POLITECNICODITORINO CorsodiLaureainIngegneriaAerospaziale TesidiLaurea Studiodiunflussoturbolentoisotropo mediantelateoriadellereticomplesse Studyofanisotropicturbulentflowwiththecomplex networktheory Relatore: Ing.StefaniaScarsoglio Luglio2016 Candidato: DavidePrino Sommario Ifenomeniturbolentisonolargamentediffusiinnaturaeneicontestitecnologici,essinonsonouna prerogativadelsolocampoaerospaziale,mariguardanoipiùsvariatiramidell’ingegneria.Perfare qualcheesempiobastipensarealflussod’acquacheescedalnostrorubinettodicasa,allecorrenti atmosfericheeoceanicheoalflussod’ariacheattraversalepalediunaturbina. La prima esperienza scientifica sulla turbolenza risale alla fine del diaciannovesimo secolo e fu condottadaOsborneReynolds.Essaconsistevanell’osservazionevisivadeimotidiunfilettofluido all’internodiuntubo,ciòèrealizzabileutilizzandountubotrasparentecollegatoadunserbatoioe servendosi di un colorante per distinguere un certo filetto fluido dal resto del liquido. Reynolds osservò che i fenomeni turbolenti si presentavano alle alte velocità, infatti la turbolenza è caratterizzatadaunaltonumerodiReynolds.Apartiredaquestopionieristicocontributosonostati fatti grandissimi passi in avanti nello studio della materia, attualmente si usano sia simulazioni sperimentalichenumeriche. Datalanaturacaoticadelfenomenol’approccionaturaleperlostudiodiquestamateriaèditipo statistico, tuttavia questi tipi di studio possono rivelarsi estremamente complessi. Nel seguente lavorosipresentaunapprocciodifferente:utilizzandoilvisibilityalgorithmsitrasformaunaserie temporale (in questo caso l’evoluzione temporale dell’energia cinetica) in un grafo. Successivamente,attraversolostudiodialcunecaratteristichetopologichediquestografo,sicerca diarrivareadunainterpretazionefisicadelfenomeno.Questolavorosibasasull’ipotesichealcune caratteristichefisichedelsistemasitrasmettonoalgrafo.Ilgrandevantaggiodiunostudiodiquesto tipoèchesipossonoricavarealcuneinformazionisullafisicadelproblemautilizzandounalgoritmo disempliceimplementazione. Nel capitolo 1 si descrive in generale il fenomeno della turbolenza, descrivendone le principali caratteristicheedandoparticolareimportanzaallaturbolenzaomogeneaeisotropa. Nelcapitolo2siriportaunaintroduzionesullateoriadeigrafi,sidannoleprincipalidefinizionie notazioneesidescrivonogliindicicheverrannopoiutilizzatinellatrattazione. Nelcapitolo3siparladelvisibilityalgorithmesifornisceunapossibileimplementazioneconMatlab, cercandodisottolineareipassaggicritici(ilcodicecompletoèriportatoinappendiceA). Nelcapitolo4sidescriveildatabasedalqualesiattingonoidatiperilseguentestudio,sitrattadel John Hopkins Turbulence Databases. Esso è costituito di più parti, ma viene descritta più nel dettaglioesclusivamentelapartecheconcerneunasimulazonenumericadiunflussoturbolento omogeneoedisotropo.Sifornisconoinfinelecoordinatedeipuntichesarannosuccessivamente presiinconsiderazione. Nel capitolo 5 si studiano le caratteristiche dei grafi ricavati dai due punti descritti nel capitolo precedente, infine si comparano i risultati ottenuti per i due diversi punti e si cerca di dare una interpretazionefisicaaidatiottenuti. Contents INTRODUCTION....................................................................................................................... 1 CHAPTER1:TurbulentFlows………………………………………………………………………………………….. 2 1.1 Characteristics……………………………………………………………………………………………………………. 2 1.2 Kolmogorov’shypotheses…………………………………………………………………………………………….3 1.3 Homogeneousandisotropicturbulence……………………………………………………………………… 4 CHAPTER2:GraphTheory…………………………………………………………………………………............... 5 2.1 Definitionsandnotations……………………………………………………………………………………………. 6 2.2 Metricsandindices…………………………………………………………………………………………………….. 7 CHAPTER3:Visibilityalgorithm…………………………………………………………………………………….. 9 3.1 GeneralProperties………………….………………………………………………………………………………….. 9 3.2 Propertiesandimplementation………………………………………………………………………………….. 10 CHAPTER4:JHTDBdatabase………………………………………………………………………………………….. 12 4.1 Descriptionofthedatabase………………………………………………………………………………………… 12 4.2 ObtainingData……………………………………………………………………………………………………………. 14 CHAPTER5:Networkanalysisandphysicalinterpretation……………………………………. 16 5.1 HDCnetworkanalysis…………………………………………………………………………………………………. 16 5.2 LDCnetworkanalysis……………………………………………………………………………………………….…. 20 5.3 Comparisonandphysicalinterpretation…………………………………………………………………….. 23 CONCLUSIONS…………………………………………………………………………………………………………………... 25 APPENDIXA:Implementationofvisibilityalgorithm………………………………………..…….. 26 BIBLIOGRAPHY……………………………………………………………………………………………………………..……. 29 Introduction Turbulentphenomenaarelargelydiffusedbothinnatureandtechnologicalcontext,theyarenota prerogative of the aerospace area, but they concern so many branches of engineering. Some examplescanbe:waterflowthatgoesoutfromawatertap,atmosphericandoceaniccurrentsand airflowthroughthebladesofaturbine. The first scientific experience on turbulence was made by Osborne Reynolds in the nineteenth century.Usingglasspipesconnectedtoareservoir,heobservedtheflowpatterninthepipesat variousspeedsofwaterbyinjectingathinsteamofdyeinthemainstream.Hefoundoutthatat lowvelocitiesthedyefilamenttravelledstraightandparallelstothewallsofthetube,insteadat high velocities it diffuses over the whole depth and loses its identity. The former is the laminar condition,whereasthelatteristheturbulentcondition.Infact,turbulenceischaracterisedbyhigh Reynolds number. Since this pioneering contribution, considerable developments were done in understandingthenatureofturbulence,nowadaysphysicalandnumericalsimulationarelargely usedinthestudyofthissubject. Due to the chaotic nature of the phenomenon, a statistical approach is the natural method for studying turbulence, but these studies can be extremely difficult. In this work another kind of approachispresented:usingthevisibilityalgorithmatimeseries(inthiscasethetemporalevolution ofthekineticenergy)istransformedinagraph,then,studyingsometopologicalfeaturesofthe graph,aphysicalinterpretationofthephenomenonisgiven.Thisworkisbasedonthehypothesis thatsomephysicalcharacteristicsofthesystemaretransferredtothegraph.Thegreatadvantage ofthiskindofstudyissimplicityofvisibilityalgorithm. Chapter 1 is an introduction on turbulence: its main properties are described and particular importanceisgiventotheisotropicandhomogeneousturbulence. Chapter2dealswiththegraphtheory:atfirstthemaindefinitionsandnotationsaregiven,then theindicesusefulfortheforwardanalysisaredescribed. In chapter 3 the visibility algorithm is defined and a possible implementation with Matlab is presented,givingparticularemphasistothecrucialpoints(completeMatlabcodeisreportedin appendixA). Inchapter4theJohnHopkinsTurbulenceDatabasesaredescribed,theyarecomposedbymany parts, but only the numerical simulation of an isotropic and homogeneous turbulent flow is describedindetail.Thenthecoordinatesofthetwopointssubsequentlystudiedaregiven. Inchapter5thecharacteristicsofthetwographsobtainedfromthetwopointsdescribedinthe previous chapter are studied. Eventually obtained results are compared and a physical interpretationisgiventothesedata. 1 Chapter1 TurbulentFlows WhentheReynoldsnumberexceedsacertainlimit,disturbancesareamplified.Whenamplification islarge,disturbancesbreakdownintochaoticmotion.Repeatedbreakdownofdisturbancesleads tocompletelychaoticsustainedmotion,commonlyknownasturbulence. It is difficult to give a precise definition of turbulence. Hinze defined turbulence as follows: “Turbulentfluidmotionisanirregularconditionofflowinwhichvariousquantitiesshowarandom variationwithtimeandspacecoordinatessothatstatisticallydistinctaveragescanbediscerned”[2]. Thelateralmovementoffluidparticlesinthecaseoflaminarflowisduetomoleculardiffusion,so itisverysmall.Instead,inturbulentflows,thismovementcanbecausedalsobythepresenceofan eddy,whichisalargegroupoffluidparticlescharacterisedbyhighvalueofvorticity.Duringitslife aneddycanchangeitsshape,stretchandrotateorbrakeintotwoormoreeddies. Ifoneweretofocusattentionatapointinflowfield,passageofsmallandlargeeddiesthroughthis point would induce velocity fluctuations of small magnitude and large frequency, and large magnitudeandsmallfrequency. TheturbulentflowisdescribedbytheNavier-Stokesequations,butthedeterministicsolutionof thisproblemisveryhardtofindduetothepresenceofnonlinearity,soitisusuallystudiedwith statistical and computational methods or, like in the present work, with the complex networks theory. 1.1Characteristics Turbulenceisachaoticphenomenon,whichhassomeimportantcharacteristics: • The presence of fluctuations both spatial and temporal, which make the flow threedimensionalandnotsteady; • Three-dimensionalbehavioureveniftheinitialconditionsaretwo-dimensional.Transition fromlaminartoturbulentflowstartswithsmalltwo-dimensionalvibrations,thatgrowand becomevortices,whichwarpandmoveduetomutualinduction; • The non linear motion become more important for high Reynolds number, in fact the convectiveterm,whichisnonlinear,assumesmorerelevanceandtheviscoustermisnot able to dull the fluctuations. Due to this characteristic a small perturbation in the initial conditionscaninvolveabigoneinthesolution,whichbecomebiggerandbiggerwhiletime isgoingon. • Thepresenceofthree-dimensionalfluctuationsofvorticity; • Thisphenomenonhasawiderangeofscales.Thebiggesteddieshavethedimensionofthe overallturbulentregionandtheycontainthemajorpartofthekineticsenergy,whilethe dimension of the smallest ones depends on the Reynolds number, the higher is Re the 2 smaller are the eddies, in fact the ratio between the two scales has the same order of magnitudeoftheReynoldsnumber.Thankstothevortexstretchingthereisatransferof energyfromthebiggerscalestothesmallerscales,untilthegradientofvelocitybecomesso high(becauseoftheconservationoftheangularmomentum)thattheviscousstressescause thedissipationofkineticsenergy; • Thediffusivityisverystrongbecausefluctuationscausearapidmixingofmass,momentum andheat,higherthaninthelaminarcase,inwhichthediffusivityisonlyduetomolecular agitation. • Thedissipationisstrongtoo,becauseoftheviscousstressesinthesmalleddies. Tosumupturbulenceisachaoticflowcharacterizedbythree-dimensionalvorticity,nonlinearity andhighvaluesofdiffusivityanddissipation. 1.2Kolmogorov’shypotheses Kolmogorovformulatedthreehypotheses: 1. First Kolmogorov’s hypothesis (local isotropy): for high enough Reynolds number the turbulentmovementofthesmallscales(l<<l0,wherel0isthelengthscaleoflargesteddies) arestatisticallyisotropic; 2. SecondKolmogorov’shypothesis(firsthypothesisofsimilarity):forhighenoughReynolds numberthestatisticalphysicalquantitiesofsmallscales(l<<lEI)haveauniversalformdefined byviscosity(ν)andenergytradedbetweenthebigandthesmallscales(ε); 3. ThirdKolmogorov’shypothesis(secondhypothesisofsimilarity):forhighenoughReynolds numberthestatisticalphysicalquantitiesofthescalelwithlDI<l<lEIhaveauniversalform definedonlybyε. Figure1.1:TherepresentationoftherangesoftheKolmogorov'shypotheses Generally,thelargesteddiesareanisotropic,buttheylosethisfeatureduringthetradeofenergy betweenthebigandthesmallscales,thisphenomenonhappensintheinertialrange(lDI<<l<<lEI). They lose also information about their geometry, so the motion of the small scales is universal, whichmeansthatitissimilarineveryflowsthathavehighRe.Ifνandεareknown,dimensional 3 scale, scale of velocity and temporal scale (Kolmogorov’s scales) can be defined, so that the dimensionlessquantitiescanbebuilt.Thesequantitiesarestatisticallythesameforeveryturbulent flowwithhighRe.Peculiarityofinertialrangeareintermediateeddies,thatarebigenoughnotto beinfluencedbyviscosity,butsmallenoughtobeintherangeofuniversality. 1.3homogeneousandisotropicturbulence Thehomogeneousandisotropicturbulenceisaflowinwhichtherearenointeractionswithsolid objectsandthereisnoameanflowofvelocityimposedfromtheoutside. Aturbulentflowishomogeneousifthevelocityfielddoesn’tchangeduetoatranslationofthe referencesystemanditisisotropicifitdoesn’tchangeduetoarotationofthereferencesystem. Itisphysicallyrealizedlettingafluidpass,withaconstantflow,throughagrid.IfReynoldsnumber is high enough, beyond the grid the flow becomes turbulent and it can evolve in a free space, generating the homogeneous and isotropic turbulence. Feeding the turbulence for a long time requiresasourceofenergybecauseofthestrongdissipationoftheturbulence.Theproductionof energyisconcentratedinthebigscalesandthedissipationinthesmallones.Inthiscasethesource isrepresentedbytheflowthroughthegrid. 4 Chapter2 Graphtheory Many real systems from very different fields, for example chemical systems, social interacting species,theWorldWideWeb,arecomposedbyalargenumberofhighlyinterconnectedunits.They canberepresentedbyagraph,wheretheunitsaredrawnaspoints(nodes)andtheinteractions betweenthemasedges.Theanalysisofmanydifferentnetworkshasproducedanimportantresult: realnetworkshaveaseriesofunifyingprinciplesandstatisticalpropertiesincommon,forexample thedegreedistributioncanexhibitsapowerlaw,theyhaverelativelyshortpathbetweenanytwo nodes(small-worldproperty)andthepresenceofalargenumberofshortcyclesorspecificmotifs. Thepresentworkisbasedonthehypothesisthatsomephysicalbehavioursarereflectedinthe topologyofthenetwork,sotheanalysisofthegraphcanbeausefulalternativetoamoreclassical statisticalstudyforknowingmoreaboutturbulence. Figure2.1:aneuralnetworkmadeof100neurons 5 Figura2.2:Anexampleofsocialnetwork. 2.1Definitionsandnotations An unweighted (i.e. all the links have the same values, there is no priority in correlations) and undirected(i.e.thelinksdon’thavedirection)networkcanberegardedasagraphG=(N,E),where NisasetofnodesandEasetofedges. Thegraphcan’tcontainloops,i.e.linksfromanodetoitself,ormultipleedges,i.e.morethanone connectionbetweentwonodes. Twonodesjoinedbyalinkareaddressedasadjacentorneighbouring.Animportantconceptisthe reachabilityoftwodifferentnodes,awalkfromnodeitonodejisasequenceofadjacentnodes thatbeginswithiandendswithj.Itslengthisthenumberofedgesinthesequence.Apathisawalk inwhichnonodeisvisitedmorethanonce,theshortestpathbetweentwonodesisanimportant characteristicofthenetwork. Agraphis“connected”ifthereisapathforeachpairofnodes. AsubgraphG’=(N’,E’)ofGisagraphsuchthatN’iscontainedinNandE’inE.IfG’containsallthe edgesofGthatjointwonodesinN’,G’iscalled“subgraphinducedbyN’”.Thesubgraphofthe neighboursofagivennodei(Gi)isthesubgraphinducedbythesetofthenodesadjacenttoi(Ni). Itcanbeusedamatricialrepresentationofagraph,itconsistsinaNxNmatrix(theadjacency matrix)whoseentryaijassumesthevalue1ifthenodesiandjarejoined,elseaij=0.Forundirected graph it is a symmetrical matrix, and all the terms on the diagonal, aii, are zero, because of the absenceofloops. 6 AnotherimportantmatrixforthecharacterizationofthenetworkismatrixD,inwhichtheentrydij isthelengthoftheshortestpathfromnodeitonodej.Itissymmetricalforundirectedgraph. 2.2Metricsandindices[4] Thedegreekiofanodeiisthenumberofedgesincidentwiththenode. !" = %∈' $"% (2.1) Theaveragedegreeofanetworkis: !" = ( ' " !" = ( ' "% $"% (2.2) ThedegreedistributionP(k)istheprobabilitythatanodechosenuniformlyatrandomhasdegree k,soitisthefractionofnodesinthegraphhavingdegreek. Theshortestpathisthelengthoftheminimumwalkbetweentwonodes,withoutvisitingthesame nodemorethanonce.Itplaysanimportantroleinthetransportofinformationandcommunication withinanetwork,sincethetransferofinformationisfasterifnodesareconnectedwithshortpath. Thediameteristhemaximumvalueofshortestpaths: ) = max -"% (2.3) "% Theaverageshortestpath(orcharacteristicpathlength)istheaveragenumberofedgesalongthe shortestpathforallpossiblenodesinthenetwork: -"% = ( "/% -"% ' '.( (2.4) Thisdefinitiondivergesiftherearedisconnectedpointsinthenetwork.Thiscausesanissue,anda way to avoid the divergence is to introduce the efficiency E, which is an indicator of the traffic capacityofanetwork. 0= ( ' '.( ( "/% 1 23 (2.5) Thebetweennesscentralitybiisameasureoftherelevanceofanode,infactthecommunication betweentwonon-adjacentnodesdependsonthepathsconnectingthem,sotheimportanceofa givennodecanbeobtainedcountingthenumberofshortestpathgoingthroughitandcalculating bi(themorethepathpassingthroughthenode,themoreimportanceisgiventothenodeitself). 4" = 536 " %/7 5 36 (2.6) 7 wherenjkisthenumberofshortestpathsconnectingjandk,whilenjk(i)isthenumberofshortest pathconnectingjandkandpassingthroughi. The clustering coefficient (or transitivity) measures the probability that two nodes, which are neighbourofagivennodei,arelinkedtogether.Thismeansthepresenceoftriangles. 8" = 9:2 72 72 .( = 3,< ;23 ;3< ;<2 72 72 .( (2.7) WhereeiisthenumberofedgesinGi(thesubgraphinducedbythenodei)and!" !" − 1 /2isthe maximumnumberofedgesthatGicanhave.aijandamiverifythatnodesjandmarebothneighbours ofi,thenajm=1ifjandmarejoinedbyanedge. Itcanbeusefultocalculatetheaverageclusteringcoefficient. B= ( ' ' 8" (2.8) The modularity of a network is a measure of the structure of a complex network for detecting communities.Ahighvalueofmodularityindicatesastrongdivisionintogroups.Nodesbelongingto the same community have a lot of connections between them, this implies a faster rate of transmissionofinformation. 8 Chapter3 Visibilityalgorithm 3.1Generalproperties Thevisibilityalgorithmisasimplecomputationalmethodtoconverttimeseriesintographs.Every pointofthetimeseriesbecomesanodeoftheassociatedgraphandtwonodes(ta,ya)and(tb,yb) areconnectedifanyotherdata(tc,yc)betweenthemfulfilthefollowingpropriety: CD < CF + C; − CF HI .HJ HI .HK (3.1) (C; − CF )/(MF − M; )isthegradientofthestraightlinethatjoinsthetwodataaandb.Soaandbare linkediftherearenotanydatabetweenthemwithavalueabovethisline,(thevisibilitylinedoes notintersectanyintermediatedataheight). Infigure3.1isrepresentedthetimeseriesy=sin(t),wheretisavectorwithtenvaluesbetween0 and2π,withthesamegapbetweentwoadjacentvalues.Onthisfiguretheedgesthatfulfilthe visibilityalgorithmarealsodrawn.Theedgesontherightofthefourthnodeareofdifferentcolours, inordertocreatelessconfusion.Then,infigure3.2,isreportedthegraphoftheseriesmadewith Gephi. This is an open-source and free software for visualization and exploration of all kinds of graphsandnetworks.Itcanbedownloadedatthelinkbelow1. Figure3.1:thetimeseriesy=sin(t),withlinksdrawninordertofulfilthevisibilityalgorithm. 1 https://gephi.org 9 Figure3.2:thegraphoftheseriesy=sin(t),madewithGephi. 3.2Propertiesandimplementation InthisworktheimplementationofthevisibilityalgorithmtobuildadjacencymatrixAisdonewith Matlab,(macroisreportedinappendixA).Thisprogramalsocalculatessomeimportantindices: averagedegree,degreedistribution,averagepathlength,diameterandclusteringcoefficient. Tobuildtheadjacencymatrixisimportanttoconsidersomepropertiesofthevisibilityalgorithm, thatmakethecalculationfaster. Firstofall,thegraphobtainedwiththismethodisundirected,sotheadjacencymatrixissymmetric, itcanbebuiltonlythetriangularmatrix(inthiscasethesuperiortriangularmatrixisbuilt).Then therearenoloops,sothevaluesonthediagonalareallzeroes.Thegraphisalwaysconnected,in facteachnodeseesatleastitsnearestneighbours,leftandright,thismeansthatallthetermsof theadjacencymatrixontheleftorontherightofthediagonalare1.Forthesereasonsthe“for cycle”thatsoundsoutthelineofthematrixstartsfromi=1andendswithi=(N-1),whereNisthe numberofnodesandthesizeofthematrix,infactAisinitializedtozeroandtheonlytermofthe lastlinethatneedstobecalculatedistheoneonthediagonal,whichis0.Insteadthe“forloop” thatsoundsoutthecolumnsstartswithj=i+2,thetermsonthediagonalanditsnearesttermsare knownapriori. Toverifyifapairofnodesarejoinedtheintroductionofanauxiliaryvariablecisneeded,atfirstit assumesthevalue1,thatmeansthatthetwonodesaresupposedtobeconnected,thenathird “forcycle”controlsifthereisnovisibilitybetweenthenodes,ifsocisputequaltozeroandthe 10 cycleisinterrupted.Thereasonofthechoiceofinitializingcto1isthefactthattwonodescanbe supposedtobeneighboursunlessthecontraryinproved,butisnottruetheviceversa. Attheendofalloftheseiterationstheadjacencymatrixiscalculated. ThenextstepofthemacroistobuildmatrixDthatcontainsthelengthofthepathbetweenallpairs ofnodes.Thiscanbedonereferringtothefactthattheentry(i,j)ofmatrixAkisequaltothenumber ofwalksoflengthkfromnodeitonodej.InitiallyDisposedequaltoA,infactforeverypairof nodesjoinedbyanedgethelengthofthepathis1,thena“forloop”fromk=2tok=(N-1),whichis themaximumlengthpossibleforapath,analyzesonebyonethematricesAktofindalltheentries thatfulfilthefollowingproperties: • )",% = 0,ifitisnotzeroitmeansthatapathbetweenthenodesiandjwasalreadyfound; • O7",% ≠ 0,ifthisistruethereisatleastawalkoflengthkbetweenthenodesiandj; ifboththepropertiesarerespecteditcanbesaidthat)",% = !. Itisimportanttoproceedincreasingk,andnotdecreasingit,becauseitmustbefoundthelength ofthepath,whichistheshortestwalkthatjoinsapairofnodes. Anotherissueoftheprogramistocalculatetheaveragepathlengthandthediameterofthegraph, whicharerespectivelythemeanandthemaximumvalueoftermsofmatrixD. ThedegreeofthenodeiiscalculatedsummingalltheentriesofalineoracolumnofmatrixA,the averagedegreeissimplythemeanvalueofthedegreeofallthenodes. The maximum degree is also calculated because it is useful for the calculation of the degree distribution,whichisavectorwhosenumberofcomponentsisequaltothisvalue.Thefirst“for cycle”definesthevalueiofthedegree,whilethesecondonesoundsupthevectorthatcontains thedegreeofallthenodestofindthenumberofnodeswhichhasdegreeequaltoi. The local clustering coefficient ci is calculated using the equation (2.7). It is important to pay attentiontothefactthatifthedegreeofthenodeiis1,cidiverges,butifanodehasonlyone neighbouritsciis0,thisiswhyMatlabcodeusesan“if”commandtocontrolifthedegreeisequal to1. Eventuallyallthegraphicsareplotted:timeseries,degreedistribution,degreeofeachnodeand local clustering coefficient. The degree distribution is managed using functions “histogram” and “ksdensity”,thatevaluatethedensityestimateatrispectively20and50pointscoveringtherange ofthedata. 11 Chapter4 JHTDBdatabase 4.1Descriptionofthedatabase ThedatausedinthepresentworkaretakenfromtheJohnsHopkinsTurbulenceDatabases(JHTDB). It contains four kind of turbulence fields: a homogeneous and isotropic turbulence, a forced magneto-hydro-dynamicturbulence(MHD),achannelflowandahomogeneousbuoyancydriven turbulence.Alltheseflowsareobtainedfromadirectnumericsimulation(DNS);thismeansthat theNavier-Stokesequationsaresolvednumericallywithouttheuseofaturbulencemodel.Allthe temporalandspatialscalesaresolved,fromtheintegralscalestothedissipativescales,starting fromappropriateinitialconditionsandboundaryconditions.Thismethodisthesimplestapproach totheturbulenceproblem,butithassomelimitations.DuetothecomplexityoftheNavier-Stokes equationsitcannotbeusedtosolveeverykindofflow.Thenitneedsveryhighcalculationpower, making the simulation very expensive, but, in the last years, thanks to the development of technologywhichleadstoproducingpowerfulcomputers,itislargelyusedinresearch. From JHTDB database the velocity components, the pressure and the magnetic field can be downloaded. Figure4.1:arepresentationofvorticityoftheforcedturbulentflow,takefromtheJHTDBwebsite 12 Thedomainofthefieldisacube2πx2πx2πandthevelocityorpressurevaluesarereportedona spatialgridwith10243nodes.Theviscosityisν=0.000185.ThetimestepisΔt=0.0002,butthe storingtimeintervalis0.002,finallythesimulationtimeintervalist∈[0,2048],obtainingthe1024 timestepsavailable,thetotaltimeofthesimulationisaboutonelargeeddyturnovertime. Themaincharacteristicsoftheisotropicfieldarereportedinthetablebelow: 2Q Distancebetweennodes -= = 6.142×10.V 1024 Totalkineticenergy 0HWH = 7 Dissipation 7 _= Kolmogorovlengthscale Kolmogorovtimescale Integralscale Largeeddyturnovertime 15]`9 = 0.118 a `_ = 433 ] bcd = ]V f= a ij = k= = 0.695 ]! 9 X ∙ X∗ = 0.0928 Taylormicro-scale Taylor-scaleReynoldsnumber 1 X ∙ X∗ 2 l 2`9 ] a ( g = 0.00287 ( 9 = 0.0446 0 ! -! = 1.376 ! mn = k `′ = 2.02 Table4.1:characteristicoftheturbulentflow To obtain data from the database an authorization token is needed, obtainable asking the permission to the database administrator, this is useful for knowing the number of users of the differentservicesavailable. Onthewebsitethereisasimpleinterfacefromwhichtheusercanchoseoneofthefourkindof flowavailable,thefield(pressureorvelocity),thestartingcoordinates(temporalandspatial)and thesizeofthecutout. FilesdownloadedfromthedatabasearesavedinHierarchicalDataFormat(extension.h5). 13 Figure4.2:theinterfaceofdata-cutoutservice 4.2Obtainingdata Inthisworkthetimeseriesoftwopointsofahomogeneousandisotropicturbulenceareanalyzed. From the database are taken all the 1024 time values of the velocity, then the kinetic energy is calculated: ( p = (`9 + r 9 + s 9 ) 9 (4.1) whereu,v,warethethreecomponentsofthevelocityvector. Thechoiceofthetwopointsisbasedonanotherwork2,inwhichacutoutoftheisotropicturbulence of the JHTDB database is analyzed with the complex network theory, using a procedure that convertsthespatio-temporaldatainaspatialnetwork.Inparticular,thisworkfocusonthestudy oftwopointsofthenetwork:anodewithhighdegreecentralityvalue(HDC)andanodewithlow 2 “Nuoveosservazionisullacaratterizzazionespazialediflussiturbolentiattraversolateoriadelle reticomplesse”byGiovanniIacobello,magistralthesis. 14 degreecentralityvalue(LDC).Thecoordinatesare(385,401,508)and(372,387,510)respectively forHDCandLDCnode.Highvaluesofkiindicateregionswithsimilarinstantaneousvorticity,this meansthatthereareturbulentpatternscoherentlymovingovertheacquiredtimescaleTL.The domainofthisstudyisaspherewithradiusequaltoTaylormicro-scale,thatisthecharacteristic dimensionofthesmallestdynamicallysignificanteddiesoftheflow.Itistheintermediatelength scaleatwhichfluidviscositysignificantlyaffectsthedynamicofturbulenteddiesoftheflow.Length scaleswhicharelargerthanTaylormicro-scale,theintegralrange,arenotstronglyinfluencedby viscosity,whilebelowtheTaylormicro-scalethereisthedissipationrange. 15 Chapter5 Networkanalysisandphysicalinterpretation In this chapter the two networks built with the visibility algorithm applied to time series of the kineticenergyoftheHDCandtheLDCnodesareanalyzed,usingtheindicesdescribedinchapter2. Distinctfeaturesofatimeseriescanbemappedontonetworkswithdistincttopologicalfeatures, sotheresultingnetworksinheritcharacteristicsofthetimeseriesandthisseriescanbeinvestigated fromacomplexnetworkperspective.Thankstothisassumptionaphysicalinterpretationcanbe giventotheresultsobtained. 5.1HDCnetworkanalysis StartingfromtheHDCnode,belowisreportedthegraphicofthetimeseries. Figure5.1:thegraphicoftheHDCenergytimeseries Thetimeseriesisconvertedinagraphwiththevisibilityalgorithm,thenthegraphisdrawnwith Gephi(figure5.2).Nodeschangetheircolourfromwhitetoredduetotheirdegree(redmeanshigh degree). 16 Figure5.2:graphofthetimeseriesofHDCpoint Theaveragedegreeofthegraphis<k>=159.176 Degreedistributionisreportedinfigure5.3.Itisevidentthatthemajorityofnodeshaveadegree minorthan250,whilethereareonlyafewnodeswithveryhighdegree(morethan600). Figure5.3:degreedistributionP(k)ofHDCpoint 17 Infigure5.4isrepresentedthedegreeassociatedtoeverynodeofthegraph.Itisimportantto rememberthatthevisibilityalgorithmconvertseverypointofthetimeseriesintoanodeandthere isagapof2betweentwoconsecutivetimesstored.Thenumberassociatedtoanodeisthevalue oftimerelatedtothenodeitself(attime2correspondsnode2,attime4thenode4,etcetera...). Figure5.4:agraphicwhereisreportedthevalueofthedegreeforeverynodeofthegraph Comparingthisgraphicwithfigure5.1itcanbeseenthatthepeaksaresituatedatthesamepoints. Thisisnotsurprising,consideringthefactthatapeakofthetimeserieshasalargevisibilityonthe othernodesandcoversthenodesnexttoit,infactafterapeakonthisgraphicthereisastrong decreaseofdegree. The diameter and the average shortest path are respectively D = 7 and <d> = 2.602, it is not necessarytointroducetheefficiency,duetothefactthatthegraphdoesnothavedisconnected points,so<d>isnotdivergent. Theaverageclusteringcoefficientis<c>=0.642andthelocalclusteringcoefficientsarereportedin figure5.5,theyhaveveryvariablevalues.Thereisanalternationofregionswithhighvaluesofci andregionswithlowvalues.Alowvaluemeansthatthenodesaremoreindependentonefrom eachother,whilethepresenceofalargenumberoftrianglesinvolveshavingastrongtransitivity. Thestrongvariabilityofthisindexprobablyinvolvesastrongdivisioninclusterofthegraph. 18 Figure5.5:agraphicwhereisreportedthelocalclusteringcoefficientforeverynodeofthegraph Inordertohaveabetterknowledgeofthedivisionincommunitiesofthegraph,themodularityis studiedwithGephi:Q=0.321 There are 9 communities. In the graphic below is reported how many nodes each community contains. Figure5.6:agraphicofthesizeofeverycommunityofthegraph 19 5.2LDCnetworkanalysis Thetimeseriesandthecorrelatedgrapharereportedbelow. Figure5.7:thegraphicoftheLDCenergytimeseries Figure5.8:graphofthetimeseriesofLDCpoint 20 Theaveragedegreeofthegraphis<k>=277.16 Infigure5.9isreportedthedegreedistribution.Therearealotofnodeswithavalueofdegreeless than200.Thereisalsoalargegroupofnodeswithdegreenear300.Veryfewnodeshaveavery highdegree(morethan800). Figure5.9:degreedistributionP(k)ofLDCpoint Thenextgraphicassociatesateverynodeitsowndegree.Considerationsonthisfigurearethesame oftheonesmadeinthepreviouschapter. Figure5.10:agraphicwhereisreportedthevalueofthedegreeforeverynodeofthegraph 21 ThediameterandtheaverageshortestpatharerespectivelyD=7and<d>=1.875 Theaverageclusteringcoefficientis<c>=0.687andthelocalclusteringcoefficientsarereportedin figure5.11,thegraphichasquiteacontinuousforminthefirstpart,then,inthelastpart,thevalues aremorevariable. Figure5.11:agraphicwhereisreportedthelocalclusteringcoefficientforeverynodeofthegraph ThemodularityisQ=0.26 There are 5 communities, in the graphic below is reported how many nodes each community contains. Figure5.12:agraphicofthesizeofeverycommunityofthegraph 22 5.3Comparisonandphysicalinterpretation Inordertogiveaphysicalinterpretationtotheresultsdiscussedintheprevioustwoparagraphs,it isimportanttocomparethedataobtainedforthetwopoints.Inthetablebelowarereportedthe maintopologicalfeaturesofthetwonetworks. HDC LDC Averagedegree 159.176 277.16 Diameter 7 7 Averagepathlength 2.602 1.875 Clusteringcoefficient 0.642 0.687 Modularity 0.321 0.26 Numberofcommunities 9 5 TheaveragedegreeofHDCpointislower,thismeansthattherearefewerconnectionsinitsgraph. Aprobablecauseofthisbehaviourmaybethepresenceofmoreperturbationsinthemotionofthe fluidparticles,whichinvolvesinrapidfluctuationsofthekineticenergy.Thisdecreasesthevisibility between nodes. Perturbations may be caused by the continuous formation and breakdown of vorticalstructures. Both the graphs have some nodes with a very high degree, as seen in chapter 5.1 these nodes correspondtopeaksinthetimeseries,whichhaveahighvalueofkineticenergy.Atthesepoints thereisastronginfluenceoffluidparticleswithalargevalueofkineticenergyonparticleswith lowervalue. Thediameterisequalforthetwopoints;itdoesnotgiveinformationaboutthedifferencebetween HDCandLDCpoint.Duetotheconceptualsimilarityofthediameterandtheaveragepathlength (theyarebothrelatedtothepathlengthbetweennodes)alsothesecondindexisnottakeninto account. TheclusteringcoefficientofHDCpointislower,soitsgraphhasasmallernumberoftrianglesand thenodesaremoreindependent.Alsothisfactcanbeexplainedwiththepresenceofvortexes: perturbationsmaketheclosureoftrianglesharder. Asimilarconclusioncanbeobtainedstudyingthemodularity,whichishigherfortheHDCpoint.A highvalueofQmeansastrongdivisionincommunities,infacttheHDCgraphhasmoregroupswith smallerpopulation.Thepresenceofvortexescausesoftenperturbationsofthesystemdynamics andasaresultsthesuccessivestatesloseconnectivity. Inthefollowingfigurearereportedthegraphicsoflocalclusteringcoefficientsforthetwopoints: 23 HDC LDC Figure5.13:ontheleftthegraphicofthelocalclusteringcoefficientoftheHDCpoint,ontheright thesamegraphicoftheLDCpoint Theformofthelastpartofthegraphic(characterizedbythepresenceofalotofpeaks)calculated intheLDCpointissimilartotheformoftheothergraphic.Probablyduringthelasttimesofthe simulationvortexesarecomparingintheLDCpoint.Thishypothesisissupportedbythepresence of many peaks in the graphic of the degree in this step of time, that can be interpreted like perturbations. Inconclusion,theHDCpointischaracterizedbythepresenceofmanyfluctuationsofitsenergy, maybecausedbyacontinuousformationandbreakdownofvorticalstructures.Thismeansalow connectivityofthenetwork.WhileLDCpointhaslowerenergy,butmoreconstant,whichincreases connectivity. 24 Conclusions In the present work two points of a forced isotropic turbulent field have been studied with the complexnetworktools.Atfirstthevisibilityalgorithmhasbeenappliedinordertotransformthe timeseriesofkineticenergyintoagraph,thenitstopologyhasbeenanalyzed.Theaimofthestudy was to find out correlations between the physical characteristics of the turbulent field and the indicesusedforstudyingthetopologyofthenetwork. Vorticalstructurespromoteinfastfluctuationsofthekineticenergy,andthisinturndecreasesthe visibilitybetweenthenodesofthegraph. The results obtained suggest that, to find out a point which has been much influenced by the presenceofvorticalstructuresduringthetimeofthesimulation,wehavetosearchforpointwith precisecharacteristics: • lowaveragedegreevalue; • lowclusteringcoefficientvalue; • highmodularity; • thepresenceofmanycommunities. Thediameterandtheaveragepathlengtharenotmuchusefulforthisaim. Eventually, the local clustering coefficient, due to its feature to be “local”, can give information aboutthetemporalevolutionofthephenomenon,forexampleitcansuggeststhebirthofnew vortexesatacertaintime. Thus some physical behaviours can be analysed using the visibility algorithm and the complex networkstheory.Thismethodcanbeusefulbecauseofitssimplicity,sincewecangetinformation aboutthesystemwithoutusingthestatisticalapproach. 25 AppendixA Implementationofvisibilityalgorithm diametro=0; path_medio=0; C=0; grado=zeros(1,N); grado_medio=0; %% MATRICE ADIACENZA A=zeros(N); for i=1:(N-1) A(i,i+1)=1; for j=(i+2):N c=1; for m=(i+1):(j-1) if X(m)>=X(i)+(X(j)-X(i))*((m-i)/(j-i)) c=0; break; end end A(i,j)=c; end end for i=2:N for j=1:(i-1) A(i,j)=A(j,i); end end %% MATRICE DELLE LUNGHEZZE D=A; for k=2:(N-1) B=A^k; for i=1:(N-1) for j=(i+2):N if D(i,j)==0 && B(i,j)>0 D(i,j)=k; end end end end for i=2:N for j=1:(i-1) D(i,j)=D(j,i); end end %% DIAMETRO E PATH MEDIO somma=0; for i=1:N for j=1:N somma=somma+D(i,j); if D(i,j)>diametro diametro=D(i,j); end 26 end end path_medio=somma/(N*(N-1)); %% GRADO DEI NODI K=zeros(1,N); for i=1:N somma=0; for j=1:N somma=somma+A(i,j); end K(i)=somma; end grado(1,:)=K; somma=0; grado_max=0; for i=1:N somma=somma+K(i); if K(i)>grado_max grado_max=K(i); end end grado_medio=somma/N; %% DEGREE DISTRIBUTION P=zeros(1,grado_max); for i=1:grado_max for j=1:N if K(j)==i P(i)=P(i)+1; end end end %% CLUSTERING COEFFICENT c=zeros(1,N); for i=1:N somma=0; for j=1:N for m=1:N somma=somma+A(i,j)*A(j,m)*A(m,i); end end if K(i)==1 c(i)=0; else c(i)=somma/(K(i)*(K(i)-1)); end end somma=0; for i=1:N somma=somma+c(i); end C=somma/N; %% GRAFICI % serie di tempo time=0:2:2046; 27 figure plot(time,X) xlabel('time') ylabel('kinetic energy') title('TIME SERIES') % degree distribution degree=1:1:grado_max; figure plot(degree,P); xlabel('degree (k)') ylabel('number of nodes') title('degree distribution') grado_min=K(1); for i=2:N if K(i)<grado_min grado_min=K(i); end end k_vettore=linspace(1,grado_max,50); [g]=ksdensity(K,k_vettore); figure plot(k_vettore,g,'r') xlabel('degree (k)') ylabel('density') title('DEGREE DISTRIBUTION') hold on pdf_k=histogram(K,20,'Normalization','pdf'); % grado dei nodi figure plot(time,K) xlabel('nodes') ylabel('degree') % local clustering coefficient figure plot(time,c) xlabel('nodes') ylabel('c') 28 Bibliography [1] RenzoArina,2015,Fondamentidiaerodinamica,Levrotto&Bella. [2] R.J.Garde,1994,TurbulentFlow,JohnWiley&Sons. [3] L.Lacasa,B.Luque,F.Ballesteros,J.Luque,J.C.Nuno,2008,Fromtimeseriestocomplex networks:Thevisibilitygraph,ProceedingoftheNationalAcademyofSciences,vol.105no. 13,4972-4975. [4] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. U. Hwang, 2006, Complex networks: Structureanddynamics,Physicsreports,424,175-308. [5] A. K. Charakopoulos, T. E. Karakasidis, P. N. Papanicolaou, A. Liakopoulos, 2014, The application of complex network time series analysis in turbulent heated jets, Chaos: An InterdisciplinaryJournalofNonlinearScience,24,024408. [6] Giovanni Iacobello, 2016, Nuove osservazioni sulla caratterizzazione spaziale di flussi turbolentiattraversolateoriadellereticomplesse,magistralthesis,PolitecnicodiTorino. 29
© Copyright 2025 Paperzz