Chemical Engineering Department Seminar Carnegie Mellon University, Pittsburgh, 27 March 2012 Thermodynamics and Innovative Design for Energy Efficiency and Carbon Capture by Truls Gundersen Department of Energy and Process Engineering Norwegian University of Science and Technology (NTNU) Trondheim, Norway NTNU with important contributions from Audun Aspelund, PhD, 20 March 2012 Chao Fu, PhD, September 2012 Danahe Marmolejo Correa, PhD, Spring 2013 30.03.2012 T. Gundersen Slide no. 1 Comments from a “UK University” October 1988 NTNU Promoting Optimization (Math Programming) was quite challenging in those Days ! 30.03.2012 T. Gundersen Slide no. 2 Thermodynamics and Innovative Design for Energy Efficiency and Carbon Capture NTNU is not about Architecture (the Stata Center at MIT) 30.03.2012 T. Gundersen Slide no. 3 BIGCCS International CCS Research Centre Budget 80 MUSD over 8 years > 20 PhDs and > 10 Post.docs Objectives: 2009-2016 1. Reduce CCS Cost by 50% 2. CO2 Capture Rate of 90% NTNU 3. Fuel-to-Power Penalty ≤ 6 % pts Innovations are required 30.03.2012 T. Gundersen BIGCCS Director: Mona J. Mølnvik BIGCCS Board Chair: Nils A. Røkke SINTEF Energy Research NTNU Coordinator: Truls Gundersen Slide no. 4 Climate Change and CO2 Emissions NTNU Ref.: IPCC, Climate change 2007: The physical science basis 3 Main Options: Mark Twain: ”Climate is what to expect, weather is what you get” 30.03.2012 T. Gundersen 1. 2. 3. Energy Efficiency CO2 Capture & Storage Renewable Energies Slide no. 5 Thermodynamics and Innovative Design for Energy Efficiency and Carbon Capture Greek-to-English: Therme = Warm = Heat (Thermie = Calorie) Dynamis = Force = Power Heat & Power Physics NTNU Chem. Engng. Mech. Engng. Obvious link: Thermodynamics & Energy Efficiency 30.03.2012 T. Gundersen Slide no. 6 Content of the Presentation NTNU 2 “subambient” Processes Scenario: 2 types of Power Stations Design Methodologies Examples will focus on Energy Efficiency and CCS Innovations will be discussed Round up with a Summary ♦ LNG and ASU (Air Separation Units) ♦ Supercritical pulverized Coal based Plant ♦ Combined Cycle Natural Gas based Plant ♦ Both of the Oxy-combustion type for CO2 Capture ♦ Thermodynamics based (Pinch & Exergy Analyses) ♦ Optimization based (Math Programming & Superstructures) ♦ Patent Application for new ASU cycles ♦ Liquefied Energy Chain with offshore LNG 30.03.2012 T. Gundersen Slide no. 7 Audun Aspelund: A Liquefied Energy Chain (LEC) Combined Transport of Natural Gas and CO2 Air O2 Air Separation ASU NG NTNU LNG NG LIN 30.03.2012 LCO2 W H2O LNG Natural Gas Liquefaction Oxyfuel Power Plant CO2 Liquefaction T. Gundersen CO2 Slide no. 8 Danahe Marmolejo Correa: Exergy Analysis & LNG Why is the PRICO Process so inefficient? 2b @ 306 K & 9.8 bar Natural Gas (6) @ 300 K & 50 bar K-102 3 @ 305 K & 24.2 bar 2 @ 361 K & 24.4 bar INTERC-101 LNG (8) @ 109 K & 1.2 bar VLV-201 4 @ 111 K & 24 bar HX-101 COND-101 K-101 NTNU 7 @ 113 K & 49.8 bar 5 @ 108 K & 4.2 bar VLV-101 Mixed Refrigerant (1) @ 294 K & 4 bar 2a @ 346 K & 10 bar 30.03.2012 T. Gundersen Slide no. 9 Chao Fu: ASU Cycles with up to 20% Energy Savings Current State-of-the-Art: NTNU Linde’s Classical Coupled Column Design 30.03.2012 T. Gundersen Slide no. 10 Chao Fu: ASU Cycles with up to 20% Energy Savings NTNU Recuperative Vapor Recompression Cycle - Patented 30.03.2012 T. Gundersen Slide no. 11 A short Tutorial on Exergy What is Exergy? ♦ ”The Maximum Amount of Work that can be produced if a “System” is brought to Equilibrium with its natural Environment through Reversible Processes” ♦ Equilibrium here refers to Composition, Pressure, Temperature, Velocity, Gravitational Level, etc. NTNU Is Exergy related to Entropy? ♦ They are “inverse” properties ♦ Entropy is a measure of disorder (chaos) ♦ Entropy Production in processes due to Irreversibilities is Equivalent to Exergy Losses (and Lost Work) 30.03.2012 Why use Exergy? ♦ Energy Forms have different Qualities, i.e. Exergy ♦ Subambient Refrigeration Compr. Work Exergy ♦ But: Exergy and Cost are often (not always) in Conflict T. Gundersen Slide no. 12 The Exergy of Heat Without 1st Law Losses: Wcycle = QH – QC Without 2nd Law Losses: Thermal Efficiency: (QC /QH) = (QC /QH)rev = TC /TH NTNU Carnot Efficiency: ηmax as function of TH 0.800 0.700 0.600 0.500 Exergy of Heat: 0.400 TC = 0ºC 0.300 TC = 15ºC 0.200 TC = 25ºC 0.100 0.000 0 30.03.2012 T. Gundersen 200 400 600 800 Slide no. 13 Using Exergy in Subambient Processes? & NTNU @ 298 K (25°C) & 50~70 bar Liquefaction @ 109 K (-164°C) & 1 bar Work 30.03.2012 T. Gundersen Slide no. 14 Classification & Decomposition of Exergy 3rd class: Energy Randomness 4th class: Origin Reactional Chemical Concentrational Disordered 2nd class: Carrier Thermo-mechanical ETM Carried by Matter NTNU Temperature part ET Pressure part Ep Kinetic 1st Exergy class: Open/Closed Systems Exergy Parts or Components Mechanical Potential Ordered Electrostatic Electrical Flow Exergy Electrodynamic Nuclear Non-flow Exergy Disordered Heat EQ Radiation Carried by Energy Ordered Electrical D. Marmolejo-Correa, T. Gundersen, ”A Comparison of Exergy Efficiency Definitions with focus on Low Temperature Processes”, submitted to Energy, October 2011. 30.03.2012 T. Gundersen Slide no. 15 Exergy Physical Mechanical Kinetic Potential Chemical Thermomechanical Temperature Pressure based based Mixing & Chemical Separation Reaction Kotas T.J., The exergy method of thermal plant analysis, Krieger Publishing Company, Florida, USA, 1995. NTNU Classification of Exergy Types Bejan A., Tsatsaronis G. and Moran M., Thermal design and optimization, Wiley, New York City, 1996. 30.03.2012 T. Gundersen Slide no. 16 Our Modest Contributions to Exergy Discussed the Various Classifications ♦ OK, it is only a matter of words, but? Looked for Ways to Standardize Terms and Definitions Illustrated the importance of Decomposition ♦ Explains behavior of Compressors/Expanders above/below T0 ♦ Results in Exergy Efficiencies that measure Design Quality NTNU Discussed various Exergy Efficiencies ♦ Compared existing ones applied to LNG Processes ♦ Proposed a new Exergy Efficiency based on Sources & Sinks New “Exergetic” Temperatures (beyond Scope here) New Graphical Diagrams and Representations New Targeting Procedure for Exergy 30.03.2012 T. Gundersen Slide no. 17 Special Behavior of Temperature based Exergy Thermo-mechanical Exergy of a Stream Exergy of Heat . NTNU 2.0 . Exergy, E Exergy ratio of Heat, EQ / Q . 1.5 1.0 0.5 0.0 T < T0 (T , p ) T0 (T0 , p ) 0 0.5 30.03.2012 1 2 3 4 5 Dimensionless Temperature, T T0 T. Gundersen 0 p p0 (T0 , p0 ) Slide no. 18 Consider Expansion above/below Ambient Assume Isentropic Expansion of Ideal Gas, with Cp = 1.0 kJ/kgK and k = Cp / Cv = 1.4 5 bar 523K Exp NTNU 1 bar 330.2K Ambient T0=298 K 5 bar 223K 30.03.2012 Exp 1 bar 140.8K T. Gundersen Slide no. 19 Consider Heat and Exergy Transfer above/below Ambient Temperature Exergy Transfer Temperature (°C) Heat Transfer NTNU 200 Source 150 100 4 Sink 50 2 0 -50 -100 1 E (kW) 3 0 20 40 1 4 60 80 100 120 Sink Source 2 3 -150 Hot Stream (exergy) 30.03.2012 T. Gundersen Cold Stream (exergy) Slide no. 20 What is Exergy Efficiency? (Internal) NTNU Exergy Consumed Process or Unit Operation Exergy Produced D. Marmolejo-Correa, T. Gundersen, ”Challenges in Low Temperature Process Design and Optimization – Using Exergy as the Objective?”, AIChE Mtg., Salt Lake City, November, 2010. 3/30/2012 T. Gundersen Slide no. 21 Exergy Efficiency Definitions (Internal) Exergy Consumed NTNU Process or Unit Operation Exergy Produced Brodyansky et al. (1994) Bejan et al. (1996) Kotas (1995) Marmolejo-Correa and Gundersen (2012) ”Exergy Efficiency” ”Exergetic Efficiency” ”Rational Efficiency” ”Exergy Transfer Effectiveness (ETE)” D. Marmolejo-Correa, T. Gundersen, ”Exergy Transfer Effectiveness for Low Temperature Processes”, to be submitted to Intl. Jl. of Thermodynamics, 2012. 3/30/2012 T. Gundersen Slide no. 22 Applied to the simple PRICO Process NTNU Brodyansky et al. (1994) 30.03.2012 Bejan et al. (1996) Kotas (1995) T. Gundersen Marmolejo-Correa and Gundersen (2012) Slide no. 23 LNG as energy carrier: International Trade 6.9% annual growth in the last 20 years NTNU Source: BP Statistical Review of World Energy 1990-2010 30.03.2012 T. Gundersen Slide no. 24 Liquefied Natural Gas Value Chain NTNU 30.03.2012 T. Gundersen Slide no. 25 Liquefaction of Natural Gas NTNU T. Shukri (Poster Wheeler, UK), ”LNG Technology Selection”, Hydrocarbon Engineering, February 2004 30.03.2012 T. Gundersen Slide no. 26 Some LNG Processes Pure Refrigerant Cycles Optimized Cascade by Conoco-Phillips Mixed Refrigerant Cycles PRICO by Black &Veatch Expansion Cycles Mixed Fluid Cascade (MFC) by Linde-Statoil Reversed Brayton Cycle by TGE NTNU Pre-cooled Mixed Refrigerant (C3MR) by Shell AP-X by APCI 30.03.2012 T. Gundersen Slide no. 27 Cascade Liquefaction Process Natural gas Propane -40°C Ethene NTNU -93°C Methane Fuel gas -163°C FV2001, U 14 LNG 30.03.2012 T. Gundersen Slide no. 28 Liquefaction using Multicomponent Mixtures NTNU 30.03.2012 T. Gundersen Slide no. 29 Linde and Statoil: Mixed Fluid Cascade 3 Mixed Refrigerants T (K) 300 250 NTNU 200 R1 R2 R3 150 100 30.03.2012 ΔH (kW) T. Gundersen Slide no. 30 A new Process Synthesis Methodology utilizing Pressure based Exergy in Subambient Processes ExPAnD = Extended Pinch Analysis and Design The Classical Heat Recovery Problem was redefined ”Given a Set of Process Streams with a Supply and Target State (Temperature, Pressure and the resulting Phase), as well as NTNU Utilities for Heating and Cooling Design a System of Heat Exchangers, Expanders, Pumps and Compressors in such a way that the Irreversibilities (or Costs) are minimized” 10 Heuristic Rules were developed Automated by new Superstructure and Math Programming Aspelund A., Berstad D.O. and Gundersen T. ”An Extended Pinch Analysis and Design Procedure utilizing Pressure based Exergy for Subambient Cooling”, Applied Thermal Engineering, vol. 27, No. 16, pp. 2633-2649, November 2007. 30.03.2012 T. Gundersen Slide no. 31 Application: A Liquefied Energy Chain (LEC) NTNU Key Features of the “LEC” Concept ♦ ♦ ♦ ♦ ♦ Utilization of Stranded Natural Gas for Power Production High Exergy Efficiency of 46.4% (vs. 42.0% for traditional) Innovative and Cost Effective solution to the CCS Problem CO2 replaces Natural Gas injection for EOR Combined Transport Chain for Energy (LNG) and CO2 Aspelund A. and Gundersen T. ”A Liquefied Energy Chain for Transport and Utilization of Natural Gas for Power Production with CO2 Capture and Storage − Part 1”, Journal of Applied Energy, vol. 86, pp. 781-792, 2009. 30.03.2012 T. Gundersen Slide no. 32 NG 0.3% CO2 75.7% Pumping and LNG production heating of LCO2 CO2 75.7% LNG LNG LCO2 CO2 75.7% LN G 89 .1% Power 42.5% CCS powerplant .7% CO2 Liquefaction CO2 12.9% NG 85.2 0.1 CO2 % LNG vaporization NG 0.4% LCO2 ship 5 27 CO LCO2 Power C02 0.4% NG 0.4% CO2 0.3% NG 0.4% CO2 0.4% LNG LCO2 NG 0.3% NG 89.1% LNG ship CO2 0.4% NG 89.9% NG 3.6% LNG production NG 0.4% CO2 9.8% NG 9.8% NG 100% CO2 84.7% Combined process for Liquefaction of NG and heating of LCO2 NG 100% LNG LNG LNG Combined ship CO2 84.7% NG 99.6% CO2 84.7% LN2 LCO2 Combined process for heatin of LNG and liqiefaction of CO2 CO2 14.2% C02 0.7% CO2 0.4% NG 0.4% NG 100% NG 5.4% NTNU NG 94.2 % ”Conventional” ship-based energychain: Loss NG during transport 14%, CO2 emissions 24.3%, Efficiency 42.5% NG 99.6% CCS power plant Power 47.1% CO2 84.7% LCO2 Power New combined energy-chain: Loss NG during transport 5.8%, CO2 emissions 15.3%, Efficiency 47.1% 30.03.2012 T. Gundersen Slide no. 33 Developing the Liquefied Energy Chain − Manual and Automated Design Procedures The ExPAnD Methodology was used ♦ Original version uses 10 Heuristic Rules ♦ Combines Pinch Analysis & Exergy Analysis TH1,out Composite & Grand Composite Curves for Idea Generation related to Process Improvements Exergy Efficiency to Quantify Improvements NTNU TC3,out TC2,in ♦ Optimization has also been included New Superstructure allows Simultaneous Optimization of Networks with Heat Exchangers, Pumps, Compressors and Expanders using Math Programming C-2 E-3 TH4,out A. Wechsung, A. Aspelund, T. Gundersen and P.I. Barton, ”Synthesis of Heat Exchanger Networks at Sub-Ambient Conditions with Compression and Expansion of Process Streams”, AIChE Jl., vol. 57, no. 8, pp. 2090-2108, 2011. 30.03.2012 T. Gundersen E-2 TC3,in TC2,out TC1,in TC1,out TH2,out TH2,in TH3,out TC4,in TH1,in C-1 E-1 TH3,in TC4,out TH4,in C-3 Slide no. 34 Offshore Process without Pressure Manipulations N2-4 N2-3 N2-2 N2-1 CO2-2 NG-3 NG-2 CO2-3 K-100 HX-101 NG-1 HX-102 CO2-1 P-101 LNG LIQ-EXP-102 20 NTNU Temperature [C] HX-101 -30 -80 • • • • HX-102 -130 LIN: 1.75 kg/kgLNG LCO2: 0.41 kg/kgLNG Power Deficit Exergy Efficiency: 55.7% -180 0 5 10 15 20 25 30 Heat flow [MW] Hot CC 30.03.2012 Cold CC T. Gundersen Slide no. 35 Offshore Process with Pressure Manipulations N2-4 N2-7 N2-5 N2-3 CO2-4 CO2-3 N2-2 N2-1 CO2-2 NG-4 NG-3 NG-2 P-102 HX-101 NG-1 NTNU EXP-101 N2-6 HX-102 K-100 P-101 LNG CO2-1 LIQ-EXP-102 20 Temperature [C] HX-101 P-100 -30 -80 HX-102 -130 -180 0 5 10 15 20 25 Heat flow [MW] Hot CC 30.03.2012 30 • • • • • LIN: 1.25 kg/kgLNG LCO2: 1.50 kg/kgLNG Power Surplus Exergy Efficiency: 84.1% No Power Export: 76.3% Cold CC T. Gundersen Slide no. 36 Offshore Process in Balance with respect to Thermal and Mechanical Energy 20 Temperature [C] HX-101 NTNU -30 -80 HX-102 -130 -180 0 5 10 15 20 25 30 Heat flow [MW] Hot CC 30.03.2012 Cold CC T. Gundersen • • • • LIN: 1.0 kg/kgLNG LCO2: 2.2 kg/kgLNG Power Balance Exergy Efficiency: 85.7% Slide no. 37 The Offshore Process in the LEC N2-7 EXP-101 N2-8 K-101 N2-9 N2-4 EXP-102 N2-5 N2-10 N2-12 N2-11 N2-6 N2-3 CO2-4 CO2-3 NTNU P-102 NG-1 N2-1 CO2-2 NG-2 K-100 N2-2 NG-3 NG-5 NG-4 HX-101 HX-102 LIQ-EXP-101 P-101 NG-PURGE NG-6 CO2-1 LIQ-EXP-102 V-101 P-100 LNG No flammable Refrigerants and no Gas Turbines !! 30.03.2012 T. Gundersen Slide no. 38 Detailed Features of the Offshore Process Composite Curves - Offshore Process 100 Temperature [C] 50 0 -50 -100 Hot CC Cold CC -150 -200 0 2 NTNU 4 6 8 Duty [MW] Single Components (here CO2 and N2) exhibit Multicomponent Behavior by Expansion and Compression Aspelund A. and Gundersen T. ”A Liquefied Energy Chain for Transport and Utilization of Natural Gas for Power Production with CO2 Capture and Storage – Part 2, The Offshore and the Onshore Processes”, Journal of Applied Energy, vol. 86, pp. 793-804, 2009. 30.03.2012 T. Gundersen Slide no. 39 Simulation-Optimization of the entire LEC LNG NG LNG S t The field o site LIN r process a LCO2 g e N2 CO2 LNG LNG S LNG NG t The market o site r LIN process CO2 a g LCO2 e LNG P3 LIN P2 P1 F2 LCO2 F1 Electricity Power process with CO2 capture Water N2 LIN LCO2 LCO2 The simple chain The complete chain NTNU CO2-Recycle T2 CO2-7 CO2-9 N2-7 EXP-101 T3 N2-8 T4 P6 N2-12 N2-9 LCO2 N2-13 EXP-102 V-101 T5 N2-11 CO2-3 P-102 HX-101 K-100 P4 30.03.2012 NG-5 NG-4 LIQ-EXP-101 P-101 N2-11 NG-PURGE P2 VF1 CO2-1 LIQ-EXP-102 NG-1 HX-102 LNG NG @ 25 N2-0 4 stage compression K101-K104 HX-101 P3 NG-5 P-101 T. Gundersen 2 stage compression K105-K106 NG-4 P-102 LNG P1 F3 N2-1 N2-8 P3 F1 CO2-1 N2-16 N2-9 V-101 P-100 CO2-4 F1 CO2-12 CO2-13 NG-3 LIN NG-6 CO2-0 CO2-10 CO2-11 NG-2 V-102 HX-102 K-107 N2-15 T7 N2-10 N2-1 T1 Offshore N2-12 N2-2 CO2-2 NG-3 NG-2 T6 F2 N2-3 CO2-4 CO2-5 F4 N2-10 P2 CO2-6 CO2-8 EXP-102 N2-5 N2-6 NG-1 K-108 P1 P5 K-101 N2-4 N2-14 F2 EXP-101 Onshore Slide no. 40 Optimization Variables Field Site Process (offshore) NTNU Market Site Process (onshore) 30.03.2012 Stream Type I Type II Name Unit kPa Initial value 600 Lower bound 550 Upper bound 1000 CO2-1 Global Pressure P1 CO2-1 Global Flow rate F1 kg/h 80000 60000 150000 N2-1 Global Pressure P2 kPa 400 400 1000 N2-1 Global Flow rate F2 kg/h 65000 55000 65000 LNG Global Pressure P3 kPa 110 100 300 NG-2 Global NG-3 Local N2-4 Local N2-5 Global N2-7 Local N2-8 Gobal N2-9 Pressure P4 kPa 9000 8000 10000 Temperature T1 °C -61 -70 -50 Temperature T2 °C -40 -60 0 Pressure P5 kPa 600 400 1000 Temperature T3 °C -40 -60 20 Pressure P6 kPa 2800 1500 3500 Local Temperature T4 °C -40 -60 20 Stream Type I Type II Name Unit LCO2 Global Pressure P1 kPa Initial value 600 Lower bound 550 Upper bound 1000 CO2-0 Global Flow rate F1 kg/h 80000 60000 150000 LIN Global Pressure P2 kPa 400 400 1000 N2-0 Global Flow rate F2 kg/h 65000 55000 65000 LNG Global Pressure P3 kPa 110 100 300 CO2-12 Local Flow rate F3 kg/h 10500 9000 25000 CO2-6 Local Flow rate F4 kg/h 35000 30000 55000 N2-9 N2-11 Local Global N2-13 Local N2-15 Local Temperature T7 °C -96 -115 -80 Void fraction Temperature VF1 T5 °C 0.4 -101 0.1 -115 0.5 -80 Temperature T6 °C -115 -132 -92 T. Gundersen Slide no. 41 Progress of the Optimization 1 36 35 34 33 32 31 NTNU 30 29 28 0 0 50 100 150 200 Best known objective 250 Current best 300 350 400 Local search Myklebust J., Aspelund A., Tomasgard, A., Nowak M. and Gundersen T., “An Optimization-Simulation Model of a Combined Liquefied Natural Gas and CO2 Value Chain”, INFORMS Annual Meeting, Seattle, November 2007. 30.03.2012 T. Gundersen Slide no. 42 Supercritical Oxy-Combustion Pulverized Coal-based Power Plant Power Cycle* ASU NTNU FGD 567 MW * Reference: DOE/NETL, Report NO.: 2007/1291 CPU C. Fu and T. Gundersen, “Exergy Analysis of an Oxy-Combustion Process for Coal-fired Power Plants with CO2 Capture”, ECI, CO2 Summit: Technology and Opportunity, Vail, Colorado, USA, 6-10 June, 2010. 30.03.2012 T. Gundersen Slide no. 43 Some key Production Figures Steam Turbine N2 Electricity Generator Condenser Air Air Separation Unit Combustor HRSG Fan LP Compressor Gypsum Ash Inerts CO2 Purification Tower Fan Coal Mill FGD ESP O2 NTNU Limestone Slurry CO2 Drier H2O Fan HP Compressor CO2 For Storage • Net power output: 567 MW • Coal feed: 69 kg/s = 5 962 tons/day • O2 feed: 161 kg/s (excess O2: 10%) = 13 910 tons/day • Efficiency penalty related to CO2 capture: 10.3% points (ASU: 6.6% points) • Power to produce O2 (95 mol%): 124 MW 30.03.2012 T. Gundersen Slide no. 44 Efficiency Penalties for CO2 Capture ASU Steam Turbine N2 Condenser Air Air Separation Unit Combustor CPU Electricity Generator HRSG Limestone Slurry Inerts CO2 Purification Tower ESP Fan O2 Ash Coal Fan LP Compressor Gypsum H2O Fan Mill CO2 Drier FGD HP Compressor Specs on Oxygen: ~ 95 mol%, 1.25 bar Efficiency Penalty (%) 12 NTNU CPU ASU 10 8 CO2 For Storage 3,6 3.7 6 4 2 6,6 2,0 1,4 0 Base case Theoretical Case Fu C. and Gundersen T., “Exergy Analysis of an Oxy-combustion Process for Coal-fired Power Plants with CO2 Capture”, submitted to Fuel, June 2011 30.03.2012 T. Gundersen Slide no. 45 1393 MW Coal (HHV) Air Power Plant η without= CCS Power 560 = 40.2% 1393 560 MW 124 MW 567 + 124 + 69 = η total = 40.5% 1879 MW 1879 Coal (HHV) NTNU Air ASU O2 Power Plant Net Power 567 MW Exhaust H2O η with= CCS 3/30/2012 Our Research Motivation 567 = 30.2% 1879 CPU 69 MW CO2 T. Gundersen 124 = 6.6% pts 1879 69 = = 3.7% pts 1879 1 ∆ηASU = 1 ∆ηCPU Improving the ASU by 20% gives 4.4% more Power !! or 1.32% points Slide no. 46 Conventional ASU – here producing 95% O2 A4-2 A4-1 Extracted N2 A7-1 Condenser A4-3 A3-1 A3-2 A3-3 A4-4 N2 waste A7-3 O2 A5-2 A1-5 MHE A1-4 Impurities A2-2 A2-3 HP LP A5-1 A2-1 A7-2 Reboiler PPU NTNU A1-3 Energy Consumption ♦ Actual: 0.193 kWh/kgO2 ♦ Ideal: 0.049 kWh/kgO2 A1-2 A1-1 Exergy Losses ♦ Air Compressor: 38% ♦ Distillation Cols.: 28% MAC Air A0 Our Goal: ♦ Save 10-20% Fu C. and Gundersen T., “Using Exergy Analysis to reduce Power Consumption in Air Separation Units for Oxy-combustion Processes, Energy, available on-line, http://dx.doi.org/10.1016/j.energy.2012.01.065, February, 2012 Slide no. 47 30.03.2012 T. Gundersen Distribution of Exergy Losses 45 Exergy losses [%] 40 38.4 35 Coolers: 17.6 30 AU2: The pre-purification unit Valves: 2.7 Heat exchanger: 3.0 25 20 15 11.9 12.6 7.2 LP: 14.6 5 HP: 1.6 0 AU1 AU2 AU3: The main heat exchanger Condenser/reboiler: 6.3 Compressor: 20.8 10 NTNU AU1: The main air compressor 28.2 AU3 AU4 AU5: The tail N2 turbine AU6: The waste N2 1.7 AU5 AU4:The air distillation system AU6 Largest Sources of Exergy Losses ♦ Distillation System (28.2%) LP Column ♦ Main Air Compressor (38.4%) Interstage Coolers Compression Process itself 30.03.2012 T. Gundersen Slide no. 48 How to reduce Compressor Work? Simplified Equation for Ideal Gas indicates: ♦ Increase Compressor Efficiency Responsibility of the Manufacturers ♦ Reduce Inlet Temperature Beyond CW requires Refrigeration, thus more Work ♦ Reduce Pressure Ratio Limited by Condenser/Reboiler Match, but there are NTNU ways around it …. !! ♦ Reduce Mass Flowrate through the Compressor Do we really need to compress the Oxygen? Our Inventions are based on the last two: ♦ Reducing Compressor Flowrate and Pressure Ratio Fu C. and Gundersen T. “Power Reduction in Air Separation Units for Oxy-Combustion Processes based on Exergy Analysis”, in E.N. Pistikopoulos et al. (eds.), 21st European Symposium on Computer Aided Process Engineering (ESCAPE 21), Elsevier B.V., vol. 29, Part B, pp. 1794-1798, June 2011. 30.03.2012 T. Gundersen Slide no. 49 Recuperative Vapor Recompression Cycle NTNU Specific Shaftwork for Separation: 0.178 kWh/kgO2 Fu C. and Gundersen T. “Innovative air separation processes for Oxy-Combustion plants”, 2nd International Oxy-fuel Combustion Conference, Yeppoon, Australia, September 2011. 30.03.2012 T. Gundersen Slide no. 50 McCabe-Thiele Diagram for Distributed Reboiling 1 0.9 Feed line 0.8 17 Equilibrium line y (N2) 0.6 0.5 13 11 1 7 0.8 0.7 19 19 Equilibrium line 0.6 Operating line 0.5 0.4 0.4 0.3 0.3 21 Operating line 21 0.2 23 0.2 0.1 0.1 NTNU 9 7 Feed 11 13 line 15 17 0.9 y (N2) 0.7 15 9 0 0 0 0.2 0.4 x (N2) 0.6 0.8 1 0 0.2 0.4 x (N2) 0.6 0.8 1 Column Grand Composite Curve for Distributed Reboiling 30.03.2012 T. Gundersen Slide no. 51 Vapor Recompression with Dual-Reboiler NTNU Specific Shaftwork for Separation: 0.166 kWh/kgO2 Fu C. and Gundersen T., “Using PSE to develop Innovative Cryogenic Air Separation Processes”, accepted for the 11th Intl. Symp. on Process Systems Engineering (PSE 2012), Singapore, 15-19 July, 2012 30.03.2012 T. Gundersen Slide no. 52 Intermediate & Recuperative Vapor Compression Cycle NTNU Specific Shaftwork for Separation: 0.159 kWh/kgO2 30.03.2012 T. Gundersen Slide no. 53 Performance Comparison NTNU O2 purity, % Specification Shaftwork for Separation, kWh/kgO2 Power savings Cycle 1 (reference) Conventional double column cycle 95.0 0.193 Ref. Case Cycle 2 Vapor recompression cycle 95.4 0.178 -7.8 % Cycle 3 Vapor recompression cycle with dual reboiler 95.5 0.166 -14.0 % Cycle 4 Intermediate vapor recompression cycle 95.1 0.159 -17.6 % OPEX is down; what about CAPEX ?? Fu C., Gundersen T. and Eimer D., “Air Separation”, GB Patent, Application number GB1112988.9, July 2011 30.03.2012 T. Gundersen Slide no. 54 Is this the Optimum (Local or Global)? NTNU 30.03.2012 T. Gundersen Slide no. 55 Summary of the Presentation Demonstrated the use of Thermodynamics in Design Demonstrated Innovations Demonstrated Energy Efficiency Applications relate to Carbon Capture & Storage Hopefully demonstrated the Power of using PSE (Process Synthesis and Process Integration) in designing Energy and Production Systems NTNU ♦ Pinch Analysis and Exergy Analysis ♦ McCabe-Thiele and Column Grand Composite Curve ♦ The Liquefied Energy Chain (LEC) ♦ New Air Separation Cycles (ASUs) ♦ LEC with 47.1% efficiency vs. 42.5% for Conventional ♦ New ASU cycles saving almost 20% on Energy 30.03.2012 ♦ Making environmentally friendly LNG even more friendly ♦ Elegant CCS solution for natural gas based Power Stations ♦ Making the Oxy-combustion route even more attractive T. Gundersen Slide no. 56
© Copyright 2026 Paperzz