 sin 2x f 40 0 f 5x 32 cos 2x f 50 32 f 6x 64 sin 2x f 60 0 f 7x 128 cos 2x f 70 128 and so on. Therefore, we have: sin 2x f n0xn 0x 2 8x3 0x 4 32x5 0x6 128x7 . . . 0 2x n! 2! 3! 4! 5! 6! 7! n0 2x 1n2x2n1 8x3 32x5 128x7 . . . . 3! 5! 7! 2n 1! n0 331 332 Chapter 9 Infinite Series 8. For c 0, we have: f x lnx 2 1 f 0 0 fx 2x x2 1 f0 0 f x 2 2x 2 x2 12 f 0 2 f x 4xx 2 3 x2 13 f 0 0 f 4x 12x 4 6x 2 1 x 2 14 f 40 12 f 5x 48xx 4 10x 2 5 x 2 15 f 50 0 f 6x 2405x6 15x 4 15x 2 1 x 2 16 f 60 240 and so on. Therefore, we have: lnx 2 1 f n0xn 2x 2 0x3 12x 4 0x5 240x6 . . . 0 0x n! 2! 3! 4! 5! 6! n0 x2 1n x 2n2 x 4 x6 . . . . 2 3 n1 n0 9. For c 0, we have: f x secx f 0 1 fx secx tanx f0 0 f x sec3x secx tan2x f 0 1 f x 5 sec3x tanx secx tan3x f 4x 5 secx x 18 sec5 sec3 x x secx tan2 f 0 0 tan4 x f 40 5 f n0xn x 2 5x 4 . . . 1 . n! 2! 4! n0 10. For c 0, we have; f x tanx f 0 0 fx sec2x f0 1 f x 2 sec2x tanx f 0 0 f x 2sec4x 2 sec2x tan2x f 0 2 f 4x 8sec4x tanx sec2x tan3x f 40 0 f 5x 82 sec6x 11 sec4x tan2x 2 sec2x tan4x f 50 16 tanx f n0xn 2x3 16x5 . . . x3 2 x x x5 . . .. n! 3! 5! 3 15 n0 Section 9.10 Taylor and Maclaurin Series 333 1n x2n . n0 2n! 11. The Maclaurin series for f x cos x is Because f n1x ± sin x or ± cos x, we have f n1z ≤ 1 for all z. Hence by Taylor’s Theorem, 0 ≤ Rn x Since lim n→ f n1z n 1! xn1 ≤ x . n 1! n1 xn1 0, it follows that Rnx → 0 as n → . Hence, the Maclaurin series for cos x converges to cos x for all x. n 1! 12. The Maclaurin series for f x e2x is 2xn . n! n0 f n1x 2n1e2x. Hence, by Taylor’s Theorem, 0 ≤ Rnx Since lim n→ f n1z n1 2n1e2z n1 x x . n 1! n 1! 2n1xn1 2xn1 lim 0, it follows that Rnx → 0 as n → . n→ n 1! n 1! Hence, the Maclaurin Series for e2x converges to e2x for all x. 13. The Maclaurin series for f x sinh x is x 2n1 2n 1!. n0 f n1x sinh x or cosh x. For fixed x, 0 ≤ Rnx f n1z n1 sinhz n1 x x → 0 as n → . n 1! n 1! The argument is the same if f n1x cosh x. Hence, the Maclaurin series for sinh x converges to sinh x for all x. 14. The Maclaurin series for f x cosh x is x 2n 2n!. n0 f n1x sinh x or cosh x. For fixed x, 0 ≤ Rnx f n1z n1 sinhz n1 x x → 0 as n → . n 1! n 1! The argument is the same if f 15. Since 1 xk 1 kx 1 x2 1 2x n1x cosh x. Hence, the Maclaurin series for cosh x converges to cosh x for all x. kk 1x 2 kk 1k 2x3 . . . , we have 2! 3! 23x 2 234x3 2345x 4 . . . 1 2x 3x 2 4x3 5x 4 . . . 2! 3! 4! 1 n 1x . n0 kk 1x2 kk 1k 2x3 . . . , we have 2! 3! 2 1 1232x 123252x3 . . . 1 x 2 2! 3! 16. Since 1 xk 1 kx 12 1 x 1 x 13x 2 135x3 . . . 2 222! 233! 1 n1 1 35. . . 2n 1xn 2n n! . n n 334 17. Chapter 9 Infinite Series 2 12 1 2x 1 1 2 2 4 x and since 1 x12 1 1n 1 1 1 1 2 2 4 x n1 1n 1 3 5 . . . 2n 1xn , we have 2n n! n1 35. . . 2n 1x22n 1n 1 1 2 n! 2 n1 n 35. . . 2n 1x2n . n! 3n1 2 1 1434 2 143474 3 . . . 18. 1 x14 1 x x x 4 2! 3! 1 37 3 7 11 4 . . . 3 1 x 2 x2 3 x3 x 4 4 2! 4 3! 444! 1n1 3 1 1 x 4 n2 19. Since 1 x12 1 1n1 1 x 2 n2 we have 1 x 212 1 20. Since 1 x12 1 ex xn 35. 35. x4 . . 2n 3x 2n 2n n! 35. . . . 2n 3xn 2n n! x3 . . 2n 3xn 2 n! 1n1 1 x3 2 n2 x2 xn n . . 4n 5 4nn! 1n1 1 x2 2 n2 1n1 1 x 2 n2 we have 1 x312 1 21. 7 11 . 35. . . 2n 3x3n 2n n! . x5 n! 1 x 2! 3! 4! 5! . . . n0 ex 2 2 22. ex x 2n x 22n x2 x4 x6 x8 1 2 3 4 . . . n n! 2 2 2! 2 3! 2 4! n0 n0 2 n! xn x2 x3 x4 x5 n! 1 x 2! 3! 4! 5! . . . n0 e3x 23. 1n 3n xn 3xn 9x 2 27x3 81x 4 243x5 . . . 1 3x n! n! 2! 3! 4! 5! n0 n0 sin x sin 3x 1nx2n1 n0 2n 1! 24. 1n3x2n1 2n 1! n0 cos x cos 4x 1nx2n x2 x4 x6 1 . . . 2! 4! 6! n0 2n! 1n42nx2n 1n4x2n 2n! 2n! n0 n0 1 25. cos x cos x32 1n x 2n x2 x 4 . . . 1 2n ! 2! 4! n0 1n x322n 2n! n0 1n x3n 2n! n0 1 x3 x6 . . . 2! 4! 26. sin x 16x2 256x4 . . . 2! 4! 1nx2n1 n0 2n 1! 1nx32n1 n0 2n 1! 2 sin x3 2 x9 x15 . . . 3! 5! 2x3 2x9 2x15 . . . 3! 5! 2 x3 Section 9.10 27. ex 1 x x2 x3 x4 x5 . . . 2! 3! 4! 5! ex 1 x x2 x3 x4 x5 . . . 2! 3! 4! 5! e x ex 2x 28. 2x3 2x5 2x7 . . . 3! 5! 7! ex 1 x x3 x2 . . . 2! 3! ex 1 x x2 x3 . . . 2! 3! 2x2 2x4 . . . 2! 4! ex ex 2 1 x e ex 2 sinhx Taylor and Maclaurin Series 2 cos hx ex ex x2n 2 2n! n0 x2n1 x5 x7 x3 x . . . 3! 5! 7! n0 2n 1! 1 29. cos2x 1 cos2x 2 1n2x2n 1 1 2x2 2x4 2x6 . . . 1 11 2 2! 4! 6! 2 2n! n0 30. The formula for the binomial series gives 1 x12 1 1 x 212 1 ln x x 2 1 31. x sin x x x x2 33. 1n 1 3 5 . . . 2n 1x 2n 2n n! n1 dx 1n1 3 5 . . . 2n 1x2n1 2n2n 1n! n1 x3 2 3 x3 x5 . . . 3! 5! 1 3x5 1 3 5x7 . . .. 245 2467 32. x cos x x 1 x4 x6 . . . 3! 5! x 1nx2n2 n0 2n 1! sin x x x33! x55! . . . x x 1 35. 1n 1 3 5 . . . 2n 1xn , which implies that 2n n! n1 1 x 34. 1nx2n x2 x4 . . . ,x0 2! 4! n0 2n 1! eix 1 ix eix 1 ix eix eix 2ix x 2 1 x x2 x4 . . . 2! 4! x3 x5 . . . 2! 4! 1nx2n1 2n! n0 arcsin x 2n!x2n1 n x 2 n!22n 1 n0 1 x 2n!x2n 2 n! 2n 1, x 0 n0 n 2 x 2 ix3 x 4 ix5 x6 ix2 ix3 ix4 . . . 1 ix . . . 2! 3! 4! 2! 3! 4! 5! 6! x 2 ix3 x 4 ix5 x6 ix2 ix3 ix4 . . . 1 ix . . . 2! 3! 4! 2! 3! 4! 5! 6! 2ix3 2ix5 2ix7 . . . 3! 5! 7! 1n x2n1 eix eix x3 x5 x7 x . . . sinx 2i 3! 5! 7! n0 2n 1! 335 336 Chapter 9 Infinite Series 2x 2 2x 4 2x6 . . . 2! 4! 6! 36. eix eix 2 (See Exercise 35.) 1n x 2n eix eix x2 x 4 x6 1 . . . cosx 2 2! 4! 6! 2n! n0 37. f x ex sin x 14 1x x 2 x3 x4 . . . 2 6 24 x x2 x x2 x3 x5 . . . 3 30 x . . . x x6 120 3 5 P5 x3 x3 x4 x4 x5 x5 x5 . . . 2 6 6 6 120 12 24 f −6 6 −2 38. gx ex cos x 8 x2 x 4 x4 . . . 2 6 24 1x 1 x2 24x . . . 2 −6 4 6 g P4 x4 x4 x2 x2 x3 x3 x4 1x . . . 2 2 6 2 24 4 24 1x x3 3 x4 6 −40 . . . 39. hx cos x ln1 x 1 4 x2 x4 . . . 2 24 x x 2 x3 x 4 x5 . . . 2 3 4 5 P5 −3 9 h x x2 x3 x3 x4 x4 x5 x5 x5 . . . 2 3 2 4 4 5 6 24 x x 2 x3 3x5 . . . 2 6 40 −4 40. f x ex ln1 x 1x x4 x 2 x3 . . . 2 6 24 x x2 x 3 −3 P5 3 −3 2 3 4 5 x2 x3 x3 x3 x4 x4 x4 x4 x5 x5 x5 x5 x5 . . . 2 3 2 2 4 3 4 6 5 4 6 12 24 x 2 x3 3x5 . . . 2 3 40 f x x2 x3 x4 x5 . . . Section 9.10 41. gx sin x . Divide the series for sin x by 1 x. 1x Taylor and Maclaurin Series gx x x2 5x3 5x4 6 6 x3 x5 0x4 . . . 1 x x 0x2 6 120 x x2 x3 x2 6 x2 x3 5x3 0x4 6 5x4 5x3 6 6 x5 5x4 6 120 5x4 5x5 6 6 5x 3 5x 4 . . . 6 6 4 x x2 g −6 6 P4 −4 42. f x ex . Divide the series for ex by 1 x. 1x x2 x3 2 3 x2 1x 1x 2 1x x2 0 2 x2 2 1 f x 1 3x 4 . . . 8 x3 x4 x5 . . . 6 24 120 x 2 x 3 3x 4 . . . 2 3 8 6 P4 −6 f 6 −6 x3 6 x3 2 x3 x4 3 24 x3 x4 3 3 3x 4 x5 8 120 3x4 3x5 8 8 43. 45. y x2 x4 x3 x x 3! 3! 44. yx f x x sin x f x x cos x Matches (c) Matches (d) y x x2 f x xe x Matches (a) x3 x2 x 1x 2! 2! 46. x3 x5 x2 x 4 x 1 2! 4! 2! 4! y x 2 x3 x 4 x 21 x x 2 f x x 2 1 1x Matches (b) 337 338 Chapter 9 Infinite Series x 47. 0 0 1n1t2n2 dt n 1! n0 x 0 x 48. x 1 t3 dt 0 1 0 1n11 t3 2 n2 1n1t2n3 2n 3n 1! x 35. 0 n0 . . 2n 3t3n 2n n! 1n11 3 5 . . . 2n 3t3n1 t4 8 3n 12n n! n2 x 1n11 3 5 . . . 2n 3x3n1 x4 8 3n 12n n! n2 1n1x 2n3 2n 3n 1! n0 dt x 0 1nx 1n1 x 12 x 13 x 14 . . . x 1 , n1 2 3 4 n0 we have ln 2 1 1 1 1 . . . 1 1n1 0.6931. (10,001 terms) 2 3 4 n n1 1nx 2n1 x3 x5 x7 x . . . , we have 2n 1 ! 3! 5! 7! n0 1n 0 < x ≤ 2 50. Since sinx sin1 t 49. Since ln x 1n t2n 1 dt n! n0 x et 2 1 dt 1 1 x2 x3 1 2n 1! 1 3! 5! 7! . . . 0.8415. (4 terms) n0 51. Since ex xn n! 1 x 2! 3! . . . , n0 we have e2 1 2 52. Since ex xn 2n 22 23 . . . 7.3891. (12 terms) 2! 3! n0 n! x2 x3 x4 x5 n! 1 x 2! 3! 4! 5! . . . , we have e 1 11 n0 and 1 1 1 1 . . . 2! 3! 4! 5! 1n1 e1 1 1 1 1 1 1 e1 1 . . . 0.6321. (6 terms) e 2! 3! 4! 5! 7! n! n1 54. Since 53. Since cos x 1nx 2n x 2 x 4 x6 x8 1 . . . 2n ! 2! 4! 6! 8! n0 1 cos x 1nx 2n2 x2 x 4 x6 x8 . . . 2! 4! 6! 8! n0 2n 2! 1nx 2n1 1 cos x x3 x5 x7 . . . x 2! 4! 6! 8! n0 2n 2! we have lim x→0 1x 2n1 1 cos x lim 0. x→0 n0 2n 2! x sin x 1n x 2n1 x3 x5 x7 x . . . 2n 1 ! 3! 5! 7! n0 1nx 2n sin x x2 x 4 x6 1 . . . x 3! 5! 7! n0 2n 1! we have lim x→0 1n x 2n sin x lim 1. x→0 n0 2n 1! x Section 9.10 1 55. 0 sin x dx x Since 17 1 1nx 2n dx n0 2n 1! 1 0 7! sin x 1. x 1 x3 x5 x7 . . . dx x 3x arctan x dx x 0 Since 1 0 12 2 4 6 3 2 0 x5 x7 . . . 52 72 12 0 < 0.0001, we have arctan x 1 1 1 1 1 0.4872. dx x 2 3223 5225 7227 9229 Note: We are using lim x→0 arctan x 1. x x 5x . . . 1 x2 x8 16x 5x128 . . . dx x x8 56x 160 1664 0.3 0.3 1 x3 dx 0.1 0.1 1 7 56 0.3 Since 0 0 145 < 0.0001, Since 15 x cos x dx 0 0 1 1 cos x dx 0.5 10 0.3 13 0.1 0.14 0.201. x3 x4 x5 . . . x3 x4 x5 x6 dx . . . 2 3 4 3 42 53 64 1nx4n12 dx 2n! n0 10! x cos x dx 2 0.5 7 14 0 143 144 0.00472. x lnx 1 dx 3 8 0 2 1 4 14 Since 2223223 x 2 0 12 4 14 x lnx 1 dx 9 0.3 0.1 81 0.3 1 x3 d x 1 4 2 6 0.1 < 0.0001, we need two terms. 0.1 3 7 0.3 60. 1n n0 2n 12n 1! 9229 12 59. 0 Note: We are using lim 12 58. < 0.0001, we need three terms: x→0 57. 1 sin x 1 1 dx 1 . . . 0.9461. using three nonzero terms x 3 3! 5 5! 0 56. 1nx 2n1 n0 2n 12n 1! Taylor and Maclaurin Series 1nx4n32 4n 3 2n! 2 n0 2 0 1n2x4n32 n0 4n 32n! 2 0 < 0.0001, we need five terms. 232 272 2112 2152 2192 0.7040. 3 14 264 10,800 766,080 1 2!x 4!x 6!x 8!x . . . dx x 2x2! 3x4! 4x6! 5x8! . . . 2 3 4 2 3 4 5 1 0.5 1 Since 201,600 1 0.55 < 0.0001, we have 1 cos x dx 1 0.5 0.5 61. From Exercise 21, we have 1 2 1 0 2 ex 2 dx 1 2 1 1 1 1 1 0.52 1 0.53 1 0.54 1 0.55 0.3243. 4 72 2880 201,600 1 0 1nx 2n 1 dx nn! 2 2 n0 1 2 x 21 n!2n 1 n0 n 2n1 n 1 0 1 2 1 3 2 1 1 2 2! 5 1n 1 2 2 n!2n 1 n0 n 3! 7 1 23 0.3414. 339 340 Chapter 9 Infinite Series 62. From Exercise 21, we have 1 2 2 ex 2dx 2 1 1 2 2 1 f x x cos 2x P5x x 2x3 1n x 2n1 2 n!2n 1 n0 2 n 1 1 1n2n1 1 2 n0 2nn!2n 1 1 2 1 3 2 7 1 2 31 2 63. 1 1nx 2n dx 2nn! 2 n0 8191 26 6! 13 2! 5 127 23 3! 7 511 24 4! 9 2047 25 5! 11 32,767 131,071 524,287 0.1359. 27 7! 15 28 8! 17 29 9! 19 1n4nx2n1 2n! n0 64. f x sin 2x5 3 x ln1 x 2 x 2 x3 7x 4 11x5 2 4 48 96 P5x 4 2 f f −3 −4 3 8 P5 P5 −2 −4 The polynomial is a reasonable approximation on the interval 0.60, 0.73. The polynomial is a reasonable approximation on the interval 34 , 34. 65. f x x ln x, c 1 P5x x 1 3 g P5 x 13 x 14 71x 15 24 24 1920 −2 4 The polynomial is a reasonable approximation on the interval 4 , 2. 1 66. −2 3 f x x arctan x, c 1 3 P5x 0.7854 0.7618x 1 0.3412 x 2! 1 0.0424 x 3! 1 2 x 14 x 15 1.3025 5.5913 4! 5! 3 f P5 −2 4 −1 The polynomial is a reasonable approximation on the interval 0.48, 1.75. 67. See Guidelines, page 680. 68. a2n1 0 (odd coefficients are zero) 69. (a) Replace x with x. (c) Multiply series by x. (b) Replace x with 3x. 70. The binomial series is 1 xk 1 kx (d) Replace x with 2x, then replace x with 2x, and add the two together. kk 1 2 kk 1k 2 3 . . . x x . The radius of convergence is R 1. 2! 3! Section 9.10 g g kx x 2 ln 1 kv0 cos k v0 cos 71. y tan Taylor and Maclaurin Series 2 3 tan x gx gx gx 2 gkx3 gk2x 4 . . . 2 3 2 3 kv0 cos kv0 cos 2v0 cos 3v0 cos 4v04 cos4 tan x gx2 kgx3 k2gx 4 . . . 2v02 cos2 3v03 cos3 4v04 cos4 . . . 1 , g 32 16 32x 2 11632x3 116232x 4 . . . 2 2 264 12 3643123 4644124 2264x 2 2 3x 32 3x 32 2 24x 4 23x3 . . . 3 364 16 4644162 2n xn n64 16 n n2 73. f x 4 72. 60, v0 64, k y 3x kx 1 4 v0 cos kx gx g kx 1 kv0 cos k2 v0 cos 2 v0 cos kx 1 3 v0 cos tan x e1x , 0, 2 n2 3x 32 xn n32 16 n n2 n2 x0 x0 f x f 0 e1x 0 lim x→0 x0 x 2 (a) (b) f0 lim y x→0 2 e1x . Then x→0 x 2 1 Let y lim x −3 − 2 −1 1 2 3 ln y lim ln x→0 e1x x 2 lim x1 ln x lim 1 x x x→0 2 2 ln x 2 x→0 Thus, y e 0 and we have f0 0. (c) f n0 n f0x f 0x 2 . . . x f 0 0 f x This series converges to f at x 0 only. n! 1! 2! n0 74. (a) f x lnx 2 1 . x2 (b) 1.5 From Exercise 8, you obtain: P 1nx 2n 1 1nx 2n2 x 2n0 n 1 n0 n 1 2 4 lnt2 1 dt t2 x 0 x Gx 6 2 −0.5 8 x x x x . 2 3 4 5 P8 1 (c) Fx 0 P8t d t x 0.25 0.50 0.75 1.00 1.50 2.00 Fx 0.2475 0.4810 0.6920 0.8776 1.1798 1.4096 Gx 0.2475 0.4810 0.6924 0.8865 1.6878 9.6063 0 (d) The curves are nearly identical for 0 < x < 1. Hence, the integrals nearly agree on that interval. . 341 342 Chapter 9 Infinite Series 75. By the Ratio Test: lim n → 76. ln xn1 n 1! n! xn lim n → x n1 0 which shows that xn n! converges for all x. n0 11 xx ln1 x ln1 x x x2 x3 . . . 2 3 2x 2 ln 3 ln x x2 x3 . . . 2 3 x3 x5 x 2n 2 . . . 2x ,R1 3 5 2n 1 n0 1 12 2 1 11 12 12 2 3 2 1 1 124 126 1 1.098065 1 5 7 12 80 448 ln 3 1.098612 77. 53 5 3!4 3 606 10 78. 22 22!3 3 79. 0.54 0.50.54!1.52.5 0.0390625 80. 134373103133 13 5 5! 81. 1 xk k n n0 91 0.12483 729 nx Example: 1 x2 nx 2 n 1 2x x 2 n0 82. Assume e pq is rational. Let N > q and form the following. e 11 1 1 1 1 . . . . . . 2! N! N 1! N 2! Set a N! e 1 1 . . . 1 N! , a positive integer. But, N 1 1! N 1 2! . . . N 1 1 N 11 N 2 . . . < N 1 1 N 1 1 a N! 83. gx 2 1 1 1 1 1 . . . N1 N 1 N 12 N1 1 1 1 N1 x a0 a1x a2 x 2 . . . 1 x x2 x 1 x x2a0 a1x a2 x 2 . . . x a0 a1 a0x a2 a1 a0x2 a3 a2 a1x3 . . . Equating coefficients, a0 0 a1 a0 1 ⇒ a1 1 a2 a1 a0 0 ⇒ a2 1 a3 a2 a1 0 ⇒ a3 2 a4 a3 a2 3, etc. In general, an an1 an2. The coefficients are the Fibonacci numbers. 1 , a contradiction. N . . . 5 128 Review Exercises for Chapter 9 343 84. Assume the interval is 1, 1. Let x 1, 1, f 1 f x 1 x f(x) 121 x2 f (c), c x, 1 f 1 f x 1 x f(x) 121 x2 f (d), d 1, x. Hence, f 1 f 1 2 fx 121 x2 f c 121 x2 f d 2 fx f 1 f 1 121 x2f c 121 x2f d. 2 fx ≤ f 1 f 1 121 x2 f c 121 x2 f d Since f x ≤ 1 and f x ≤ 1, ≤ 1 1 21 x 2 21 x2 1 1 3 x 2 ≤ 4. Thus, f x ≤ 2. Note: Let f x 12 x 12 1. Then f x ≤ 1, f x 1 and f 1 2. Review Exercises for Chapter 9 1. an 1 n! 2. an 2 3. an 4 : 6, 5, 4.67, . . . n Matches (a) 5. an 100.3n1: 10, 3, . . . n 4. an 4 : 3.5, 3, . . . 2 Matches (c) 7. an n n2 1 Matches (d) 5n 2 n The sequence seems to converge to 5. 5n 2 lim a n→ lim n→ n n n 2 The sequence seems to diverge (oscillates). n sin : 1, 0, 1, 0, 1, 0, . . . 2 8. an sin 0 n1 : 6, 4, . . . Matches (b) 8 n→ lim 5 32 6. an 6 12 0 2 0 12 −2 2 5 n n1 0 n→ n2 1 0 n→ n Converges 10. lim 9. lim Converges n3 n→ n 1 11. lim 12. lim n→ 2 n 1 lim lnn n→ 1n Diverges 13. lim n 1 n lim n 1 n n→ n→ 14. lim 1 n→ 1 2n n lim k→ Converges; k 2n 1 k 1 k 12 e12 n 1 n n 1 n lim n→ 1 n 1 n sin n 0 n Converges 15. lim n→ 0 Converges 344 Chapter 9 Infinite Series ln y 0.05 4 17. An 5000 1 y bn cn1n 16. Let n 1, 2, 3 lnbn cn n n 50001.0125n (a) A1 5062.50 A5 5320.41 A2 5125.78 A6 5386.92 A3 5189.85 A7 5454.25 A4 5254.73 A85522.43 1 bn ln b cn ln c. lim ln y lim n n→ n→ b cn Assume b ≥ c and note that the terms bn ln b cn ln c bn ln b cn ln c n n n n n b c b c b cn (b) A40 8218.10 converge as n → . Hence an converges. 18. (a) Vn 120,0000.70n, n 1, 2, 3, 4, 5 (b) V5 120,0000.705 $20,168.40 19. (a) (b) k 5 10 15 20 25 Sk 13.2 113.3 873.8 6448.5 50,500.3 The series diverges geometric r 32 > 1. 20. (a) 120 0 12 − 10 (b) k 5 10 15 20 25 Sk 0.3917 0.3228 0.3627 0.3344 0.3564 The series converges by the Alternating Series Test. 1 0 12 0 21. (a) (b) k 5 10 15 20 25 Sk 0.4597 0.4597 0.4597 0.4597 0.4597 0 The series converges by the Alternating Series Test. 22. (a) 12 − 0.1 (b) k 5 10 15 20 25 Sk 0.8333 0.9091 0.9375 0.9524 0.9615 The series converges, by the Limit Comparison Test with 1 1 1 n . 0 2 12 0 23. Converges. Geometric series, r 0.82, r < 1. 24. Diverges. Geometric series, r 1.82 > 1. 25. Diverges. nth-Term Test. lim an 0. 2 26. Diverges. nth-Term Test, lim an . n→ 3 n→ 27. 3 2 n n0 S 2 Geometric series with a 1 and r . 3 a 1 1 3 1 r 1 23 13 28. 2 2n2 n 4 3 n0 n0 3 See Exercise 27. n 43 12 Review Exercises for Chapter 9 29. 2 1 n n0 30. 3 2 n 1 1 3n n0 2 n0 n 3 1 n n0 2 n 1n 2 3 1 1 1 3 1 2 1 12 1 13 2 2 n n0 345 n 1 n 2 1 1 n0 1 1 23 1 21 12 31 13 41 . . . 3 1 2 31. (a) 0.09 0.09 0.0009 0.000009 . . . 0.091 0.01 0.0001 . . . 0.090.01 n n0 (b) 0.09 0.09 1 1 0.01 11 32. (a) 0.923076 0.923076 1 0.000001 0.0000012 . . . 0.9230760.000001 n n0 (b) 0.923076 0.923076 923,076 1276,923 12 1 0.000001 999,999 1376,923 13 33. D1 8 39 32,0001.055 34. S n n0 D2 0.78 0.78 160.7 32,0001 1.05540 1 1.055 $4,371,379.65 D 8 160.7 160.72 . . . 160.7n . . . 8 160.7 n 8 n0 16 4513 meters 1 0.7 35. See Exercise 110 in Section 9.2. A 36. See Exercise 110 in Section 9.2. Pe rt 1 er12 1 AP 200e0.062 1 e0.0612 1 100 $5087.14 37. x4 lnx dx lim b→ ln3xx 9x1 b 3 3 0 1 1 1 9 9 38. n n1 1 2 1 1 1 2 n n1 n n1 n n n1 lim n→ 3 1 2n 1n3 2n n32 lim 1 32 n→ n3 2n 1n By a limit comparison test with the convergent p-series 1 the series converges. 32 , n1 n 1 n n1 40. 4 3 n n1 Since the second series is a divergent p-series while the first series is a convergent p-series, the difference diverges. 41. 1 12 0.035 1 0.035 12 120 1 n1 1 n34 3 Divergent p-series, p 4 < 1 By the Integral Test, the series converges. 39. 12t $14,343.25 1 12r 1 12r 1 2 1 1 1 2 n 2n n1 n n1 2 The first series is a convergent p-series and the second series is a convergent geometric series. Therefore, their difference converges. 42. n1 nn 2 n1 lim n→ n 1nn 2 n1 lim 1 n→ n 2 1n By a limit comparison test with 1 n, the series diverges. n1 346 43. Chapter 9 3 5 . . . 2n 1 2 4 6 . . . 2n 1 n1 1 an Infinite Series 1 3 44. Since n1 n converges, 3 n1 n 1 converges by the 5 Limit Comparison Test. 3 5 . . . 2n 1 2 4 6 . . . 2n 1 1 1 > 32 54 . . . 2n 2n 2 2n 2n 1 1 1 2n 2 n diverges (harmonic series), Since n1 n1 so does the original series. 45. Converges by the Alternating Series Test. (Conditional convergence) 46. 1nn n1 n 1 an1 n 1 n2 ≤ n an n1 n 0 n1 lim n→ By the Alternating Series Test, the series converges. 48. Converges by the Alternating Series Test. 47. Diverges by the nth-Term Test. an1 49. n e 50. n2 n1 lim n→ an1 n1 lim n12 n→ e an lim n→ lim n→ en2 n e n 1 en2 2n1n n2 n! e n1 3 lnn 1 3 ln n 3 ln n < an, lim 0 n→ n1 n n lim n→ n an1 n 1! lim n→ an en1 lim n→ e 1 n n 1 n1 e By the Ratio Test, the series converges. 2n n 3 n1 lim n→ an1 2n1 lim n→ n 13 an n3 2n 2n3 2 n→ n 13 lim Therefore, by the Ratio Test, the series diverges. 52. 1 35. . . 2n 1 2 5 8 . . . 3n 1 n1 lim n→ an1 1 lim n→ 2 an 3. 5. By the Ratio Test, the series diverges. 2n1 01 0 < 1 51. en n! . . 2n 12n 1 . . 3n 13n 2 By the Ratio Test, the series converges. 2 1 5. 3. . . 3n 1 2n 1 2 lim . . 2n 1 n→ 3 3n 2 Review Exercises for Chapter 9 53. (a) Ratio Test: lim n→ (b) an1 n 135n1 n1 lim lim n→ n→ an n35n n x 5 10 15 20 25 Sn 2.8752 3.6366 3.7377 3.7488 3.7499 35 53 < 1, (c) Converges 4 0 (d) The sum is approximately 3.75. 12 −1 54. (a) The series converges by the Alternating Series Test. (b) x 5 10 15 20 25 Sn 0.0871 0.0669 0.0734 0.0702 0.0721 (c) (d) The sum is approximately 0.0714. 0.3 0 12 0 55. (a) 1 N x2 1x dx N 1 N N 5 10 20 30 40 n 1.4636 1.5498 1.5962 1.6122 1.6202 0.2000 0.1000 0.0500 0.0333 0.0250 5 10 20 30 40 n 1.0367 1.0369 1.0369 1.0369 1.0369 0.0004 0.0000 0.0000 0.0000 0.0000 N 1 2 n1 1 dx x2 N (b) N 1 1 dx 4 x5 4x N 1 4N4 N N 1 5 n1 1 dx x5 N The series in part (b) converges more rapidly. The integral values represent the remainders of the partial sums. 56. No. Let an 3937.5 3937.5 , then a75 0.7. The series is a convergent p-series. n2 n2 n1 57. f x ex2 1 fx ex2 2 1 x2 f x e 4 1 fx ex2 8 f 0 1 f0 f 0 x2 x3 f 0 2! 3! 1 1 x2 1 x3 1 x 2 4 2! 8 3! 1 1 1 1 x x2 x3 2 8 48 P3x f 0 f0x f 0 1 2 1 4 f0 58. f x tan x 1 8 4 1 f 4 2 fx sec2 x f f x 2 sec2 x tan x f fx 4 sec2 x tan2 x 2 sec4 x f 4 4 4 16 P3x 1 2 x 2 x 4 4 2 8 x 3 4 3 347 348 Chapter 9 Infinite Series 959 < 0.001, use four terms. 1809 9! 59. Since sin 95 sin 60. cos0.75 1 95 95 95 0.99594 95180 95180 180 3! 180 5! 180 7! 3 5 3 7 5 7 0.752 0.754 0.756 0.7317 2! 4! 6! 61. ln1.75 0.75 0.752 0.753 0.754 0.755 0.756 . . . 0.7514 0.559062 2 3 4 5 6 14 0.252 0.253 0.254 0.779 2! 3! 4! 62. e0.25 1 0.25 63. f x cos x, c 0 Rnx f n1z n 1! f n1z 64. x n1 ≤ 1 ⇒ Rnx ≤ (a) Rnx ≤ x n1 n 1! 0.5n1 < 0.001 n 1! f x cos x P4x 1 x2 x4 2! 4! P6x 1 x2 x4 x6 2! 4! 6! P10x 1 This inequality is true for n 4. (b) Rnx ≤ 10 P4 1n1 < 0.001 n 1! −10 10 f This inequality is true for n 6. (c) Rnx ≤ x4 x6 x8 x10 x2 2! 4! 6! 8! 10! P6 P10 −10 0.5n1 < 0.0001 n 1! This inequality is true for n 5. (d) Rnx ≤ 2n1 < 0.0001 n 1! This inequality is true for n 10. 65. 10 x n 66. Geometric series which converges only if 2x < 1 or 1 1 2 < x < 2 . Geometric series which converges only if x10 < 1 or 10 < x < 10. 1nx 2n n 12 n0 lim n→ n n0 n0 67. 2x 68. un1 1n1x 2n1 lim n→ un n 22 n 12 1nx 2n x2 R1 Center: 2 Since the series converges when x 1 and when x 3, the interval of convergence is 1 ≤ x ≤ 3. 3nx 2n n n1 lim n→ un1 3n1x 2n1 lim n→ un n1 n 3nx 2n 3x2 1 3 Center: 2 R 5 7 Since the series converges at 3 and diverges at 3 , the interval of convergence is 53 ≤ x < 73 . Review Exercises for Chapter 9 69. n!x 2 n n0 lim n→ 70. un1 n 1!x 2n1 lim n→ un n!x 2n x2 x 2n n 2 2 n0 n0 y x2 < 1 or 2 n y 1n12n 2x2n1 1n2nx2n1 n 2 4 n! 4n1 n 1! 2 n1 n0 y 1n12n 22n 1x2n 4n1 n 1! 2 n0 1n12n 2x2n2 1n12n 22n 1x2n2 x2n2 1n n 2 n1 n 1! 2 n1 n 1! 2 4 4 4 n! n0 n0 n0 1 n1 y 1n14n 12 1 1n n x 2n2 4n1 n 1! 2 4 n! 2 1n11 1 1n n x 2n2 0 4nn! 2 4 n! 2 3nx 2n 2nn! n0 3n12n 2x2n1 3n2nx2n1 n 2 n! 2n1n 1! n1 n0 y 3n12n 22n 1x2n 2n1n 1! n0 n0 2 x n 1n13n22n 2x2n2 1n3n1x2n 3n12n 22n 1x2n n1 n1 2 n 1 ! 2 n 1 ! 2nn! n0 n0 n0 1n13n2x2n2 1n3n1x2n 1n13n12n 2x 2n nn! nn! 2 2 2nn! n0 n0 n0 1n13n2x 2n2 1n3n1x2n 2n 1 1 n 2 n! 2nn! n0 n0 1n13n2x 2n2 1n3n1x2n 2n n 2 n! 2nn! n0 n0 1n3n1x 2n 2n 1n13n1x2n 2n nn! n1n 1! 2n 2 n1 n1 2 1n3n1x2n 2n 2n 0 2nn! n1 n0 2 23 a 3 x 1 x3 1 r 3 3 y y 3xy 3y 73. n0 72. 2n 22n 1 1n12n 2 1n n1 n 2 x 2n2 4n1 n 1! 2 4 n 1! 2 4 n! 1n12n 22n 1 1 1 1n n x 2n2 4n1 n 1! 2 4 n! 2 n0 n0 0 < x < 4. n0 n x2n 4nn!2 1 n0 x2y xy x2y Geometric series which converges only if which implies that the series converges only at the center x 2. 71. 2x n 3n1 74. 3 32 32 a 2 x 1 x2 1 x2 1 r 2 2 n0 3 x n 1n3xn n1 n0 2 349 350 Chapter 9 75. gx Infinite Series 2 x 2 . Power series 3x n0 3 3 Derivative: n 76. Integral: x n1 1 n1 1n3xn1 n1 n0 3 n 3 3 9 n 3 2 n 12 2 x n1 n1 9 n 13 2 x n n0 2x 2 4 8 77. 1 x x2 x3 . . . 3 9 27 n0 3 n 1 3 , 1 2x3 3 2x 1 1 x 3 78. 8 2x 3 x 32 x 33 . . . 8 2 8 4 n0 79. n 3 3 < x < 2 2 8 1 x 34 32 32 , 1 < x < 7 4 x 3 1 x f x sin x fx cos x f x sin x fx cos x, . . . sinx 80. f nx x 34 n n! n0 2 2 3 3 2 x x 2 4 2 2! 4 2 2 2 1nn12 x 34 n . . . 2 n0 n! f x cos x fx sin x f x cos x fx sin x cos x 2 f n 4 x 4 n 2 2 x x n! 2 2 4 2 2! 4 n0 1 1 x 2 4 2 4 n1 n 1! n1 xn n!, we have 3 x f 4x 5 csc5x 15 csc3x cot2x cscx cot4x 2 x 2 4! 4 2 4 . . . 5 x 4! 2 fx 5 csc3x cotx cscx cot3x 1 f n2 x 2 n 1 x n! 2! 2 n0 3 f x csc3x cscx cot2x x 2 3! 4 2 x2 ln 32 x3 ln 33 x 4 ln 34 . . . x ln 3n 1 x ln 3 . n! 2! 3! 4! n0 fx cscx cotx f x cscx cscx 2 n0 82. nn12 x 81. 3x eln3x ex ln3 and since ex 4 . . . Review Exercises for Chapter 9 83. f x 1 x fx f x 1 x2 2 x3 6 fx 4, . . . x f n1x 1 n n!x 1n 1 x 1n, 2 < x < 0 x n0 n! n! n0 n0 84. f x x12 1 fx x12 2 1 1 32 f x x 2 2 f x 121232x 52 f 4x x 12123252x 72, . . . f n4x 4n x 4 x 42 1 2 n! 22 252! n0 2 3x 43 1 3 5x 44 . 283! 2114! . . 1n11 3 5 . . . 2n 3x 4n x 4 2 2 23n1n! n2 85. 1 xk 1 kx 1 x15 1 kk 1x2 kk 1k 2x3 . . . 2! 3! x 1545x2 154595x3 . . . 5 2! 3! 1 1 4x2 1 4 9x3 . . . 1 x 2 5 5 2! 533! 86. 9 14 . 1 1n14 x 5 n2 1 x 2 6 3 . . . x2 x 5 25 125 . . 5n 6xn 5nn! hx 1 x3 hx 31 x4 hx 121 x5 hx 601 x6 h4x 3601 x7 h5x 25201 x8 1nn 2!x n 1nn 2n 1xn 1 12x2 60x3 360x4 2520x5 . . . 1 3x 1 x3 2! 3! 4! 5! 2n! 2 n0 n0 351 352 Chapter 9 1 ln x 87. Infinite Series n1 n1 ln x 1n , n 0 < x ≤ 2 n n1 ln 1 n1 n1 89. ex 1 0.2231 4nn 91. 90. 1n n0 cos 23 1 n n0 x2n , 2n! n1 xn n!, ex n0 12n 1 1.6487 n n! n0 n0 2 n! cos x n1 xn n n1 1 n!, < x < 0 < x ≤ 2 65 1 65n 1 n0 e12 x 1n , n n1 n1 n1 n1 54 1 54n 1 1 ln x 88. e23 < x < 92. < x < 22n 0.7859 3 2n! sin x sin 2n 23n 1.9477 n n! n0 n0 3 n! 1n n0 2n 1 0.1823 5nn 13 1 n n0 x2n1 , 2n 1! < x < 1 0.3272 32n12n 1! 93. The series for Exercise 41 converges very slowly because the terms approach 0 at a slow rate. 94. 1 1 x 3 1 x 312, k 1 2 1 1232 6 123252 9 . . . 1 x 3 x x 2 2! 3! 1 1n1 x3 2 n2 95. (a) f x e 2x 96. (a) 3. . . 2n 1 2nn! x 3n f 0 1 (b) f0 2 f x 4e 2x f 0 4 f x 8e 2x f 0 8 Px 1 2x 4x 2 8x 3 4 1 2x 2x 2 x 3 2! 3! 3 f 0 0 fx 2 cos 2x f0 2 f x 4 sin 2x f 0 0 fx 8 cos 2x f0 8 2x 2xn n0 n! (c) e x e x 1 x x2 . . . 2! 1 x 2!x . . . 4 P 1 2x 2x 2 x 3 3 f 40 0 16 sin 2x f 5x 32 cos 2x f 50 32 f 6x 64 sin 2x f 60 0 f 7x 128 cos 2x f 70 128 —CONTINUED— xn 4 Px 1 2x 2x 2 x 3 3 f x sin 2x sin 2x 0 2x n!, e n0 fx 2e2x f 4x ex 4 0x2 8x3 0x4 32x5 0x6 128x7 . . . 4 8 7 . . . 2x x3 x5 x 2! 3! 4! 5! 6! 7! 3 15 315 2 Review Exercises for Chapter 9 96. —CONTINUED— (b) sin x sin 2x 1nx2n1 n0 2n 1! 1n2x2n1 2x3 2x5 2x7 . . . 2x 2n 1! 3! 5! 7! n0 2x 4 4 8 7 . . . 8x3 32x5 128x7 . . . 2x x3 x5 x 6 120 5040 3 15 315 (c) sin 2x 2 sin x cos x x5 x7 x3 . . . 6 120 5040 4 x7 2x3 2x5 4 4 8 7 . . . . . . 2x x3 x5 x 3 15 315 3 15 315 2 x 2 x 2 x sin t 97. x . . . 1 x2 24x 720 2 4 6 1nt 2n1 n0 2n 1! 0 sin t dt t cos t 98. 1n t 2n sin t t n0 2n 1! x cos 1n t 2n1 n0 2n 12n 1! x x cos 0 0 1 nx 2n1 2n 12n 1! t t 2 2 dt 1 1n t n 1 t n0 ln1 t x 0 1 1 dt 1t n1 n0 1n t n1 2 n0 n 1 arctan x x et 1 lim 1n t n1 2 2n!n 1 n0 2n 0 1 x 2n!n 1 n n1 2 x 2n tn n! x 0 tn n1 1n x n1 2 n0 n 1 x 0 et 1 dt t x3 x5 x7 x9 . . . 3 5 7 9 arctan x 0 x n! tn1 et 1 t n1 n! x 52 x 92 x132 x172 . . . arctan x x 3 5 7 9 x x→0 1n t n 2n2n! n0 2 n0 n t n1 101. et 100. 1n t n lnt 1 t n0 n 1 lnt 1 dt t 1n t 2n 2n! n0 n0 n0 99. x5 x5 x5 x7 x7 x7 x3 x3 x7 . . . 2 6 24 12 120 720 144 240 5040 1 arctan x 1 x2 2x By L’Hôpital’s Rule, lim lim lim 0. x→0 x→0 1 x x→0 1 x2 2x tn x n n! n1 0 xn n n! n1 353 354 Chapter 9 Infinite Series arcsin x x 102. x3 2 3 1 3x5 1 3 5x7 . . . 245 2467 x2 1 3x4 1 3 5x6 arcsin x 1 . . . 23 245 2467 x lim x→0 arcsin x 1 x 1 arcsin x 1 x2 By L’Hôpital’s Rule, lim lim 1. x→0 x→0 x 1 Problem Solving for Chapter 9 1. (a) 1 3 29 427 . . . 3 3 1 1 1 1 2 n n0 2. Let S n→ n0 1 2 3 3 n 13 1 1 23 Then 110 1 1 . . . 22 42 S 1 2 1 1 1 1 2 2. . . S 2 . 22 2 3 2 6 a1 1 and r1 1 3 3 2 3 6 1 . 23 r1 1 2 a2 3 and 1 23r2 2r2 1 . 2 23 2r2 1 r2 3 r2 For six circles, a3 6 and 1 23r3 4r3 r3 1 . 23 4 2r3 1 Continuing this pattern, rn Total Area rn2an An lim An n→ 2 1 4 8 1 23 2n 1 . 23 12n 1 2 nn 1 2 23 2n 1 2 nn 1 2 For three circles, r2 2 1 2 2 3 2 . 6 4 6 6 4 8 3 2 1 1 1 1 . . .. 12 32 52 S nn 1 . 2 For one circle, 1 1 1 2 1 2 2 2 2. . . 6 1 2 3 4 Thus, S 3. If there are n rows, then an 2 n1 1 2 (b) 0, , , 1, etc. 3 3 (c) lim Cn 1 1 2n 1 3 r3 r3 Problem Solving for Chapter 9 4. (a) Position the three blocks as indicated in the figure. The bottom block extends 16 over the edge of the table, the middle block extends 14 over the edge of the bottom block, and the top block extends 12 over the edge of the middle block. 1 6 The centers of gravity are located at bottom block: 1 1 1 6 2 3 middle block: 1 1 1 1 6 4 2 12 top block: 0 1 5 6 12 1 1 1 1 5 . 6 4 2 2 12 The center of gravity of the top 2 blocks is 121 125 2 61, which lies over the bottom block. The center of gravity of the 3 blocks is 31 121 125 3 0 which lies over the table. Hence, the far edge of the top block lies 1 1 1 11 6 4 2 12 beyond the edge of the table. n (b) Yes. If there are n blocks, then the edge of the top block lies 1 2i from the i1 edge of the table. Using 4 blocks, 4 1 1 1 1 1 25 2i 2 4 6 8 24 i1 which shows that the top block extends beyond the table. (c) The blocks can extend any distance beyond the table because the series diverges: 1 1 1 2i 2 i . i1 5. (a) a x n n i1 1 2x 3x2 x3 2x4 3x5 . . . 1 x3 x6 . . . 2x x4 x7 . . . 3x2 x5 x8 . . . 1 x3 x6 . . . 1 2x 3x2 1 2x 3x2 1 1 x3 R 1 because each series in the second line has R 1. (b) a x n n a0 a1x . . . ap1x p1 a0 x p a1x p1 . . . . . . a01 x p . . . a1 x1 x p . . . . . . a p1 x p11 x p . . . a0 a1 x . . . a p1x p11 x p . . . a0 a1 x . . . ap1 x p1 R1 Assume all an > 0. 1 2 1 4 1 1 xp 11 12 355 356 Chapter 9 6. a Infinite Series 1n1a b a b b a b . . . 2 3 4 2n n1 If a b, 1n1 1n12a a converges conditionally. 2n n n1 n1 If a b, ab 1n1a b diverges. 2n n1 n1 2n No values of a and b give absolute convergence. a b implies conditional convergence. ex 1 x 7. (a) xe x xn x2 . . . 2! n0 n! ex 1 x 8. x n1 n0 n! ex 1 x2 2 xe x dx xe x e x C x n2 n0 n 2n! 1 1 1 n 2n! 2 n 2n!. n0 n1 1 1 Thus, . n 2 n! 2 n1 (b) Differentiating, xe x e x n 1xn . n! n0 Letting x 1, 2e 9. Let a1 0 n1 5.4366. n! n0 sin x dx, a2 x 2 sin x dx, a3 x 3 2 sin x dx, etc. x Then, 0 sin x dx a1 a2 a3 a4 . . . . x Since lim an 0 and an1 < an, this series converges. n→ 10. (a) If p 1, 2 If p > 1, 2 1 dx ln ln x x ln x diverges. 2 1 ln b1p ln 21p converges. dx lim b→ xln xp 1p 1p If p < 1, diverges. (b) n4 1 1 1 diverges by part (a). 2 n lnn 2n4 n ln n x4 . . . x12 . . . 2! 6! 12! f 120 1 ⇒ f 120 665,280 12! 6! 6! Letting x 0, you have C 1. Letting x 1, ee1 x2 . . . 2! Problem Solving for Chapter 9 11. (a) a1 3.0 a2 1.73205 a3 2.17533 a4 2.27493 a5 2.29672 a6 2.30146 lim an n→ 1 13 [See part (b) for proof.] 2 (b) Use mathematical induction to show the sequence is increasing. Clearly, a2 a a1 aa > a a1. Now assume an > an1. Then an a > an1 a an a > an1 a an1 > an. Use mathematical induction to show that the sequence is bounded above by a. Clearly, a1 a < a. Now assume an < a. Then a > an and a 1 > 1 implies aa 1 > an1 a2 a > an a2 > an a a > an a an1. Hence, the sequence converges to some number L. To find L, assume an1 an L: L a L ⇒ L2 a L ⇒ L2 L a 0 L 1 ± 1 4a . 2 Hence, L 1 1 4a . 2 12. Let bn an r n. bn 1n an r n1n an1n r → Lr as n → . 1 Lr < r 1. r By the Root Test, 13. (a) 1 2 n1 n 1n S1 b n converges ⇒ a r n n converges. 1 1 1 1 1 . . . 211 221 231 241 251 1 1 20 S1 1 1 9 8 8 S3 9 1 11 8 4 8 S4 1 45 11 8 32 32 S5 45 1 47 32 16 32 —CONTINUED— 357 358 Chapter 9 Infinite Series 13. —CONTINUED— 2n 1 21 an1 n1 1n 1 1 1 n 1 an 2 2 n (b) n 1 1 This sequence is 8, 2, 8, 2, . . . which diverges. (c) 2 n 1 n 1n 14. (a) 2 1n 1 1n 2 1 1 n 1 1 n 12 → 1 and n 2 → 1. → < 1 converges because 21 2, 2, 2, 2, . . . and n 1 n 2 2 n 2 1 1 0.01n 0.99 1 0.01 n0 15. S6 130 70 40 240 1 0.01 0.012 . . . 1.010101 . . . (b) S10 1490 810 440 2740 1 0.02 0.022 . . . 1 0.02 0.0004 . . . 1.0204081632 . . . 1 2 2 1 n 12 n1 (b) S 4 1 1 3 . . . p-series, p 21 < 1 1 1 1 . . . 4 2 3 n1 n 4 1 1 (c) W 1 32 32 . . . 3 2 3 4 1 converges. 3 n1 n32 17. (a) 1 1 1 2n 2 n diverges (harmonic) n1 n1 (b) Let f x sin x. By the Mean Value Theorem, f x f y fcx y coscx y ≤ x y, where c is between x and y. Thus, 0 ≤ sin 2n1 sin2n 1 1 1 1 ≤ 2n 2n 1 1 2n2n 1 Because 1 2n2n 1 converges, the Comparison Theorem n1 tells us that sin2n sin2n 1 converges. n1 1 S8 440 240 130 810 S9 810 440 240 1490 1 1 0.02n 0.98 1 0.02 n0 16. (a) Height 2 1 S7 240 130 70 440 1
© Copyright 2026 Paperzz