Chemical analysis of surfaces and organic thin films by means of XPS X-ray photoelectron spectroscopy – The photoelectric effect – Wilhelm Hallwachs (1886), Albert Einstein (1905) und Ernest Rutherford (1914) – K after 500 000 s Wilhelm Hallwachs and Philipp Lenard, around 1900: D = 10-5 Wm-2 DAK = 10-5 Wm-28.610-20 m2 = 8.610-25 W energy at 1 s irradiation: Eprim = 8.610-25 Ws energy to remove one electron: Ei = 2.24 eV = 3.610-19 Ws flux density: flux density per K atom: During irradiation only the 1/2,000,000 part of energy is supplied which is necessary to remove one electron. X-ray photoelectron spectroscopy – The photoelectric effect – Wilhelm Hallwachs (1886), Albert Einstein (1905) und Ernest Rutherford (1914) – h. n Ekin core level valence band Einstein’s Photochemical Equivalence Law (1905) h n = Ebind + Ekin ii[eV] to determine experimentally value specific for each element and level primary energy X-ray photoelectron spectroscopy – The photoelectric effect – Wilhelm Hallwachs (1886), Albert Einstein (1905) und Ernest Rutherford (1914) – K after 500 000 s Wilhelm Hallwachs and Philipp Lenard, around 1900: D = 10-5 Wm-2 DAK = 10-5 Wm-28.610-20 m2 = 8.610-25 W energy at 1 s irradiation: Eprim = 8.610-25 Ws energy to remove one electron: Ei = 2.24 eV = 3.610-19 Ws flux density: flux density per K atom: During irradiation only the 1/2,000,000 part of energy is supplied which is necessary to remove one electron. X-ray photoelectron spectrometer – Kai Manne Börje Siegbahn (1954/1955) – the first spectrum was recorded from common salt – Born in Lund (Sweden), April 20, 1918 Son of K.M.G. Siegbahn Studies at the Univ. of Uppsala 1944: PhD (Univ. of Stockholm) 1951:Professor in Stockholm at the Royal Institute of Technology since 1954: University of Uppsala Nobel Prize of Physics 1981 hn = Ebind + Ekin Siegbahn, K.: Beta-ray-spectrometer theory and design. High resolution spectroscopy. In: Beta- and gamma-ray spectroscopy. (ed. by K. Siegbahn). Nort-Holland Publ. Co., Amsterdam (1955), S. 52 Modern X-ray photoelectron spectrometer – Axis Ultra (Kratos Analytical, Manchester, United Kingdom) – Excellent vacuum: ca. 10-12 mbar, at 20°C, one collision each 30 years (at 1000 mbar: ca. 109 collisions/s) Modern X-ray photoelectron spectrometer – X-ray source – hn = Ebind + Ekin mirror analyzer Sh. ni i filament trajectories of image mode outer hemisphere anode (Mg, Al or Ag) block of copper + 20 kV cooling water slit plate slit plate detector system electrostatic lenses inner hemisphere photoelectrons I DE 0.2 eV K a3...6 K a1,2 characteristic radiation Kb L Bremsstrahlung lmin Emax = e. U monochromator CCD camera deflection plates charge compensation unit X-ray magnetic lense sample on sample holder analysis chamber l E screen vacuum pumps Measuring the kinetic energy of the photoelectrons (Ekin) – e.g. 180° hemispheric analyzer – E mirror analyzer outer hemisphere E E trajectories of image mode detection system E outer hemisphere slit plate slit plate detector system electrostatic lenses inner hemisphere photoelectrons monochromator screen E - dE CCD camera deflection plates charge compensation unit X-ray magnetic lense sample on sample holder analysis chamber vacuum pumps E + 3dE E + 2dE E + dE inner hemisphere E XPS – A surface sensitive technique – How depth we do analyze? – dI = A N exp - xldx High surface sensitivity vs. X-rays Sh. ni i + 20 kV cooling water filament Middle free path of photoelectrons In the sample material l (C 1s, Al a) = 1.2 nm anode Mg, Al or Ag block of Cu d Id = I 1 -exp - l Photoelectron contributes to the spectrum inelastically scattered photoelectrons only contribute X-rays to the spectrum background 1.0 probability W 0.8 60 Å at W = 0.01 0.6 10 nm at W = 0.0001 0.4 nl d 0.2 0 0 20 40 information depth [nm] Interpretation of XPS spectra – Wide-scan spectrum of poly(3-hydroxybutyrate) – I [kcounts/s] O 1s 350 300 250 O KLL series 150 50 qualitative surface anlysis all elements were detected (without hydrogen and helium) elements with higher numbers in the periodic table show a couple of peaks. Si 2s Si 2p O 2s 200 100 C 1s 0 1000 O CH3 CH 800 CH2 600 O C n 400 200 0 binding energy [eV] background element peaks relaxation phenomena (Auger peaks) Interpretation of XPS spectra – Designation of the peaks – s=±½ l Coupling of orbit quantum number and electron spin: |j| = l + s Cu 2p3/2 total orbit quantum number j orbit quantum number l main quantum number s chemical symbol E d (l = 2) M 3 s (l = 0) DBE = 19.9 eV Cu 2p 3/2 p (l = 1) L 2 p (l = 1) s (l = 0) Cu 2p 1/2 K 970 960 950 940 930 binding energy [eV] 1 s (l = 0) n l 5/2 3/2 3/2 1/2 3d5/2 1/2 3d3/2 3p3/2 3p1/2 3s 3/2 2p3/2 1/2 2p1/2 1/2 2s 1/2 1s | j| BE [eV] Interpretation of XPS spectra – Quantification – I [kcounts/s] O 1s 350 300 250 C 1sC 1s qualitative surface analysis (showing all elements), quantitative surface analysis O KLL series Si 2s Si 2p O 2s 200 150 100 50 0 1000 O CH3 CH 800 CH2 600 O C n 400 200 0 Binding energy [eV] [C] [O] [Si] = 68.39 At-% = 31.22 At-% = 0.39 At-% [O]:[C] = 0.456 [Si]:[C] = 0.005 [O]:[C] should be = 0.5 Interpretation of XPS spectra – Quantification – I(X) = F [ n(X), photon, (X,i, h n), l (E kin ), , A, T(E kin ) ] Usually only relative values are the matter of interest: transmission e.g.SiO2 means an elemental or atomic ratio of [Si]:[O] = 1:2 area of acceptance take-off angle Hence, results are given in atom percents [At-%] middle free path of electrons cross section of the photon-electron interaction I(X1 ) n(X1 ) (X1flux ) ldensity (E kin [Xof ])theTphotons (E kin [X1 ]) c(X1 ) T(E kin [X1 ]) SF(X1 ) 1 = = I(X2 ) n (X2number ) (X2 )ofl(atoms E kin [X2 ]) T(E kin [X2 ]) c(X2 ) T(E kin [X2 ]) SF(X2 ) measured intensity Relative sensitivity factors are experimentally determined Peak C 1s F 1s SF 0.278 1.000 O 1s 0.549 O 2s 0.033 Ag 3d5/2 3.592 Different elements have a different sensitivity and will be analyzed with different minimum concentration limits. However, all elements having a minimum concentration of ca. 0.1 at-% will be trustworthy analyzed. Analyzing the chemical structure and binding states – Chemical shifts in the C 1s and O 1s spectra of poly(3-hydroxybutyate) – 1 : 11 : 1 O O CH3CH3 O CH C OC CH 1 : 1:1:1 O O CH3CH3 O CH O C OC CH CH3 CH O C O 535 535530 530 CH2 O C chemistry of the element’s neighbourhood controls the electron density chemical shift (types of functional groups, degree of oxidation), CH3 290 qualitative surface analysis (showing all elements), quantitative surface analysis 280 Bindungsenergie [eV] O CH3 H 2C C O CH O CH3 H 2C C O C H O CH3 CH CH2 O C n Chemical shifts and binding states – Qualitative and quantitative detection of functional groups – 285 286 287 288 289 binding energy [eV] 290 291 292 primary shift –C–C–; –C–H –C=C–C=C C–O–C (ether) C–OH C–O– C=O (ester) C =O (keto group) Oxirane C–O–C =O (ester) HO–C =O (carbonic acid) anhydride carbonate CF3 C–Cl CF2 C–NR2 ; C–NR3+ 0 1 2 3 4 5 6 7 D BE [eV] CH2 CH2 CH2 C OH b-shift by strongly electronegative groups O CH2 C OH DBE HO–C–C– 0.05...0.2 eV O–C(O)–C– 0.40...0.6 eV F–C–C– 0.5...0.7 eV Cl–C–C– 0.4 eV C 1s spectra to analyze chemical structures – Polymethacrylates with different alcohol rests – R C CH2 A CH3 ACH B C 2 EC O F F F F GF G F F GGG F F F F F O C1 CH 2 G CF 2 H CF 3 n R C CH2 B1CH ACH3 ACH BC 2 EC O O C1CH 2 HCF 3 2 G1CF 2 GCF 2 4 HCF3 n A CH3 A B CH2 C E C O ACH3 ACH BC 2 EC O O CCH 3 300 295 290 285 280 Binding energy [eV] n n 300 295 290 285 280 Binding energy [eV] O C1 CH2 G CF2 GCF 2 H CF3 n n C 1s spectra to analyze surface reactions – Hydrophobic fluorocarbon films should get hydrophilic properties – PEO-dimethacrylate UV-grafted onto an oxygen plasma treated CF film CF film with PEO-PPO-PEO cross-linked in an argon plasma unmodified fluoro carbon film (CF film) PEO-monoacrylate melt-grafted onto an oxygen plasma treated CF film PEO-monoacrylate UV-grafted onto an oxygen plasma treated CF film PEO-monoacrylate grafted onto an oxygen plasma treated CF film Derivatization to analyze of functional surface groups – Double bonds and carbonic acids – Double bonds Carbonic acids + Br2 Br Br + OsO4 O O Os O O O O + OH CH3 H3C Si N CH3 O N O + R3N OH O + OH NaOH R3N H O in MeOH O Na O O + OH CH3 O Si CH3 + HN CH3 AgNO3 in H2O O O + HNO3 Ag N Derivatization to analyze of functional surface groups – Alcohol, oxiran and amino groups – Alcohol groups Oxiran groups O O OH + F3C O OH CF3 O + HCl O HO F3C O Cl CF3 O O O O + F O F O Cl O CH2 F F F F R N NH2 + CS2 O O CH2 F F H N SH S F F O CF3 O CF3 O F3C Amino groups NR2 + F3C O Chemical shift in the Si 2p spectrum – Detection of silanol groups and the condensation of silanes on glass surfaces – H2N CH2 CH2 CH2 No significant chemical shift at BE ca. 102 eV. OC2H5 Si OC2H5 OC2H5 H2N CH2 CH2 CH2 CH3 Si OCH3 CH3 Separation of component peaks of O–Si(–O)3, Si–OH und Si–C seemed to be impossible. Si 0 F H2N CH2 CH2 HN F CH2 Si 2p 1/2 Si 2p 3/2 CH2 CH2 F OCH3 Si OCH3 OCH3 F F CH3 Si Cl CH3 Si _ O 110 106 102 98 binding energy [eV] 106 102 98 binding energy [eV] 106 102 98 binding energy [eV] Chemical shift in the Si 2p spectrum – Detection of silanol groups and the condensation of silanes on glass surfaces – Ag L Al K a Si 1s Si 2p O 1s Si 2s C 1s N 1s 0 500 Si KLL 1000 1500 O KLL C KVV 2000 2500 Bindungsenergie [eV] Pleul, D.; Frenzel, R.; Eschner, M.; Simon, F.: X-ray photoelectron spectroscopy for the detection of different Si–O bonding states of silicon. Analytical and Bioanalytical Chemistry, 375 (2003) 1276-1281. Chemical shift in the Si 2p spectrum – Detection of silanol groups and the condensation of silanes on glass surfaces – O O Si O O C O O Si O Si C O C 1840 1844 1848 O O Si O O O Si OH O O 1836 1840 1844 1848 Angle-resolved X-ray photoelectron spectroscopy (ARXPS) – Depth profiles in the range of a few nanometers – CF3 CF2 Spectrometer CF3 ED = ID = 5l 75° = 0 (CF2 )5 CF2 O H N hydrophobic end-group 60° sample O O 0° ID = 5 l. cos () 300 ED = 5 l 290 280 binding energy [eV] O O [X]:[C] O 0.6 0.4 0.2 0 [F]:[C] [O]:[C] O n information depth O OCH3 XPS employed to study biological surfaces – XPS spectra recorded at low temperature (Cryo-XPS) – O 1s Na KLL gel Na 1s Zn 2p O KLL Ca 2p N 1s C 1s Cl 2p S 2p P 2p skin S 2p gel 10 µm Baum, C.; Simon, F.; Meyer, W.; Fleischer, L.G.; Siebers, D.: Surface properties of the skin of Delphinids. Biofouling 19 (2003) 181-186 170 166 162 Si 2p K 2p skin 1000 800 600 300 400 200 0 binding energy [eV] 290 280 Imaging XPS colloidal silver Ag 3d Ag 4d 3/2 Y Y Y polyelectrolyte layer N 1s S reactive anchor HS–C10H20 –COOH S 2p laterally structured gold dots Au 4f semi-fluorinated silane F 1s S S metal oxide Si 2p 800 400 0 binding energy [eV] silicone wafer ø 3.05 mm silicon wafer laterally structured gold dots gilded surface Imaging XPS – Laterally structured samples – a) a) b) b) 100 µm Eschner, M.; Simon, F.; Pleul, D.; Spange, S.: In: "Dresdener Beiträge zur Sensorik", Band 16, w.e.b. Universitätsverlag, Dresden (2002) 149-153, ISBN 3-935712-71-5 100 µm Si 2p c) N 1s before silanisation S 2s d) e) N 1s after silanisation N 1s + Ag 3d after silver deposition Small spot XPS real XPS-imaging 1250 50 µm 60 µm 27 µm spot size hollow fibre of an artificial kidney cut along its length axis 0 C 1s 27 55 µm 110 µm O 1s S 2s N 1s S 2p O KLL 1000 800 600 400 200 0 binding energy [eV] Summary XPS XPS is a method oriented to detect elements in the surface region of samples qualitative surface analysis: identification of all elements (H and He are excluded), quantitative surface analysis relative amounts of the elements, e.g. [X]:[Y], peak deconvolution allows to analyze (qualitatively and quantitatively) functional surface groups or the oxidation states, labelling can be helpful to identify the species, depth profile analysis on molecular scale without destroying the sample, sputtering is also able, special features: cryo-XPS, thermo- XPS, imaging XPS, small spot XPS Auger electron spectroscopy (AES) – Relaxation: Competition between Auger process and X-ray fluorescence – E EAuger = hn’ – Ekin eh . n' Small atomic number: Auger process is preferred High atomic number: X-ray fluorescence takes place e- I [kcounts/s] O 1s 350 300 250 h.n C 1s photo ionisation O KLL Serie Si 2s Si 2p O 2s 200 150 100 50 0 1000 800 600 h . n' 400 200 0 Bindungsenergie [eV] relaxation Auger emission Auger electron spectroscopy (AES) – Auger electron spectrometer – X-ray source electron gun qualitative surface analysis quantitative surface analysis chemistry of the element’s neigh bourhood controls the electron density chemical shift (types of functional groups, degree of oxidation) depth profiling combined with sputtering imaging AES in nanometer resolution detection system sample cylindrical analyzer trajectories SEM Al 10 µm Si Auger electron spectroscopy (AES) – Spectral information – O KL23L23 O KL1L23 O KL1L1 F KL23L23 F KL1L23 F KL1L1 2p 2s 1s 2s0 2p6 2s1 2p5 2s1 2p5 KL1 L 1 ( 1S) KL1 L 23 ( 1P) KL1 L 23 ( 3P) 1000 900 800 binding energy [eV] Bindungsenergie 1st derivation 2p 2s 0 1s 2s2 2p4 2s2 2p4 2s2 2p4 KL23L23( 1S) KL23L23 ( 3P) KL23L23( 1D) 500 600 700 kineticEnergie energy [eV] kinetische Summary AES AES is also a method oriented to detect elements in the surface region of samples qualitative surface analysis: identification of all elements (H and He are excluded), quantitative surface analysis relative amounts of the elements, e.g. [X]:[Y], peak deconvolution allows to analyze (qualitatively and quantitatively) functional surface groups or the oxidation states, labelling can be helpful to identify the species, depth profile analysis by sputtering techniques imaging of the lateral distribution of elements in nanometer resolution
© Copyright 2026 Paperzz