Monte Carlo simulation of liquid scintillation neutron detectors: BC501 vs. BC537 J.L. Tain [email protected] Instituto de Física Corpuscular C.S.I.C - Univ. Valencia BC537 as low neutron sensitivity -ray detector State of the art detectors for (n,) measurements using the Pulse Height Weighting Technique at time-of-flight facilities (n,n) 1keV 1MeV (n,) C6D6 detectors at n_TOF-CERN Motivation: BC501 BC537 En=2.5MeV 102.5cm !? En=4.3MeV From S. Williams (TRIUMF) : (@ Warsaw, Oct 2007) DESCANT: DEuterated SCintillator Array for Neutron Tagging BC501/NE213 liquid scintillators 5cm5cm C1H1.212 = 0.874g/cm3 n (@425nm) = 1.53 = 3.2 (32.3, 270) ns NIMA476 (02) 132 Mono-energetic neutron response 255cm Neutron scattering s-wave (l=0) elastic scattering: Energy-momentum conservation: n A Isotropic in CMS: There is a minimum neutron energy (maximum recoil energy) after the collision, A dependent: min 1-: H (1.0), D(0.89), C(0.28), Fe(0.069), Pb(0.019) 1H 2H CM system ELASTIC SCATTERING ANGULAR DISTRIBUTION 12C 208Pb Angular distribution in the LAB reference frame 1H En = 1MeV 2H En = 5.5MeV Monte Carlo simulations of liquid scintillation neutron detectors ENDF/B-VII.0 • Requires nuclear reaction data (missing information on 12C(n,n3), …) • Requires material response (light production, …) • General purpose codes: GEANT3, Geant4,… and specific codes: NRESP, SCINFUL, … Luminescence in organic materials The non-radiative transfer mechanism between excited centers induces an energy-loss dependent light production … dE dL dx dx 1 kB dE dx S … and a varying time distribution Several time components Light production curves: p, , 12C in NE213: Dekempeneer et al. NIM A256 (1987) 489 d in NE230: Croft et al. NIM A316 (1992) 324 Simulations with GEANT3/GCALOR (In reality there is some dependence on chemical composition, fabrication, age, …) L LE LE E (assumed same and 12C light curves in BC501 & BC537) (10x10cm) “ENERGY CALIBRATION” CONCLUSION: !? Neutron interaction time t=5ns: C6D6: 98.3% BC501: 95.6% C6D6 =12.2% BC501=17.7% (Eth=100keVee) Does the use of C6D6 diminishes the cross-talk? Simulation: • cluster of 7 hexagonal detectors • diameter: 15 cm • length: 5 cm and 15 cm • maximal illumination of central detector • source at 1 m • neutron energies: 1 MeV and 5 MeV En 15cm15cm MULT 1 MULT 2 MULT 3 M2/M1 BC501 76.4% 15.5% 0.5% 20.3% C6D6 69.3% 12.5% 0.24% 18.1% BC501 49.5% 22.3% 2.3% 45.2% C6D6 45.3% 18.6% 2.4% 41.1% 1 MeV 5 MeV En = 1 MeV En = 5 MeV Eth=100keV En 5cm15cm MULT 1 MULT 2 MULT 3 M2/M1 BC501 61.5% 5.1% 0.1% 8.28% C6D6 44.1% 3.9% 0.04% 8.87% BC501 31.8% 3.6% 0.2% 11.35% C6D6 27.1% 2.9% 0.15% 10.55% 1 MeV 5 MeV En = 1 MeV En = 5 MeV Eth=100keV Ratio of counts scattered to outer detectors respect to central detector in the energy window [Emax/2,Emax] 15cm15cm En = 1 MeV 5cm15cm En BC501 C6D6 1 MeV 1.4% 2.5% 5 MeV 2.6% 3.5% En = 5 MeV 15cm15cm En BC501 C6D6 1 MeV 2.8% 5.6% 5 MeV 6.3% 10.4% Conclusion: The use of deuterated scintillators does not seem to represent an advantage with respect to hydrogenated scintillators in order to reduce the inter-module neutron scattering
© Copyright 2026 Paperzz