MER301: Engineering Reliability LECTURE 13 Chapter 6:6.3-6.4 Multiple Linear Regression Models L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 1 Summary of Topics Multiple Regression Analysis Multiple Regression Equation Precision and Significance of a Regression Model Confidence Limits L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 2 Summary of Topics Linear Regression Analysis Simple Regression Model Least Squares Estimate of the Coefficients Standard Error of the Coefficients Precision and Significance of a Regression Model Precision Standard Error of the Coefficients R2 - Correlation Coefficient Confidence Limits Significance L Berkley Davis Copyright 2009 T-test on Coefficients Analysis of Variance MER301: Engineering Reliability Lecture 12 3 SST SS R SS E Linear Regression Analysis yˆi y ˆ1 xi x ˆ0 ˆ1 xi Least Squares Estimate of the Coefficientsˆ1 S xy / S xx Standard Error of the Coefficients ˆ0 y ˆ1 x Precision and Significance of a Regression Model Precision Simple Regression Model Standard Error of the Coefficients R2 - Correlation Coefficient Confidence Limits Significance L Berkley Davis Copyright 2009 T-test on Coefficients Analysis of Variance MER301: Engineering Reliability Lecture 12 t0 0 / se(0 ) t0 1 / se(1 ) 4 Regression Analysis For those cases where there is not a Mechanistic Model of an engineering process, data are used to generate an Empirical Model. A powerful technique for creating such a model doing is called Regression Analysis In Simple Linear Regression, the Dependent Variable Y is a function of one Independent Variable X Multiple Linear Regression is used when Y is a function of more than one X The form of regression models is based on the underlying physics as much as possible L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 5 Multiple Linear Regression Models Multiple Regression Models are used when the dependent variable Y is a function of more than one independent variable Y fn( x1 , x 2, .....xi ) Consistent with the physics, the model may include non-linear terms such as xi2 , xik , xi x j , xi ln x j , xi e x j , etc Use as few terms as possible, consistent with the physics.. L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 6 General Form of Regression Equation L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 7 Forms of Multiple Regression Equations… Y 0 1 x1 2 x2 Y 50 10 x1 7 x2 L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 8 Forms of Multiple Regression Equations… Interaction terms… Y 0 1 x1 2 x2 3 x1 x2 Y 50 10 x1 7 x2 5 x1 x2 L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 9 Forms of Multiple Regression Equations… Non-linear terms… Y 0 1 x1 2 x2 3 x1 x2 4 x12 5 x22 Y 800 10 x1 7 x2 4 x1 x2 8.5 x12 5 x22 L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 10 General Form of Regression Equation The general form of the multiple regression equation for n data points and k independent variables is k yi ˆ 0 ˆ j xij i i 1,2,........n j 1 L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 11 Matrix Version of Multi-Linear Regression L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 12 Example 13.1 The pull strength of a wire bond in a semiconductor product is an important characteristic. We want to investigate the suitability of using a multiple regression model to predict pull strength (Y) as a function of wire length (x1) and die height (x2). Excel file Example13.1.xls L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 13 Example 13.1(page 2) Pull Strength Y is to be modeled as a function of Wire Length 1and Die Height x2 x Y 0 1 x1 2 x2 Minitab is used to analyze the data set to get values of the ' s L Berkley Davis Copyright 2009 Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MER301: Engineering Reliability Lecture 13 Wire Bond data Pull Strength Wire Length 9.95 2 24.45 8 31.75 11 35 10 25.02 8 16.86 4 14.38 2 9.6 2 24.35 9 27.5 8 17.08 4 37 11 41.95 12 11.66 2 21.65 4 17.89 4 69 20 10.3 1 34.93 10 46.59 15 44.88 15 54.12 16 56.63 17 22.13 6 21.15 5 Die Height 50 110 120 550 295 200 375 52 100 300 412 400 500 360 205 400 600 585 540 250 290 510 590 100 400 14 Example 13.1(page 3) Regression Analysis The regression equation is Pull Strength = 2.26 + 2.74 Wire Length + 0.0125 Die Height SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 0.990512593 0.981115197 0.979398397 2.289367725 25 ANOVA df Regression Residual Total Intercept Wire Length Die Height L Berkley Davis Copyright 2009 2 22 24 SS MS 5990.476035 2995.238 115.3065007 5.241205 6105.782536 Coefficients 2.261049258 2.744011123 0.012538881 Standard Error t Stat 1.060678216 2.131701 0.093577836 29.3233 0.002800034 4.478117 F Significance F 571.478936 1.08952E-19 P-value 0.04444576 3.9636E-19 0.00018764 MER301: Engineering Reliability Lecture 13 Lower 95% Upper 95% Lower 95.0% Upper 95.0% 0.061337283 4.460761 0.06133728 4.46076123 2.54994257 2.93808 2.54994257 2.93807968 0.006731965 0.018346 0.00673196 0.0183458 15 Precision and Significance of the Regression… Dealing with the Precision first…. Standard Error of the Coefficients Coefficient of Determination Confidence Interval on the Mean Response L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 16 Example 13.1(page 4) Regression Analysis The regression equation is Pull Strength = 2.26 + 2.74 Wire Length + 0.0125 Die Height SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 0.990512593 0.981115197 0.979398397 2.289367725 25 ANOVA df Regression Residual Total Intercept Wire Length Die Height L Berkley Davis Copyright 2009 2 22 24 SS MS 5990.476035 2995.238 115.3065007 5.241205 6105.782536 Coefficients 2.261049258 2.744011123 0.012538881 Standard Error t Stat 1.060678216 2.131701 0.093577836 29.3233 0.002800034 4.478117 F Significance F 571.478936 1.08952E-19 P-value 0.04444576 3.9636E-19 0.00018764 MER301: Engineering Reliability Lecture 13 (6-46) Lower 95% Upper 95% Lower 95.0% Upper 95.0% 0.061337283 4.460761 0.06133728 4.46076123 2.54994257 2.93808 2.54994257 2.93807968 0.006731965 0.018346 0.00673196 0.0183458 17 Confidence Interval on Mean Response (6-52) Regression Plot Y = 5.11452 + 2.90270X R-Sq = 96.4 % 70 60 Pull Strengt 50 40 30 20 Regression 10 95% CI 0 0 10 20 Wire Length L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 18 Precision and Significance of the Regression… And now the Significance…. Hypothesis Testing ANOVA L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 19 Example 13.1(page 5) Regression Analysis The regression equation is Pull Strength = 2.26 + 2.74 Wire Length + 0.0125 Die Height SUMMARY OUTPUT (6-48) Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 0.990512593 0.981115197 0.979398397 2.289367725 25 ANOVA df Regression Residual Total Intercept Wire Length Die Height L Berkley Davis Copyright 2009 2 22 24 SS MS 5990.476035 2995.238 115.3065007 5.241205 6105.782536 Coefficients 2.261049258 2.744011123 0.012538881 Standard Error t Stat 1.060678216 2.131701 0.093577836 29.3233 0.002800034 4.478117 F Significance F 571.478936 1.08952E-19 P-value 0.04444576 3.9636E-19 0.00018764 MER301: Engineering Reliability Lecture 13 (6-49) Lower 95% Upper 95% Lower 95.0% Upper 95.0% 0.061337283 4.460761 0.06133728 4.46076123 2.54994257 2.93808 2.54994257 2.93807968 0.006731965 0.018346 0.00673196 0.0183458 20 Analysis of Variance(ANOVA) SUMMARY OUTPUT Regression Statistics Multiple R 0.990512593 R Square 0.981115197 Adjusted R Square 0.979398397 Standard Error 2.289367725 Observations 25 (6-47) ANOVA df Regression Residual Total Intercept Wire Length Die Height L Berkley Davis Copyright 2009 2 22 24 SS MS 5990.476035 2995.238 115.3065007 5.241205 6105.782536 Coefficients 2.261049258 2.744011123 0.012538881 Standard Error t Stat 1.060678216 2.131701 0.093577836 29.3233 0.002800034 4.478117 F Significance F 571.478936 1.08952E-19 P-value 0.04444576 3.9636E-19 0.00018764 MER301: Engineering Reliability Lecture 13 Lower 95% Upper 95% Lower 95.0% Upper 95.0% 0.061337283 4.460761 0.06133728 4.46076123 2.54994257 2.93808 2.54994257 2.93807968 (6-45) 0.006731965 0.018346 0.00673196 0.0183458 21 Summary of Topics Multiple Regression Analysis Multiple Regression Equation Precision and Significance of a Regression Model Confidence Limits L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 13 22
© Copyright 2026 Paperzz