DerivativesWorksheet CalculusI Findthederivativeofeachfunction.Simplifyallresultstoreasonablynicefunctions,unlessotherwisestated. ( 1. ! " = " %& + " ) − 7" + , - − " + " .) ) 2. / = 0 2 + - 12 1 13% )1.( 3. / = (1 4 4. ! " = 3 tan " − 5 sec " + 5. D " = 6. ℎ " = E F 3GH 1 1 I 3% =>? 1 %@ − 2 arcsin " 1 I ?KH 131 =>?I 1 1 =>? 1 0 (1 7. / = 3" − 1 +M − ln " - + 1 − arctan 4" + 3 I 8. ! P = sin( M Q − cos P 9. / = arccos 1 13% 1 + M .1 csc " 10. ! " = log ( ( 5 ) + log ) ( ") − 7?V= 1 WX Foreachcurve,find . W1 11. " - + 2"/ − 3/ - = 5 1 12. ln = −10" X Ineachcase,findtheequationofalltangentlinestothegivencurveatthegiven"-value. 13. / = 2" + 1 ) at" = 1 14. " - / − / - " = 2at" = −1 Findthe"-valuesatwhichthecurvehasahorizontaltangentline. 15. / = arctan(M -1 − ") 16. / = 2 ) 1 1 I 30 Foreachfunction,sketchapossiblegraphofthederivative. 17. 18. Derivatives Worksheet Answers Calculus I 1. 𝑓𝑓 ′ (𝑥𝑥) = 17𝑥𝑥16 + 5𝑥𝑥 2 − 7 − 2 2. 𝑦𝑦 ′ = −4 3 3 √𝑥𝑥 4 6 6 1 √𝑥𝑥 − 𝑥𝑥 4 6 4 3. 𝑦𝑦 ′ = − 5𝑥𝑥 3 + 5𝑥𝑥 4 + 𝑥𝑥 5 3 − 𝑥𝑥 4 1 2 4. 𝑓𝑓 ′ (𝑥𝑥) = 3 sec 2 𝑥𝑥 − 5 sec 𝑥𝑥 tan 𝑥𝑥 − 10 sin 𝑥𝑥 − √1−𝑥𝑥 2 5. 𝑔𝑔′(𝑥𝑥) = 1 𝑥𝑥 �𝑒𝑒 𝑥𝑥 + ��𝑥𝑥 2 +1�−2𝑥𝑥(𝑒𝑒 𝑥𝑥 +ln 𝑥𝑥) (𝑥𝑥 2 +1)2 2 (do not simplify answer) 6. ℎ′ (𝑥𝑥) = tan 𝑥𝑥 + 𝑥𝑥 sec 𝑥𝑥 − sin 𝑥𝑥 2𝑥𝑥 4 7. 𝑦𝑦 ′ = 12(3𝑥𝑥 − 1)3 + 5𝑒𝑒 5𝑥𝑥 − 𝑥𝑥 2 +1 − 1+(4𝑥𝑥+3)2 2 2 2 8. 𝑓𝑓 ′ (𝑡𝑡) = 5(2𝑡𝑡𝑒𝑒 𝑡𝑡 + sin 𝑡𝑡)sin4�𝑒𝑒 𝑡𝑡 − cos 𝑡𝑡� cos�𝑒𝑒 𝑡𝑡 − cos 𝑡𝑡� 9. 𝑦𝑦 ′ = −1 𝑥𝑥 2 (𝑥𝑥+1)2 �1−� � 𝑥𝑥+1 1 − 𝑒𝑒 −𝑥𝑥 csc 𝑥𝑥 − 𝑒𝑒 −𝑥𝑥 csc 𝑥𝑥 cot 𝑥𝑥 (could be simplified more, if you’re brave!) 10. 𝑓𝑓 ′ (𝑥𝑥) = 1 + (2 ln 3)𝑥𝑥 − 7sec 𝑥𝑥 (ln 7) sec 𝑥𝑥 tan 𝑥𝑥 𝑑𝑑𝑑𝑑 2𝑥𝑥+2𝑦𝑦 11. 𝑑𝑑𝑑𝑑 = 6𝑦𝑦−2𝑥𝑥 𝑑𝑑𝑑𝑑 12. 𝑑𝑑𝑑𝑑 = 10𝑥𝑥𝑥𝑥+𝑦𝑦 𝑥𝑥 13. 𝑦𝑦 = 54𝑥𝑥 − 27 14. 𝑦𝑦 = −2, 𝑦𝑦 = 𝑥𝑥 + 2 15. 𝑥𝑥 = ln �1/2 16. 𝑥𝑥 = ±�4⁄5 17. 18.
© Copyright 2026 Paperzz