Spectroscopy and the evolution of hot subdwarf stars

Spectroscopy and the evolution
of hot subdwarf stars
Peter Nemeth
Astronomical Institute of the Czech Republic
Pannon Observatory and Visitor Center
Bakonybél
K. U. Leuven - Nov. 9., 2012.
2
Subdwarf stars?
• The Hertzsprung-Russell diagram
• Red Giants, White dwarfs.
• Stellar evolution
• Stellar populations
• Cool/hot subdwarfs
• Globular cluster CMD
• EHB stars.
• Heavy traffic of evolved stars
around the EHB
K. U. Leuven - Nov. 9., 2012.
3
Globular cluster CMD
NGC 2880
Heber, U., 2009, ARA&A, 47, 211
Yi, S.K., 2008, ASPC, 392, 3
K. U. Leuven - Nov. 9., 2012.
4
What we know





Progenitor MS mass between 1 and ~5 Mʘ
Evolved, core helium burning stars
Thin hydrogen layer
Many in binaries with MS or WD companions
Direct evolution towards white dwarfs
K. U. Leuven - Nov. 9., 2012.
5
Structure of subdwarfs
sdB
sdO
From Wikipedia
K. U. Leuven - Nov. 9., 2012.
6
Spectral classification

sdO – dominant H and He II absorption lines

sdB – dominant H lines, weak He I absorption lines
K. U. Leuven - Nov. 9., 2012.
7
A GALEX sample
K. U. Leuven - Nov. 9., 2012.
8
The sample







694 UV-excess objects, NUVV < 0.5
7 observing runs, 2007-2011
~200 targets
Low-resolution, optical
spectroscopy
Modeling with TLUSTYSYNSPEC
Paper I: 52 stars,
interpolation in 3 grids,
H, He
Paper II: 180 stars,
steepest-descent with a
constant level structure,
H, He, CNO
K. U. Leuven - Nov. 9., 2012.
9
The fitting method
Green: Model, T = 40 000 K, log g = 5.6, log He = -1, log CNO = -2
Red: J2059+4232, T = 20 700 K, log g = 4.5, log He = -0.4
log C = -2.8, log N = -2.9, log O < -2.6
K. U. Leuven - Nov. 9., 2012.
10
The fitting method
Green: Model, T = 40 000 K, log g = 5.6, log He = -1, log CNO = -2
Red: J2059+4232, T = 20 700 K, log g = 4.5, log He = -0.4
log C = -2.8, log N = -2.9, log O < -2.6
K. U. Leuven - Nov. 9., 2012.
11
Composite spectra
K. U. Leuven - Nov. 9., 2012.
12
Temperature – gravity
K. U. Leuven - Nov. 9., 2012.
13
Abundances
• Multiple dichotomies
• Can abundance patterns
indicate the evolution or other
properties, like pulsations, of
these stars?
• HST STIS shows high
abundances of iron-peak
elements, but not much Fe.
(O’Toole & Heber, 2006)
• Slow, rapid and hybrid
pulsators are well separated,
but not preictable
K. U. Leuven - Nov. 9., 2012.
14
Luminosity distribution
K. U. Leuven - Nov. 9., 2012.
15
Spectral evolution?
Canonical
e.g.: Zhang X., Jeffery S. C., 2012, MNRAS, 419, 452
K. U. Leuven - Nov. 9., 2012.
Hot-flasher
e.g.: Miller Bertolami M. M. et al., 2008, A&A, 491, 253
16
Spectral evolution? Complicated.
UV flux induces convection,
turbulence, mixing, wind ...
lots of complications.
(Unglaub, 2008)
K. U. Leuven - Nov. 9., 2012.
17
Formation channels

Canonical




Common Envelope
Roche Lobe Overflow
WD Mergers
Hot-flasher



Deep mixing
Shallow mixing
No mixing
K. U. Leuven - Nov. 9., 2012.
18
Puzzling questions




How do subdwarfs form? Which formation
scenarios are viable and what are their
contributions to the observed SD distribution?
What drives the mass-loss on the RGB?
He-sdO  ?  sdB
How clean is the observed population from
ELM WD, post-AGB, CSPN stars?
K. U. Leuven - Nov. 9., 2012.
19
The SD1000 Collaboration






We need spectroscopy for a large sample
Repeat (and later extend) the analysis in a
homogeneous way
Derive homogeneous parameters
Collaborations are important because
subdwarfs link RGs to WDs
GAIA will provide distances and masses
Find binaries
K. U. Leuven - Nov. 9., 2012.
20
References








Østensen, R.H.; Comm. in Asteroseismology, 2008, 159, 75
Heber, U.; ARA&A, 2009, 47, 211
sdB sdO page on Wikipedia
Zhang, X., Jeffery, S. C.; 2012, MNRAS, 419, 452
Miller Bertolami, M. M. et al.; 2008, A&A, 491, 253
Yi, S.K.; 2008, ASPC, 392, 3
O’Toole, S.J; Heber, U.; 2006, A&A, 452, 579
Unglaub, K.; 2008, A&A, 486, 923
K. U. Leuven - Nov. 9., 2012.
21