Yoan Léger Laboratory of Quantum Opto-electronics Ecole Polytechnique Fédérale de Lausanne Switzerland Polariton Superfluidity Heterodyne four wave mixing From standard fluid to superfluidity 2d fourier spectroscopy Polariton Superfluidity Heterodyne four wave mixing From standard fluid to superfluidity 2d fourier spectroscopy Superfluidity & sound wave excitations Striking properties of superfluids Zero viscosity, Rollin film, foutain effect Quantized vortices…. Bogoliubov theory of the weakly interacting Bose gas Elementary excitation are collective excitations! with sound wave behavior Woods et al. Rep. Prog. Phys. 36 1135 (1973) Superfluidity in the solid state Microcavity polaritons Momentum dispersion Cavity field DBR Polariton Exciton QW UP Energy Ph. X UP Spacing layer DBR LP LP In-plane momentum ~ Emission angle Superfluidity in the solid state Microcavity polaritons Bose Einstein condensation Cavity field DBR Polariton Exciton QW UP Ph. X Spacing layer Kasprzak et al. Nature 443, 409 (2006) DBR LP Coulomb interactions Polaritons should be superfluid!! Amo et al. Nat. Phys. 5, 805 (2009) The superfluid dispersion Injecting polaritons at k=0 Linearization comes from the coupling of counter-propagating modes by interactions Appearance of a ghost branch Naive picture of the ghost branch Diluted polariton gas Sound wave in superfluid Particle-hole superposition Gross-Pitaevskii formalism Weakly interacting bosons: H k0 ak† ak k 1 2V g a † † k1 q k 2 q k1 a a ak2 Normal branch k1 , k 2 , q Ghost branch Mean field theory: 2 , 0 1 uk ei ( k .r t ) vk*e i ( k .r t ) B Linearization of interaction term: Energy (meV) 2.5 gn=1meV 2.0 ωB εk 0 1.5 1.0 0.5 0.0 uk2 1.5 vk2 1.0 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 -1 k (m ) B B k0 ( k0 2 gn0 ) Contribution 2 2 i g t 2m k=1μm-1 0.0 0.5 1.0 1.5 2.0 2.5 gn (meV) Looking for the Ghost branch PL measurements Kind of linearization No ghost branch Utsunomiya et al. Nat. Phys. 4, 700 (2008) Accessing the ghost branch with FWM In the proposal: non-resonant condensate Wouters et al. Phys. Rev. B 79, 125311 (2009) Polariton Superfluidity Heterodyne four wave mixing From standard fluid to superfluidity 2d fourier spectroscopy Polariton FWM Four wave mixing and selection rules * (3) EFWM E3 E2 E1 Angular selection rule Energy selection rule Third order nonlinearity kFWM k3 k2 k1 FWM 3 2 1 Polariton FWM Four wave mixing and selection rules 2 * ( 3) EFWM E2 E1 Angular selection rule Energy selection rule Third order nonlinearity kFWM 2 k2 k1 FWM 2 2 1 Polariton FWM 2 fields : condensate field and probe field Stimulated parametric scattering of 2 polaritons from the condensate Heterodyne FWM Problem: Condensate emission should largely dominate the spectrum How to extract useful signal when angular selection is not enough? Heterodyne FWM • Based on spectral interferometry Excitation fields Linear emission FWM Heterodyne setup • requires : • a full control of the excitation fields • Pulsed excitation to cover the full emission spectrum • provides: • best sensitivity, and selectivity • access to amplitude and phase of the nonlinear emission FWM Coherent excitation Pulsed resonant excitation Spectral interferometry Energy selection Pump Spectro Balanced detection FWM FWM 71 MHz Ref. Pump 75 MHz Ref. Trigger 79MHz 75 MHz AOM Trigger 79 MHz AOM ω0 AOM Trigger Pump 71 MHz Local Osc.. Sample Intensity Heterodyning Excitation Pulses LP UP FWM 71 MHz Ref. Pump 75 MHz Ref. Trigger 79MHz transmission 79 MHz 75 MHz AOM ω0 Intensity Pump + local osc. @ 71MHz Frequency comb: 80MHz NB GB Energy extracted FWM Sample pump FWM trigger 75MHz 79MHz 71 MHz Local Osc.. Trigger Energy Intensity AOM AOM Energy Spectro Balanced detection 71MHz Energy Polariton Superfluidity Heterodyne four wave mixing From standard fluid to superfluidity 2d fourier spectroscopy Dispersion & dissipation… Normal & ghost branch Damping of polariton density! Low density K=0 t1 NB E-E0 (meV) E-E0 (meV) GB 0.6 0.6 0.4 0.4 t2 0.2 0.2 t3 0.0 0.0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 1.2 1.2 0.0 0.4 0.60.80.8 1.0 0.0 0.2 0.4 -1 -1 (m Wavevector ) Wavevector Stating on the ghost branch? OPO experiment Linear dispersion but off-resonances can always exist in FWM we have to go further! Savvidis et al. Phys. Rev. B. 64, 075311 (2001) LP (r , t ) 0 u e i k.r v *e i k.r Nature of the excitations 1/2 Off-resonance or “real” ghost? Dissipative Gross-Pitaevskii equation with: i k .r i k.r LP (r , t ) 0 u e v * e pump FWM trigger Always 2 energy modes: Ghost and normal branch Change of intensity and linewidth With polariton density 1/3 1 Standard fluid Single particle excitations Superfluid Sound waves Nature of the excitations 2/2 Intensity dependence Redistribution of intensity Density of state on the ghost! GB k=0 NB Normal Ghost 12 Exc. Power (mW) 10 8 Threshold! 6 4 Normalized Intensity 0.8 0.6 0.4 0.2 2 1.482 1.483 1.484 1.485 Energy (eV) 1.486 1.487 2 4 6 8 10 Exc. Power (mW) 12 Polariton Superfluidity Heterodyne four wave mixing From standard fluid to superfluidity 2d fourier spectroscopy Investigating the processes Delay dependence Energy (eV) 1.4860 Exp. 1.5 1.4855 1.0 1.4850 0.5 1.4845 0.0 1.4840 -0.5 1.4835 -1.0 -5 0 Th. 5 -5 0 Delay between pulses (ps) pump pump Trig. Trig. FWM Delay<0 t FWM Delay>0 t 5 2D fourier transform spectroscopy Energy (eV) Delay dependence LP ΩR 1.4860 1.5 1.4855 1.0 1.4850 0.5 1.4845 0.0 1.4840 -0.5 1.4835 -1.0 -5 0 5 Delay between pulses (ps) delay Trig. UP pump -2 -5 0 02 4 5 Trigger energy (meV) Fourier transform on delay E(ωdet ,τ) E(ωdet , ωexc) FWM t Conclusions & perspectives Ghost branch of a superfluid • In solid state, for the first time • Transformation of the excitations Sound like dispersion • Linear for the normal branch • Assymmetry due to dissipation 2D fourier transform spectroscopy • Highly powerful method • Starting the process investigation… acknowledgements To the audience! To my collaborators: Verena Kohnle, Michiel Wouters, Maxime Richard, Marcia Portella-Oberli, Benoit Deveaud-Plédran
© Copyright 2026 Paperzz