The Effect of Initial State Error for Nonlinear Systems with Delay via

Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2016, Article ID 4619450, 6 pages
http://dx.doi.org/10.1155/2016/4619450
Research Article
The Effect of Initial State Error for Nonlinear Systems with
Delay via Iterative Learning Control
Zhang Qunli
Department of Mathematics, Heze University, Heze, Shandong 274015, China
Correspondence should be addressed to Zhang Qunli; [email protected]
Received 6 February 2016; Accepted 23 March 2016
Academic Editor: Ming Mei
Copyright © 2016 Zhang Qunli. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
An iterative learning control problem for nonlinear systems with delays is studied in detail in this paper. By introducing the πœ†-norm
and being inspired by retarded Gronwall-like inequality, the novel sufficient conditions for robust convergence of the tracking error,
whose initial states are not zero, with time delays are obtained. Finally, simulation example is given to illustrate the effectiveness of
the proposed method.
1. Introduction
Since iterative learning control is proposed by Arimoto et
al. in 1984 (see [1]), this feedforward control approach has
become a major research area in recent years. Iterative learning control, which belongs to the intelligent control methodology, is an approach for fully utilizing the previous control
information and improving the transient performance of
studied systems that is suitable for repetitive movements. Its
goal is to achieve full range of tracking tasks on finite interval
(see [2–14]).
In practice, the control problem of systems with delays
has always been an interesting research, since time delay can
be often encountered in a wide range, such as aircraft systems,
turbojet engines, microwave oscillators, nuclear reactors, and
chemical processes. The existence of time delay in a system
may degrade the control performance and even at worst
may become a source of instability. Stabilization problem of
control systems with delay has received much attention for
several decades and some research results have been reported
in the literature (see [3, 11, 13, 15–23]). However, only a few
results are available for nonlinear systems, combining with
the iterative learning control items, with time delays [11, 24–
26]. In this paper, under the case that the π‘˜th iterative state
vector π‘₯π‘˜ (𝑑) is different from the (π‘˜+1)th iterative state vector
π‘₯π‘˜+1 (𝑑), that is, π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑) =ΜΈ 0, the iterative learning
controller of nonlinear time-delayed systems is designed by
using πœ†-norm and retarded Gronwall-like inequality.
Before ending this section, it is worth pointing out the
main contributions of this paper as follows.
(1) The iterative learning control problem for nonlinear
systems with delays is investigated. That is, we consider the
system
π‘₯Μ‡ π‘˜ (𝑑) = 𝑓 (𝑑, π‘₯π‘˜ (𝑑)) + 𝑔 (𝑑, π‘₯π‘˜ (𝑑 βˆ’ 𝜏)) + π‘’π‘˜ (𝑑) ,
(1)
which is different from the mentioned system
π‘₯Μ‡ π‘˜ (𝑑) = 𝑓 (𝑑, π‘₯π‘˜ (𝑑)) + π‘’π‘˜ (𝑑)
(2)
in past literature.
(2) Based on retarded Gronwall-like inequality and the
convergence of tracking error π‘’π‘˜ (𝑑) = 𝑦𝑑 (𝑑) βˆ’ π‘¦π‘˜ (𝑑), the
practical output π‘¦π‘˜ (𝑑) is determinate by the previous iterative
learning control information π‘₯π‘˜ (𝑑), π‘’π‘˜ (𝑑), πœ‘π‘˜,β„Ž (𝑑).
2. Preliminaries
Throughout this paper, the 2-norm for the 𝑛-dimensional
vector π‘₯ = (π‘₯1 , π‘₯2 , . . . , π‘₯𝑛 )𝑇 is defined as β€–π‘₯β€– = (βˆ‘π‘›π‘–=1 π‘₯𝑖2 )1/2 ,
while the πœ†-norm for a function is defined as β€– β‹… β€–πœ† =
supπ‘‘βˆˆ[0,𝑇] {π‘’βˆ’πœ†π‘‘ β€– β‹… β€–}, where the superscript 𝑇 represents the
transpose and πœ† > 0. 𝐼 and 0 represent the identity matrix
and a zero matrix, respectively.
2
Advances in Mathematical Physics
Lemma 1 (see [10, 27]). Consider
3. Main Results
𝑑
sup (π‘’βˆ’πœ†π‘‘ ∫ β€–π‘₯ (𝜏)β€– π‘‘πœ) ≀
0
π‘‘βˆˆ[0,𝑇]
1
β€–π‘₯ (𝑑)β€–πœ† .
πœ†
Consider the following system with time delay:
(3)
Lemma 2 (see [28] retarded Gronwall-like inequality). Consider such an inequality
𝑛
𝑒 (𝑑) ≀ π‘Ž (𝑑) + βˆ‘ ∫
𝑏𝑖 (𝑑)
𝑖=1 𝑏𝑖 (𝑑0 )
π‘₯Μ‡ π‘˜ (𝑑) = 𝑓 (𝑑, π‘₯π‘˜ (𝑑)) + 𝑔 (𝑑, π‘₯π‘˜ (𝑑 βˆ’ 𝜏)) + π‘’π‘˜ (𝑑) ,
π‘’π‘˜+1 (𝑑) = π‘’π‘˜ (𝑑) + π‘€π‘’π‘˜ (𝑑)
βˆ’ πœ“π‘˜,β„Ž (𝑑) (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) ,
π‘¦π‘˜ (𝑑) = 𝐢π‘₯π‘˜ (𝑑) + π·π‘’π‘˜ (𝑑) βˆ’ πœ‘π‘˜,β„Ž (𝑑) ,
𝑓𝑖 (𝑑, 𝑠) 𝑀𝑖 (𝑒 (𝑠)) 𝑑𝑠,
(4)
𝑑0 ≀ 𝑑 < 𝑑1 ,
and suppose that
(1) all 𝑀𝑖 (𝑖 = 1, 2, . . . , 𝑛) are continuous and nondecreasing functions on [0, +∞) and are positive on (0, +∞)
such that 𝑀1 ∝ 𝑀2 ∝ β‹… β‹… β‹… ∝ 𝑀𝑛 ;
(2) π‘Ž(𝑑) is continuously differentiable in 𝑑 and nonnegative
on [𝑑0 , 𝑑1 ), where 𝑑0 , 𝑑1 are constants and 𝑑0 < 𝑑1 ;
(3) all 𝑏𝑖 : [𝑑0 , 𝑑1 ) β†’ [𝑑0 , 𝑑1 ) (𝑖 = 1, 2, . . . , 𝑛) are
continuously differentiable and nondecreasing such
that 𝑏𝑖 (𝑑) ≀ 𝑑 on [𝑑0 , 𝑑1 );
(4) all 𝑓𝑖 (𝑑, 𝑠), 𝑖 = 1, 2, . . . , 𝑛, are continuous and nonnegative functions on [𝑑0 , 𝑑1 ) × [𝑑0 , 𝑑1 ).
πœ‘π‘˜+1,β„Ž (𝑑) = πœ‘π‘˜,β„Ž (𝑑) βˆ’ π·πœ“π‘˜,β„Ž (𝑑) (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) ,
where π‘₯π‘˜ (𝑑) ∈ 𝑅𝑛 , π‘¦π‘˜ (𝑑) ∈ 𝑅𝑛 , and π‘’π‘˜ (𝑑) ∈ 𝑅𝑛 are the
state vector, output vector, and input vector, respectively. π‘˜
is the number of iterations, π‘˜ ∈ {1, 2, 3, . . .} and 𝑑 ∈ [0, 𝑇].
𝑑
∫0 πœ“π‘˜,β„Ž (πœƒ)π‘‘πœƒ = 1, (𝑑 β‰₯ β„Ž), 𝑀, 𝐢, 𝐷 are real constant matrices;
π‘’π‘˜ (𝑑) = 𝑦𝑑 (𝑑) βˆ’ π‘¦π‘˜ (𝑑), 𝑦𝑑 (𝑑) is a reference output.
Suppose that there exist the bounded constants 𝑙𝑓 > 0 and
𝑙𝑔 > 0 such that
σ΅„©σ΅„©
σ΅„©
σ΅„©
σ΅„©
󡄩󡄩𝑓 (𝑑, π‘₯π‘˜+1 (𝑑)) βˆ’ 𝑓 (𝑑, π‘₯π‘˜ (𝑑))σ΅„©σ΅„©σ΅„© ≀ 𝑙𝑓 σ΅„©σ΅„©σ΅„©π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)σ΅„©σ΅„©σ΅„© ,
󡄩󡄩󡄩𝑔 (𝑑, π‘₯π‘˜+1 (𝑑 βˆ’ 𝜏)) βˆ’ 𝑔 (𝑑, π‘₯π‘˜ (𝑑 βˆ’ 𝜏))σ΅„©σ΅„©σ΅„©
(9)
σ΅„©
σ΅„©
σ΅„©
σ΅„©
≀ 𝑙𝑔 σ΅„©σ΅„©σ΅„©π‘₯π‘˜+1 (𝑑 βˆ’ 𝜏) βˆ’ π‘₯π‘˜ (𝑑 βˆ’ 𝜏)σ΅„©σ΅„©σ΅„© .
Theorem 3. For system (8) and a given reference 𝑦𝑑 (𝑑), if there
exist matrices 𝑀, 𝐢, 𝐷 and functions πœ“π‘˜,β„Ž (𝑑) and πœ‘π‘˜,β„Ž (𝑑) such
that
‖𝐼 βˆ’ 𝐷𝑀‖ ≀ 𝜌 < 1,
𝑠
Take the notation π‘Šπ‘– (𝑠, 𝑠0 ) fl βˆ«π‘  (𝑑𝑧/𝑀𝑖 (𝑧)) for 𝑠 > 0, where
0
𝑠0 > 0 is a given constant. It is denoted by π‘Šπ‘– (𝑠) simply when
there is no confusion. If 𝑒(𝑑) is a continuous and nonnegative
function on [𝑑0 , 𝑑) satisfying (4), then
𝑒 (𝑑) ≀ π‘Šπ‘›βˆ’1 [π‘Šπ‘› (π‘Ÿπ‘› (𝑑)) + ∫
𝑏𝑛 (𝑑)
max 𝑓𝑛 (𝜏, 𝑠) 𝑑𝑠] ,
𝑏𝑛 (𝑑0 ) 𝑑0 β‰€πœ<𝑑
π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)
𝑑
= ∫ (π‘₯Μ‡ π‘˜+1 (πœƒ) βˆ’ π‘₯Μ‡ π‘˜ (πœƒ)) π‘‘πœƒ + π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)
where π‘Ÿπ‘› (𝑑) is determined recursively by
0
𝑑
= ∫ (𝑓 (πœƒ, π‘₯π‘˜+1 (πœƒ)) βˆ’ 𝑓 (πœƒ, π‘₯π‘˜ (πœƒ))) π‘‘πœƒ
𝑑
󡄨
󡄨
π‘Ÿ1 (𝑑) fl π‘Ž (𝑑0 ) + ∫ σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘ŽσΈ€  (𝑠)󡄨󡄨󡄨󡄨 𝑑𝑠,
𝑑
0
𝑑
0
𝑏𝑛 (𝑑)
max 𝑓𝑛 (𝜏, 𝑠) 𝑑𝑠] ,
(6)
𝑏𝑛 (𝑑0 ) 𝑑0 β‰€πœ<𝑑
+ ∫ (𝑔 (πœƒ, π‘₯π‘˜+1 (πœƒ βˆ’ 𝜏)) βˆ’ 𝑔 (πœƒ, π‘₯π‘˜ (πœƒ βˆ’ 𝜏))) π‘‘πœƒ
0
𝑑
+ ∫ (π‘’π‘˜+1 (πœƒ) βˆ’ π‘’π‘˜ (πœƒ)) π‘‘πœƒ + π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)
𝑖 = 1, 2, . . . , 𝑛 βˆ’ 1;
0
𝑑
= ∫ (𝑓 (πœƒ, π‘₯π‘˜+1 (πœƒ)) βˆ’ 𝑓 (πœƒ, π‘₯π‘˜ (πœƒ))) π‘‘πœƒ
𝑇 < 𝑑1 and 𝑇 is the largest number such that
π‘Šπ‘– (π‘Ÿπ‘– (𝑇)) + ∫
𝑏𝑛 (𝑇)
max 𝑓𝑛 (𝜏, 𝑠) 𝑑𝑠 ≀ ∫
𝑏𝑛 (𝑑0 ) 𝑑0 β‰€πœ<𝑇
+∞
𝑠0
0
𝑑𝑧
,
𝑀𝑖 (𝑧)
𝑖 = 1, 2, . . . , 𝑛.
𝑑
+ ∫ (𝑔 (πœƒ, π‘₯π‘˜+1 (πœƒ βˆ’ 𝜏)) βˆ’ 𝑔 (πœƒ, π‘₯π‘˜ (πœƒ βˆ’ 𝜏))) π‘‘πœƒ
(7)
(10)
where 𝜌 is a constant, then system (8) with the iterative learning
control law can guarantee that β€–π‘¦π‘˜ (𝑑) βˆ’ 𝑦𝑑 (𝑑)β€– is bounded but
π‘¦π‘˜ (𝑑) cannot track 𝑦𝑑 (𝑑) on 𝑑 ∈ [0, β„Ž] and limπ‘˜β†’βˆž π‘¦π‘˜ (𝑑) = 𝑦𝑑 (𝑑)
on 𝑑 ∈ [β„Ž, 𝑇] for arbitrary initial state π‘₯π‘˜ (0).
Proof. It is easy to know that, for any 𝑑 ∈ [β„Ž, 𝑇],
(5)
𝑑0 ≀ 𝑑 ≀ 𝑇,
π‘Ÿπ‘–+1 (𝑑) fl π‘Šπ‘–βˆ’1 [π‘Šπ‘– (π‘Ÿπ‘– (𝑑)) + ∫
(8)
0
𝑑
+ ∫ π‘€π‘’π‘˜ (πœƒ) π‘‘πœƒ
0
Advances in Mathematical Physics
3
𝑑
Using Lemma 1 and multiplying both sides of the above
inequality (14) by π‘’βˆ’πœ†π‘‘ and taking the πœ†-norm, we have
σ΅„©σ΅„©
σ΅„©
σ΅„©σ΅„©π‘’π‘˜+1 (𝑑)σ΅„©σ΅„©σ΅„©πœ†
σ΅„©
σ΅„©
≀ ‖𝐼 βˆ’ 𝐷𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©πœ†
βˆ’ (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) (∫ πœ“π‘˜,β„Ž (πœƒ) π‘‘πœƒ βˆ’ 1)
0
𝑑
= ∫ (𝑓 (πœƒ, π‘₯π‘˜+1 (πœƒ)) βˆ’ 𝑓 (πœƒ, π‘₯π‘˜ (πœƒ))) π‘‘πœƒ
0
𝑑
+ ∫ (𝑔 (πœƒ, π‘₯π‘˜+1 (πœƒ βˆ’ 𝜏)) βˆ’ 𝑔 (πœƒ, π‘₯π‘˜ (πœƒ βˆ’ 𝜏))) π‘‘πœƒ
+
0
𝑑
+ ∫ π‘€π‘’π‘˜ (πœƒ) π‘‘πœƒ.
‖𝐢‖ ‖𝑀‖ 𝑒(1+𝑙𝑔 /𝑙𝑓 )𝑇 σ΅„©σ΅„©
σ΅„©
σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©πœ†
πœ†
= (‖𝐼 βˆ’ 𝐷𝑀‖ +
0
(11)
𝑑
σ΅„©
σ΅„©
σ΅„©
σ΅„©σ΅„©
σ΅„©σ΅„©π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)σ΅„©σ΅„©σ΅„© ≀ 𝑙𝑓 ∫ σ΅„©σ΅„©σ΅„©π‘₯π‘˜+1 (πœƒ) βˆ’ π‘₯π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ
0
π‘‘βˆ’πœ
0βˆ’πœ
σ΅„©
σ΅„©σ΅„©
σ΅„©σ΅„©π‘₯π‘˜+1 (πœƒ) βˆ’ π‘₯π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ
(12)
𝑑
σ΅„©
σ΅„©
+ ∫ ‖𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ.
0
0
𝑑
In this paper, we use Lemma 2. Taking 𝑑0 = 0, 𝑏1 (𝑑) = 𝑑,
𝑑
𝑠
𝑏2 (𝑑) = 𝑑 βˆ’ 𝜏, π‘Ž(𝑑) = ∫0 β€–π‘€β€–β€–π‘’π‘˜ (πœƒ)β€–π‘‘πœƒ, π‘Š1 (𝑠) = 𝑙𝑓 ∫1 (𝑑𝑧/𝑧) =
𝑠
𝑙𝑓 ln𝑠, and π‘Š2 (𝑠) = 𝑙𝑔 ∫1 (𝑑𝑧/𝑧) = 𝑙𝑔 ln𝑠, then π‘Ÿ1 (𝑑) =
𝑑
∫0 β€–π‘€β€–β€–π‘’π‘˜ (πœƒ)β€–π‘‘πœƒ and π‘Ÿ2 (𝑑) = exp[ln(∫0 β€–π‘€β€–β€–π‘’π‘˜ (πœƒ)β€–π‘‘πœƒ) +
𝑑
(𝑙𝑔 /𝑙𝑓 )𝑑
∫0 (𝑙𝑔 /𝑙𝑓 )π‘‘πœƒ] = 𝑒
π‘₯π‘˜ (𝑑)β€– ≀ exp[ln(𝑒
(1+𝑙𝑔 /𝑙𝑓 )𝑑
𝑒
𝑑
β‹…βˆ« β€–π‘€β€–β€–π‘’π‘˜ (πœƒ)β€–π‘‘πœƒ. So we have β€–π‘₯π‘˜+1 (𝑑)βˆ’
0
(𝑙𝑔 /𝑙𝑓 )𝑑
𝑑
𝑑
π‘‘βˆ’πœ
∫0 β€–π‘€β€–β€–π‘’π‘˜ (πœƒ)β€–π‘‘πœƒ) + ∫0βˆ’πœ π‘‘πœƒ] =
β‹… ∫0 β€–π‘€β€–β€–π‘’π‘˜ (πœƒ)β€–π‘‘πœƒ:
𝑑
+ ∫ π‘€π‘’π‘˜ (πœƒ) π‘‘πœƒ
0
𝑑
βˆ’ (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) (∫ πœ“π‘˜,β„Ž (πœƒ) π‘‘πœƒ βˆ’ 1) ,
σ΅„©
σ΅„©σ΅„©
σ΅„©σ΅„©π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©
π‘‘βˆ’πœ
+ 𝑙𝑔 ∫
0βˆ’πœ
βˆ’ 𝐢π‘₯π‘˜+1 (𝑑) βˆ’ π·π‘’π‘˜+1 (𝑑) + πœ‘π‘˜+1,β„Ž (𝑑)
0
(16)
σ΅„©
σ΅„©σ΅„©
σ΅„©σ΅„©π‘₯π‘˜+1 (πœƒ) βˆ’ π‘₯π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ
𝑑
σ΅„©
σ΅„©
+ ∫ ‖𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ
0
= π‘’π‘˜ (𝑑) βˆ’ 𝐢 (π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑))
+ (πœ‘π‘˜+1,β„Ž (𝑑) βˆ’ πœ‘π‘˜,β„Ž (𝑑))
0
𝑑
= π‘’π‘˜ (𝑑) + 𝐢π‘₯π‘˜ (𝑑) + π·π‘’π‘˜ (𝑑) βˆ’ πœ‘π‘˜,β„Ž (𝑑)
βˆ’ 𝐷 (π‘’π‘˜+1 (𝑑) βˆ’ π‘’π‘˜ (𝑑))
+ ∫ (𝑔 (πœƒ, π‘₯π‘˜+1 (πœƒ βˆ’ 𝜏)) βˆ’ 𝑔 (πœƒ, π‘₯π‘˜ (πœƒ βˆ’ 𝜏))) π‘‘πœƒ
σ΅„©
σ΅„©
≀ 𝑙𝑓 ∫ σ΅„©σ΅„©σ΅„©π‘₯π‘˜+1 (πœƒ) βˆ’ π‘₯π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ
0
π‘’π‘˜+1 (𝑑) = π‘’π‘˜ (𝑑) + π‘¦π‘˜ (𝑑) βˆ’ π‘¦π‘˜+1 (𝑑)
(13)
σ΅„© 𝑑
σ΅„©σ΅„©
σ΅„©
σ΅„©
σ΅„© σ΅„©σ΅„©
+ σ΅„©σ΅„©σ΅„©π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©βˆ« πœ“π‘˜,β„Ž (πœƒ) π‘‘πœƒ βˆ’ 1σ΅„©σ΅„©σ΅„©
σ΅„©σ΅„© 0
σ΅„©σ΅„©
𝑑
σ΅„©
σ΅„©
≀ 𝑙𝑓 ∫ σ΅„©σ΅„©σ΅„©π‘₯π‘˜+1 (πœƒ) βˆ’ π‘₯π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ
0
= π‘’π‘˜ (𝑑) βˆ’ 𝐢 (π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)) βˆ’ π·π‘€π‘’π‘˜ (𝑑)
π‘‘βˆ’πœ
+ π·πœ“π‘˜,β„Ž (𝑑) (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0))
+ 𝑙𝑔 ∫
0βˆ’πœ
+ (πœ‘π‘˜+1,β„Ž (𝑑) βˆ’ πœ‘π‘˜,β„Ž (𝑑))
σ΅„©
σ΅„©σ΅„©
σ΅„©σ΅„©π‘₯π‘˜+1 (πœƒ) βˆ’ π‘₯π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ
𝑑
σ΅„©
σ΅„©
+ ∫ ‖𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ + πœ‚,
0
= (𝐼 βˆ’ 𝐷𝑀) π‘’π‘˜ (𝑑) βˆ’ 𝐢 (π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)) ,
σ΅„©
σ΅„©
σ΅„©
σ΅„©σ΅„©
σ΅„©σ΅„©π‘’π‘˜+1 (𝑑)σ΅„©σ΅„©σ΅„© ≀ ‖𝐼 βˆ’ 𝐷𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©
σ΅„©
σ΅„©
+ ‖𝐢‖ σ΅„©σ΅„©σ΅„©π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©
σ΅„©
σ΅„©
≀ ‖𝐼 βˆ’ 𝐷𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„© + ‖𝐢‖ 𝑒(1+𝑙𝑔 /𝑙𝑓 )𝑇
π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)
= ∫ (𝑓 (πœƒ, π‘₯π‘˜+1 (πœƒ)) βˆ’ 𝑓 (πœƒ, π‘₯π‘˜ (πœƒ))) π‘‘πœƒ
𝑑
𝑑
‖𝐢‖ ‖𝑀‖ 𝑒(1+𝑙𝑔 /𝑙𝑓 )𝑇 σ΅„©σ΅„©
σ΅„©
) σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©πœ† .
πœ†
Thus, condition (10) can guarantee (‖𝐼 βˆ’ 𝐷𝑀‖ +
‖𝐢‖‖𝑀‖𝑒(1+𝑙𝑔 /𝑙𝑓 )𝑇 /πœ†) < 1 by selecting πœ† sufficiently large, so
we have limπ‘˜β†’βˆž β€–π‘’π‘˜ (𝑑)β€–πœ† = 0 for any 𝑑 ∈ [β„Ž, 𝑇]. It follows from
the equivalence of norms; we get that limπ‘˜β†’βˆž β€–π‘’π‘˜ (𝑑)β€– = 0.
For any 𝑑 ∈ [0, β„Ž],
So we obtain from condition (9)
+ 𝑙𝑔 ∫
(15)
𝑑
𝑑
where πœ‚ = supπ‘‘βˆˆ[0,β„Ž] (β€–π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)β€–β€– ∫0 πœ“π‘˜,β„Ž (πœƒ)π‘‘πœƒ βˆ’ 1β€–).
It is easy to know that
σ΅„©σ΅„©
σ΅„©
σ΅„©σ΅„©π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©
𝑑
(17)
σ΅„©
σ΅„©
≀ 𝑒(1+𝑙𝑔 /𝑙𝑓 )𝑑 (∫ ‖𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ + πœ‚)
0
0
by using Lemma 2.
σ΅„©
σ΅„©
β‹… ∫ ‖𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ.
(14)
4
Advances in Mathematical Physics
Then
σ΅„©
σ΅„©σ΅„©
σ΅„©
σ΅„©
σ΅„©σ΅„©π‘’π‘˜+1 (𝑑)σ΅„©σ΅„©σ΅„© ≀ ‖𝐼 βˆ’ 𝐷𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©
σ΅„©
σ΅„©
+ ‖𝐢‖ σ΅„©σ΅„©σ΅„©π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©
σ΅„©
σ΅„©
≀ ‖𝐼 βˆ’ 𝐷𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©
(18)
𝑑
σ΅„©
σ΅„©
+ ‖𝐢‖ 𝑒(1+𝑙𝑔 /𝑙𝑓 )𝑇 (∫ ‖𝑀‖ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ)
0
+ ‖𝐢‖ 𝑒(1+𝑙𝑔 /𝑙𝑓 )𝑇 πœ‚.
Using Lemma 1 and multiplying both sides of the above
inequality by π‘’βˆ’πœ†π‘‘ and taking the πœ†-norm, we have
σ΅„©
σ΅„©σ΅„©
σ΅„©σ΅„©π‘’π‘˜+1 (𝑑)σ΅„©σ΅„©σ΅„©πœ†
≀ (‖𝐼 βˆ’ 𝐷𝑀‖ +
‖𝐢‖ ‖𝑀‖ 𝑒(1+𝑙𝑔 /𝑙𝑓 )𝑇 σ΅„©σ΅„©
σ΅„©
) σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©πœ† + πœ‚ (19)
πœ†
σ΅„©
σ΅„©
= 𝜎 σ΅„©σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©πœ† + πœ‚,
πœ‚
πœ‚
σ΅„©
σ΅„©
≀ 𝜎 (σ΅„©σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©πœ† +
).
πœŽβˆ’1
πœŽβˆ’1
0 < 𝛿1 𝐼 < 𝑠𝑒 =
πœ•π‘  (π‘₯π‘˜ (𝑑) , π‘’π‘˜ (𝑑))
≀ 𝛿2 𝐼,
πœ•π‘’π‘˜ (𝑑)
πœ•π‘  (π‘₯π‘˜ (𝑑) , π‘’π‘˜ (𝑑))
≀ 𝛿4 𝐼,
0 < 𝛿3 𝐼 < 𝑠π‘₯ =
πœ•π‘₯π‘˜ (𝑑)
(23)
it is easy to obtain that
𝑠 (𝑑, π‘₯π‘˜+1 (𝑑) , π‘’π‘˜+1 (𝑑)) βˆ’ 𝑠 (𝑑, π‘₯π‘˜ (𝑑) , π‘’π‘˜ (𝑑))
where 𝜎 = ‖𝐼 βˆ’ 𝐷𝑀‖ + ‖𝐢‖‖𝑀‖𝑒(1+𝑙𝑔 /𝑙𝑓 )𝑇 /πœ†:
σ΅„©σ΅„©
σ΅„©
σ΅„©σ΅„©π‘’π‘˜+1 (𝑑)σ΅„©σ΅„©σ΅„©πœ† +
Theorem 5. For system (21) and a given reference 𝑦𝑑 (𝑑), if
there exist matrices 𝑀(𝑑), 𝐢(𝑑), and 𝐷(𝑑) and functions πœ“π‘˜,β„Ž (𝑑)
and πœ‘π‘˜,β„Ž (𝑑) such that ‖𝐢(𝑑)‖‖𝑀(𝑑)β€– is bounded and ‖𝐼 βˆ’
𝐷(𝑑)𝑀(𝑑)β€– ≀ 𝜌 < 1, where 𝜌 is a constant, then system
(21) with the iterative learning control law can guarantee that
β€–π‘¦π‘˜ (𝑑) βˆ’ 𝑦𝑑 (𝑑)β€– is bounded but π‘¦π‘˜ (𝑑) cannot track 𝑦𝑑 (𝑑) on
𝑑 ∈ [0, β„Ž] and limπ‘˜β†’βˆž π‘¦π‘˜ (𝑑) = 𝑦𝑑 (𝑑) on 𝑑 ∈ [β„Ž, 𝑇] for arbitrary
initial state π‘₯π‘˜ (0).
When π‘¦π‘˜ (𝑑) = 𝑠(𝑑, π‘₯π‘˜ (𝑑), π‘’π‘˜ (𝑑)) βˆ’ πœ‘π‘˜,β„Ž (𝑑) and 𝑠(𝑑, π‘₯π‘˜ (𝑑),
π‘’π‘˜ (𝑑)) satisfies
= 𝑠π‘₯ (𝜁) (π‘₯π‘˜+1 (𝑑) βˆ’ π‘₯π‘˜ (𝑑))
(20)
(24)
+ 𝑠𝑒 (𝜁) (π‘’π‘˜+1 (𝑑) βˆ’ π‘’π‘˜ (𝑑)) ,
Imitating the above proof, the result limπ‘˜β†’βˆž β€–π‘’π‘˜ (𝑑)β€–πœ† = 0 for
any 𝑑 ∈ [β„Ž, 𝑇] is obtained by selecting πœ† sufficiently large. So
it is true that β€–π‘’π‘˜ (𝑑)β€– is bounded on 𝑑 ∈ [0, β„Ž].
where 𝜁 ∈ [π‘₯π‘˜ (𝑑)+πœ”(π‘₯π‘˜+1 (𝑑)βˆ’π‘₯π‘˜ (𝑑)), π‘’π‘˜ (𝑑)+πœ”(π‘’π‘˜+1 (𝑑)βˆ’π‘’π‘˜ (𝑑))],
πœ” ∈ (0, 1).
Consider the following system:
Remark 4. When the number of iterations π‘˜ β†’ ∞ and
[β„Ž, 𝑇] β†’ [0, 𝑇], the tracking error satisfies that β€–π‘’π‘˜ (𝑑)β€– β†’ 0
on 𝑑 ∈ [0, 𝑇] for arbitrary initial state π‘₯π‘˜ (0).
System (8) is
π‘₯Μ‡ π‘˜ (𝑑) = 𝑓 (𝑑, π‘₯π‘˜ (𝑑)) + 𝑔 (𝑑, π‘₯π‘˜ (𝑑 βˆ’ 𝜏)) + π‘’π‘˜ (𝑑) ,
π‘’π‘˜+1 (𝑑) = π‘’π‘˜ (𝑑) + π‘€π‘’π‘˜ (𝑑)
βˆ’ πœ“π‘˜,β„Ž (𝑑) (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) ,
π‘₯Μ‡ π‘˜ (𝑑) = 𝑓 (𝑑, π‘₯π‘˜ (𝑑)) + 𝑔 (𝑑, π‘₯π‘˜ (𝑑 βˆ’ 𝜏 (𝑑))) + π‘’π‘˜ (𝑑) ,
π‘¦π‘˜ (𝑑) = 𝑠 (𝑑, π‘₯π‘˜ (𝑑) , π‘’π‘˜ (𝑑)) βˆ’ πœ‘π‘˜,β„Ž (𝑑) ,
π‘’π‘˜+1 (𝑑) = π‘’π‘˜ (𝑑) + 𝑀 (𝑑) π‘’π‘˜ (𝑑)
βˆ’ πœ“π‘˜,β„Ž (𝑑) (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) ,
(21)
π‘¦π‘˜ (𝑑) = 𝐢 (𝑑) π‘₯π‘˜ (𝑑) + 𝐷 (𝑑) π‘’π‘˜ (𝑑) βˆ’ πœ‘π‘˜,β„Ž (𝑑) ,
Μ‡ ≀ 𝛾 < 1.
where the delay 𝜏(𝑑) satisfies 0 < 𝜏(𝑑)
Similar to the proof of Theorem 3, inequality (14) is
written as
σ΅„©σ΅„©σ΅„©π‘’π‘˜+1 (𝑑)σ΅„©σ΅„©σ΅„© ≀ ‖𝐼 βˆ’ 𝐷 (𝑑) 𝑀 (𝑑)β€– σ΅„©σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„© + ‖𝐢 (𝑑)β€–
σ΅„©
σ΅„©
σ΅„©
σ΅„©
‖𝐢 (𝑑)β€– ‖𝑀 (𝑑)β€– 𝑒(1+(1βˆ’π›Ύ)𝑙𝑔 /𝑙𝑓 )𝑇 σ΅„©σ΅„©
σ΅„©
) σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©πœ† .
πœ†
Then we have the following.
σ΅„©
σ΅„©σ΅„©
σ΅„©σ΅„©π‘’π‘˜+1 (𝑑)σ΅„©σ΅„©σ΅„©πœ†
σ΅„© σ΅„©
(1+𝑙 /𝑙 )𝑇
σ΅„©
σ΅„©
σ΅„© 󡄩󡄩𝑠 σ΅„©σ΅„© ‖𝑀‖ 𝑒 𝑔 𝑓
σ΅„©
≀ (󡄩󡄩󡄩𝐼 βˆ’ 𝑠𝑒 𝑀󡄩󡄩󡄩 + σ΅„© π‘₯ σ΅„©
) σ΅„©σ΅„©σ΅„©π‘’π‘˜ (𝑑)σ΅„©σ΅„©σ΅„©πœ† .
πœ†
(26)
So we have the following result.
𝑑
σ΅„©
σ΅„©
β‹… ‖𝑀 (𝑑)β€– 𝑒(1+(1βˆ’π›Ύ)𝑙𝑔 /𝑙𝑓 )𝑇 β‹… ∫ σ΅„©σ΅„©σ΅„©π‘’π‘˜ (πœƒ)σ΅„©σ΅„©σ΅„© π‘‘πœƒ,
0
σ΅„©σ΅„©
σ΅„©
σ΅„©σ΅„©π‘’π‘˜+1 (𝑑)σ΅„©σ΅„©σ΅„©πœ† ≀ (‖𝐼 βˆ’ 𝐷 (𝑑) 𝑀 (𝑑)β€–
πœ‘π‘˜+1,β„Ž (𝑑) = πœ‘π‘˜,β„Ž (𝑑) βˆ’ 𝑠𝑒 πœ“π‘˜,β„Ž (𝑑) (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) .
Similar to the proof of Theorem 3, we get
πœ‘π‘˜+1,β„Ž (𝑑) = πœ‘π‘˜,β„Ž (𝑑) βˆ’ 𝐷 (𝑑) πœ“π‘˜,β„Ž (𝑑) (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) ,
+
(25)
(22)
Theorem 6. For system (25) and a given reference 𝑦𝑑 (𝑑), if
conditions (9) are true and there exist matrix 𝑀 and functions
𝑑
πœ“π‘˜,β„Ž (𝑑) and πœ‘π‘˜,β„Ž (𝑑) such that ∫0 πœ“π‘˜,β„Ž (πœƒ)π‘‘πœƒ = 1, 𝑑 > β„Ž, ‖𝑠π‘₯ β€– is
bounded, max(‖𝐼 βˆ’ 𝛿1 𝑀‖, ‖𝐼 βˆ’ 𝛿2 𝑀‖) ≀ 𝜌 < 1, where 𝜌 is
a constant, then system (25) with the iterative learning control
law can guarantee that limπ‘˜β†’βˆž π‘¦π‘˜ (𝑑) = 𝑦𝑑 (𝑑) is bounded but
π‘¦π‘˜ (𝑑) cannot track 𝑦𝑑 (𝑑) on 𝑑 ∈ [0, β„Ž] and limπ‘˜β†’βˆž π‘¦π‘˜ (𝑑) = 𝑦𝑑 (𝑑)
on 𝑑 ∈ [β„Ž, 𝑇] for arbitrary initial state π‘₯π‘˜ (0).
Advances in Mathematical Physics
5
4. Numerical Example
For further illustration, we consider the following system:
π‘₯Μ‡ π‘˜ (𝑑) = 0.8 cos2 (π‘₯π‘˜ (𝑑))
󡄨 󡄨
󡄨
󡄨
βˆ’ 0.5 (󡄨󡄨󡄨π‘₯π‘˜ (𝑑 βˆ’ 1) + 1󡄨󡄨󡄨 βˆ’ 󡄨󡄨󡄨π‘₯π‘˜ (𝑑 βˆ’ 1) βˆ’ 1󡄨󡄨󡄨)
+ π‘’π‘˜ (𝑑) ,
π‘’π‘˜+1 (𝑑) = π‘’π‘˜ (𝑑) + 0.9π‘’π‘˜ (𝑑)
(27)
βˆ’ πœ“π‘˜,β„Ž (𝑑) (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) ,
π‘¦π‘˜ (𝑑) = tanh (2π‘₯π‘˜ (𝑑) + 0.9π‘’π‘˜ (𝑑)) βˆ’ πœ‘π‘˜,β„Ž (𝑑) ,
πœ‘π‘˜+1 (𝑑) = πœ‘π‘˜ (𝑑) βˆ’ 0.9πœ“π‘˜,β„Ž (𝑑) (π‘₯π‘˜+1 (0) βˆ’ π‘₯π‘˜ (0)) ,
where 𝑀 = 0.9 and
πœ‹
πœ‹
{
cos (
𝑑) , 𝑑 ∈ [0, 0.5) ,
2 × 0.5
(28)
πœ“π‘˜,β„Ž (𝑑) = { 2 × 0.5
0,
𝑑
∈
5]
,
[0.5,
{
taking the reference 𝑦𝑑 (𝑑) = sin 𝑑 + 1.
From the above numerical example, it can be easily
proved that the conditions of Theorem 6 are satisfied.
5. Conclusion
In this paper, considering the iterative learning control problem for nonlinear systems with delays, the novel sufficient
conditions for robust convergence of the tracking error have
been addressed.
Competing Interests
The author declares that there are no competing interests.
Acknowledgments
This work is supported by the National Natural Science Foundation of China (11071141), the Natural Science Foundation of
Shandong Province of China (ZR2011AL018, ZR2011AQ008),
and a Project of Shandong Province Higher Educational
Science and Technology Program (J13LI02, J11LA06).
References
[1] S. Arimoto, S. Kawamura, and F. Miyazaki, β€œBettering operation
of Robots by learning,” Journal of Robotic Systems, vol. 1, no. 2,
pp. 123–140, 1984.
[2] H.-S. Lee and Z. Bien, β€œA note on convergence property
of iterative learning controller with respect to sup norm,”
Automatica, vol. 33, no. 8, pp. 1591–1593, 1997.
[3] Y. Chen, Z. Gong, and C. Wen, β€œAnalysis of a high-order
iterative learning control algorithm for uncertain nonlinear
systems with state delays,” Automatica, vol. 34, no. 3, pp. 345–
353, 1998.
[4] J.-X. Xu and Y. Tan, β€œA composite energy function-based
learning control approach for nonlinear systems with timevarying parametric uncertainties,” IEEE Transactions on Automatic Control, vol. 47, no. 11, pp. 1940–1945, 2002.
[5] A. Tayebi, β€œAdaptive iterative learning control for robot manipulators,” Automatica, vol. 40, no. 7, pp. 1195–1203, 2004.
[6] R. H. Chi, Z. S. Hou, and J. X. Xu, β€œAdaptive ILC for a class
of discrete-time systems with iteration-varying trajectory and
random initial condition,” Automatica, vol. 44, no. 8, pp. 2207–
2213, 2008.
[7] C.-J. Chien, β€œA combined adaptive law for fuzzy iterative
learning control of nonlinear systems with varying control
tasks,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 1, pp. 40–
51, 2008.
[8] Y.-C. Wang and C.-J. Chien, β€œDecentralized adaptive fuzzy
neural iterative learning control for nonaffine nonlinear interconnected systems,” Asian Journal of Control, vol. 13, no. 1, pp.
94–106, 2011.
[9] J.-X. Xu, D. Huang, V. Venkataramanan, and T. C. T. Huynh,
β€œExtreme precise motion tracking of piezoelectric positioning stage using sampled-data iterative learning control,” IEEE
Transactions on Control Systems Technology, vol. 21, no. 4, pp.
1432–1439, 2013.
[10] Q. Lv, Y.-C. Fang, and X. Ren, β€œIterative learning control for
accelerated inhibition effect of initial state random error,” Acta
Automatica Sinica, vol. 40, no. 7, pp. 1295–1302, 2014.
[11] J.-M. Wei, Y.-A. Hu, and M.-M. Sun, β€œObserver-based adaptive
iterative learning control for a class of nonlinear time delay
systems with input saturation,” Mathematical Problems in Engineering, vol. 2015, Article ID 645161, 19 pages, 2015.
[12] J. Li and J. Li, β€œIterative learning control approach for a kind of
heterogeneous multi-agent systems with distributed initial state
learning,” Applied Mathematics and Computation, vol. 265, pp.
1044–1057, 2015.
[13] L. Yan and J. Wei, β€œFractional order nonlinear systems with
delay in iterative learning control,” Applied Mathematics and
Computation, vol. 257, pp. 546–552, 2015.
[14] H. Cai, Y. Huang, J. Du, T. Tang, D. Zuo, and J. Li, β€œIterative
learning control with extended state observer for telescope system,” Mathematical Problems in Engineering, vol. 2015, Article
ID 701510, 8 pages, 2015.
[15] S. S. Ge, F. Hong, and T. H. Lee, β€œRobust adaptive control of
nonlinear systems with unknown time delays,” Automatica, vol.
41, no. 7, pp. 1181–1190, 2005.
[16] C. C. Hua, G. Feng, and X. P. Guan, β€œRobust controller design
of a class of nonlinear time delay systems via backstepping
method,” Automatica, vol. 44, no. 2, pp. 567–573, 2008.
[17] X. D. Ye, β€œAdaptive stabilization of time-delay feedforward
nonlinear systems,” Automatica, vol. 47, no. 5, pp. 950–955, 2011.
[18] J. Na, β€œAdaptive prescribed performance control of nonlinear
systems with unknown dead zone,” International Journal of
Adaptive Control and Signal Processing, vol. 27, no. 5, pp. 426–
446, 2013.
[19] Z.-Y. Sun and Y.-G. Liu, β€œAdaptive control design for a class of
uncertain high-order nonlinear systems with time delay,” Asian
Journal of Control, vol. 17, no. 2, pp. 535–543, 2015.
[20] Q.-L. Zhang, β€œSynchronization of multi-chaotic systems via ring
impulsive control,” Control Theory & Applications, vol. 27, no. 2,
pp. 226–232, 2010.
[21] Q. Zhang, β€œSynchronization of multi-chaotic systems with ring
and chain intermittent connections,” Applied Mechanics and
Materials, vol. 241–244, pp. 1081–1087, 2013.
[22] Q. Zhang, β€œA class of vector Lyapunov functions for stability
analysis of nonlinear impulsive differential systems,” Mathematical Problems in Engineering, vol. 2014, Article ID 649012, 9
pages, 2014.
6
[23] Q. Zhang, β€œMatrix measure with application in quantized
synchronization analysis of complex networks with delayed
time via the general intermittent control,” Annals of Applied
Mathematics, vol. 31, no. 1, pp. 115–126, 2015.
[24] W. S. Chen and L. Zhang, β€œAdaptive Iterative learning control
for nonlinearly parameterized systems with unknown timevarying delays,” International Journal of Control, Automation
and Systems, vol. 8, no. 2, pp. 177–186, 2010.
[25] J.-M. Wei, Y.-A. Hu, and M.-M. Sun, β€œA new AILC for a class of
nonlinearly parameterized systems with unknown delays and
input dead-zone,” Journal of Applied Mathematics, vol. 2014,
Article ID 238018, 14 pages, 2014.
[26] J.-M. Wei, Y.-A. Hu, and M.-M. Sun, β€œAdaptive iterative learning
control for a class of nonlinear time-varying systems with
unknown delays and input dead-zone,” IEEE/CAA Journal of
Automatica Sinica, vol. 1, no. 3, pp. 302–314, 2014.
[27] M.-X. Sun and B.-J. Huang, Iterative Learning Control, National
Defence Industry Press, Beijing, China, 1999.
[28] R. P. Agarwal, S. Deng, and W. Zhang, β€œGeneralization of a
retarded Gronwall-like inequality and its applications,” Applied
Mathematics and Computation, vol. 165, no. 3, pp. 599–612,
2005.
Advances in Mathematical Physics
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014