The Mathematics Enthusiast Volume 10 Number 3 Number 3 Article 9 7-2013 Mathematical Habits of Mind for Teaching: Using Language in Algebra Classrooms Ryota Matsuura Sarah Sword Mary Beth Piecham Glenn Stevens Al Cuoco Follow this and additional works at: http://scholarworks.umt.edu/tme Part of the Mathematics Commons Recommended Citation Matsuura, Ryota; Sword, Sarah; Piecham, Mary Beth; Stevens, Glenn; and Cuoco, Al (2013) "Mathematical Habits of Mind for Teaching: Using Language in Algebra Classrooms," The Mathematics Enthusiast: Vol. 10: No. 3, Article 9. Available at: http://scholarworks.umt.edu/tme/vol10/iss3/9 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol10, no.3, p. 735 MathematicalHabitsofMindforTeaching: UsingLanguageinAlgebraClassrooms1 RyotaMatsuura2 St.OlafCollege SarahSword EducationDevelopmentCenter,Inc. MaryBethPiecham EducationDevelopmentCenter,Inc. GlennStevens BostonUniversity AlCuoco EducationDevelopmentCenter,Inc. ABSTRACT:Thenotionofmathematicalknowledgeforteachinghasbeenstudiedbymany researchers,especiallyattheelementarygrades.Ourunderstandingsofthisnotionparallel muchofwhatwehavereadintheliterature,butarebasedonourparticularexperiences overthepast20years,asmathematiciansengagedindoingmathematicswithsecondary teachers.AspartoftheworkofFocusonMathematics,PhaseIIMSP,wearedeveloping,in collaborationwithothersinthefield,aresearchprogramwiththeultimategoalof understandingtheconnectionsbetweensecondaryteachers’mathematicalknowledgefor teachingandsecondarystudents’mathematicalunderstandingandachievement.Wearein theearlystagesofafocusedresearchstudyinvestigatingtheresearchquestion:Whatare themathematicalhabitsofmindthathighschoolteachersuseintheirprofessionallivesand howcanwemeasurethem?Themainfocusofthispaperisthediscussionofthehabitof usingmathematicallanguage,andparticularlyhowthishabitplaysoutinaclassroom setting. Keywords:Mathematicalhabitsofmind,mathematicallanguage,algebra 1ThismaterialisbaseduponworksupportedbytheNationalScienceFoundationunder GrantNo.0928735.Anyopinions,findings,andconclusionsorrecommendations expressedinthismaterialarethoseoftheauthorsanddonotnecessarilyreflecttheviews oftheNationalScienceFoundation. [email protected] The Mathematics Enthusiast, ISSN 1551-3440, Vol. 10, no.3, pp.735-776 2013©The Author(s) & Dept. of Mathematical Sciences-The University of Montana Matsuura et al. OurPhilosophyandApproach Buildingontwodecadesofpriorwork,theFocusonMathematics(FoM)MathandScience Partnershipprogram(MSP)has,overthelastdecade,developedandrefinedadistinctive frameworkforamathematics‐centeredapproachtodevelopingteacherleaders,andithas builtamathematicalcommunitybasedonthatframework.TheFoMapproachinvolves teachers,mathematicians,andeducatorsworkingtogetherinprofessionaldevelopment activities.Thecommonthreadrunningthroughthistightlyconnectedsetofactivitiesisan explicitfocusonmathematicalhabitsofmind. Wedefinemathematicalhabitsofmind(MHoM)tobethewebofspecializedwaysof approachingmathematicalproblemsandthinkingaboutmathematicalconceptsthat resemblethewaysemployedbymathematicians(Cuoco,Goldenberg,&Mark,1997,2010; Goldenberg,Mark,&Cuoco,2010;Mark,Cuoco,Goldenberg,&Sword,2010).Thesehabits arenotaboutparticulardefinitions,theorems,oralgorithmsthatonemightfindina textbook;instead,theyareaboutthethinking,mentalhabits,andresearchtechniquesthat mathematiciansemploytodevelopsuchdefinitions,theorems,oralgorithms.Some examplesofMHoMfollow: Discoveringthestructurethatisnotapparentatfirstbyexperimentingandseeking regularityand/orcoherence. Choosingausefulrepresentation—orpurposefullytogglingamongvarious representations—ofamathematicalconceptorobject. Purposefullytransformingand/orinterpretingalgebraicexpressions(e.g.,rewriting x 2 6x 10 as (x 3)2 1torevealitsminimumvalue). TME, vol10, no.3, p. 737 Usingmathematicallanguagetoexpressideas,assumptions,observations, definitions,orconjectures. OurworkoverthepastdecadehasconvincedusoftheimportanceofMHoMfor studentsandforteachersofmathematics,particularlyatthesecondarylevel.Thesehabits fosterthedevelopmentanduseofgeneralpurposetoolsthatmakeconnectionsamong varioustopicsandtechniquesofsecondaryschoolmathematicscontent;theycanbring parsimony,focus,andcoherencetoteachers’mathematicalthinkingand,inturn,totheir workwithstudents.Inthissense,weenvisionMHoMasacriticalcomponentof mathematicalknowledgeforteaching(Hill,Rowan&Ball,2005)atthesecondarylevel(i.e., theknowledgenecessarytocarryouttheworkofteachingmathematics). Webeginthispaperbydescribingthemathematicalcommunitythatwehavebuilt andtheimpactthatithashadonourteachers,inparticular,theimpactonteachers’ mathematicalunderstandingandinstructionalpractices.Thenwediscusstheresearchthat grewoutofourdesiretostudyscientificallyhowMHoMmightbeanindicatorofteacher effectiveness.Lastly,weshedlightononehabitthatemergedprominentlyinour research—usingmathematicallanguage.Weexaminehowateachermightusethishabitin aclassroom,possibleimplicationsforstudentlearning,andhowuseofthehabitrelatesto teachers’useofothermathematicalhabitsintheclassroom. Weendthissectionwithafewremarks.Althoughwedescribeourresearchon MHoM,theemphasisofthispaperisnotonourstudy,onitsparticularoutcomes,oronthe measurementinstrumentsindevelopment.Instead,weintendtoillustrate,usingexamples, ourmotivationforwhywethinkthesemathematicalhabitsareimportant.Hence,themain focusofthepaperisthediscussionofthehabitofusingmathematicallanguage,and Matsuura et al. particularlyhowthishabitplaysoutinaclassroomsetting.Weincludeadetailed discussionoftheFoMMSP,partlytosituateourworkwithintheMSPcontextinthisspecial issueofTheMathematicsEnthusiast.Wealsowanttoprovidebackgroundfortheresearch thatemergedfromandismotivatedbyourongoingMSPworkwithsecondaryteachers. Indeed,ourstudyofteachers’MHoMandcorrespondinginstrumentdevelopmentarose fromourdesiretomeasureprogressinandcontinuetoimproveourworkwithourown FoMteachers. FocusonMathematics FocusonMathematics(NSFDUE0314692)isatargetedMSPfundedbytheNational ScienceFoundationsince2003.Ourpartnershipisdevotedtoimprovingstudent achievementinmathematicsthroughprogramsthatprovideteacherswithsolidcontent‐ basedprofessionaldevelopmentsustainedbymathematicallearningcommunitiesinwhich mathematicians,educators,administrators,andteachersworktogethertoputmathematics atthecoreofsecondarymathematicseducation. TheoriginalFoMdistrictpartnersincludetheMassachusettsschoolsystemsof Arlington,Chelsea,Lawrence,Waltham,andWatertown.Thesesystemsrangefrom suburbantourban,withmiddleandhighschoolstudentpopulationsfrom1,300to6,000. Overtheyears,FoMhasofferedavarietyofprofessionalopportunitiesforteachers, including:(a)apubliccolloquiumseriesdevotedtomathematicsandeducation;(b) partnership‐widemathematicsseminars;(c)week‐longsummerinstitutesforteachers; (d)onlineproblem‐solvingcourses;and(e)anewMathematicsforTeachingMasters ProgramatBostonUniversity.Twoactivitiesdeservespecialmention. TME, vol10, no.3, p. 739 PROMYSforTeacherssummerinstitute,asix‐weekintensiveimmersionin mathematics,engagesparticipantsinexperiencingmathematicsasmathematicians do,solvingproblemsandpursuingresearchprojectsappropriateforthem.Each summer,theinstitutecombinesteachersfrommultipledistricts,Grades5–12. Academic‐yearstudygroupsaredistrict‐based—oftenbuilding‐based—groupsthat meetbiweeklyfortwotothreehoursoverthecourseofayear.Thoughfocusedon doingmathematics(ratherthanbeingtaughtitsresultsorhowtoteachit)—again, experiencingmathematicsasamathematicianwould—thesetradetheintensityand immersionofthesummerinstituteforlong‐term,ongoingstudy. Thesemathematicallearningcommunitieswithcoreinvolvementof mathematiciansaredesignedtohelpteachersdevelopthemathematicalhabitsofmind thatarecentraltothedisciplineofmathematics.Ourteachershaveresponded enthusiastically,withcommentssuchas: “[Thestudygroup]isthebest‘professionaldevelopment’thatIhavebeeninvolved inthroughoutmy35‐yearteachingcareer.Iguessthebesttestamentforthesuccess ofFocusonMathematicscomesfromthecontinuedattendanceofsomanyteachers. Wecontinuetotalkaboutthetopicsdiscussedatourstudygroupslongafterthe weeklysessionisover”(Cuoco,Harvey,Kerins,Matsuura,&Stevens,2011). “The[Masters]programhasexpandedmyknowledgeofmathematicsanddeepened myunderstandingofhowchildrenlearnmathematics,but—moreimportantly—I amnowconnectedtopeoplewhoareaspassionateaboutchildrenlearningand doingmathematicsasIam”(Cuoco,Harvey,Kerins,Matsuura,&Stevens,2011). Matsuura et al. TostudytheimpactofFoM’sprofessionaldevelopmentprogramsonteachers’ professionallives,theProgramEvaluationResearchGroupatLesleyUniversity(FoM’s evaluators)collectedandanalyzedteacherandstudentdataoverfiveyears(Lee, Baldassari,Leblang,&Osche,2009)andconductedcasestudiesofteachers(Baldassari, Lee,&Torres,2009).Belowarethosefindingsmoststronglyinformingourcurrentwork: Teacherbeliefsandattitudesaboutthenatureofmathematics:Ininterviews, teachersreportedunderstandingthestructureofmathematicsingreaterdepth— howtopicsandideasareconnectedandhowtheyaredevelopedthroughthegrade levels.Teachersreferredtodevelopingamorecompletepictureorunderstandingof mathematicsasasystemandunderstandingtheconnectionsbetweendifferent threadswithinit(Lee,Baldassari,&Leblang,2006;Lee,Baldassari,Leblang,Osche, &Hoyer‐Winfield,2007). Teacherchangesininstructionalpractice:Manyoftheinstructionalchangesteachers reportedstemfromthewaysinwhichtheyexperiencedlearningthroughFoM(Lee etal.,2006).Whenteachersdevelopedadeeperunderstandingofmathematics, theirconfidenceoftenincreasedandtheydevelopedmoreflexibilityintheir teachingandtheabilitytoadjustlessonsbasedonstudentresponses. ThroughourworkinFoM,wehaveseenthatMHoMisindeedacollectionofhabits teacherscanacquire,ratherthansomestaticyou‐have‐it‐or‐you‐don’twayofthinking.And teachersreporttousthatdevelopingthesehabitshashadatremendouseffectontheir teaching.Wehavecollectedampleanecdotalevidence,butrecognizetheneedfor scientifically‐basedevidencetoestablishthattheseteachershaveindeedlearnedMHoM TME, vol10, no.3, p. 741 andthatthesehabitshavehadapositiveimpactontheirteachingpractices.Wealso recognizetheneedtostudystudentoutcomesaffectedbyteachers’usesofMHoM. MathematicalHabitsofMindforTeachingResearchStudy FocusonMathematics,PhaseII:LearningCulturesforHighStudentAchievement(NSF DUE0928735)isanMSPprojectthatbeganin2009.InFoM‐II,wecontinuedtorefineour mathematicallearningcommunitiesandbegananexploratoryresearchstudyfocusedon teachers’mathematicalhabitsofmind. Asabasisforbeginningtheresearchstudy,weusedthetheoreticalframeworks developedbyClarkeandHollingsworth(2002)fortheir“InterconnectedModelofTeacher ProfessionalGrowth,”whichischaracterizedbynetworksof“growthpathways”among four“changedomains”inteachers’professionallives—theexternaldomain(E),the personaldomain(K)(ofknowledge,beliefsandattitudes),andthedomainsofpractice(P) andsalientoutcomes(S).Significant,fromourpointofview,istheClarke‐Hollingsworth theoryofprofessionalgrowth(asdistinctfromsimplechange),whichtheyrepresentas“an inevitableandcontinuingprocessoflearning”(p.947).Theyaptlydistinguishtheir frameworkfromothers:“Thekeyshiftisoneofagency:fromprogramsthatchange teacherstoteachersasactivelearnersshapingtheirprofessionalgrowththroughreflective participationinprofessionaldevelopmentprogramsandinpractice”(Clarke& Hollingsworth,2002,p.948).Theagencyofteachersintheirownprofessionalgrowth characterizesvirtuallyallFoMprograms,soweseetheClarke‐Hollingsworthmodelof professionalgrowthaswellsuitedforourpurposes. WeillustrateouruseoftheClarke‐Hollingsworthframeworkwithanexample. ShowninFigure1isachangeenvironmentdiagramfor“Ms.Crew,”amiddleschool Matsuura et al. teacherandactivememberoftheFoMlearningcommunity.Thediagramrepresentsthe changedomainsasfourboxes,labeledE,K,P,andS,asexplainedabove.Thesolidarrows refertogrowthsduetoenactment,whilethedashedarrowsdepictthoseduetoreflection. TheloopontheboxEreferstointeractionbetweenstudygroupsandtheimmersion. Figure1.SchematicdiagramofMs.Crew’schangeenvironment ThisparticulardiagramdepictsactivityrelatedtoMs.Crew’sresearchon PythagoreanTriplesandshowshowthisactivityledtohergrowth,bothmathematically andasateacher.EacharrowrepresentsagrowthinMs.Crewthatoccurredasaresultofa changeinherprofessionallife.Forexample,arrow6depictshowherincreasedbelief aboutherself(achangeinboxK,thepersonaldomain)leadstoMs.Crewencouragingher studentstoperformmoreexplorations(achangeinboxP,thedomainsofpractice). Moreover,arrow6issolid,becausethechangeinherclassroomisdueanenactment,i.e.,a particularcourseofactionthatshetookasateacher.Thearrowsarenumberedin chronologicalorder,soarrow1denotesagrowthinMs.Crewthatoccurredbeforethat depictedbyarrow2,andsoon.ThedashedarrowfromboxEtoKhasmultiplenumbers TME, vol10, no.3, p. 743 (asdoesthesolidarrowfromKtoE).Here,thedashedarrowmaybeinterpretedasthree separatearrows(arrow1,arrow3,andarrow5)—wesimplycondensedthemintoone arrowtosavespaceinthediagram. Ms.CrewfirstencounteredtheconceptofPythagoreanTripleswhilestudying Gaussianintegersduringhersummerimmersionexperience.Thetopicleftsuchan impressiononher(reflectivearrow1)thatshepursuedit(enactivearrow2)asaresearch projectundertheguidanceofanFoMmathematician.Throughmonthsofhardwork— familiarizingherselfwithPythagoreanTriplesthroughdozensofexamples,makingcareful datarecordingandanalysis,discoveringbeautifulpatterns,comingupwithinteresting conjectures(someweretrue,somewerefalse),andfinallywritingdownclearandconcise propositionsandprovingthem—shecametounderstand(reflectivearrow3)featuresof Pythagoreantriplesthatwouldhavebeenbeyondherconceptionbeforethisexperience. Ms.Crewproducedanindependentresearchpaperandaone‐hourmathematicstalkfor herpeers(enactivearrow4). Neitherthesummerimmersionexperiencenortheindependentresearchproject waseasyforMs.Crew,whocameintoourprogramwitharatherweakmathematics background.Butcompletingthisprojecthadasignificanteffectonhermathematicalself‐ confidence(reflectivearrow5).TheloopsofthisupwardspiralbetweendomainsKandE repeatedmanytimes.Amongstherpeers,Ms.Crewbecameoneoftheleadersinherstudy group(4).Inhercurriculumplanning,shenowhasmorebeliefinherdecision‐making abilities(5).Andinherclassroom,sheengagesherstudentsinperformingmathematical exploration(6).Thisnewclassroomatmosphere,aswellashernewattitudetowards mathematics,ledtomorecuriosityandquestionsfromherstudents(7,8).Andwhileshe Matsuura et al. maynotbeabletoanswerallofthemonthespot,shenowwelcomesmathematicaldialogs anduncertaintyinherclassroom(9,10).Allofthisrepresentssignificantprofessional growthandMs.Crew’schangediagramenablesustoseetheelementsofthatgrowthata glance. LookingatMs.Crew’schangediagram,onecannotfailtonoticetheintenseactivity takingplacearoundthenodeK,whichincludesgrowthinMs.Crew’sknowledgeof mathematics.Butitseemstousthatmoreisinvolvedthansimplyknowingmathematicsas abodyofknowledge.Ms.Crewislearningmathematicsinacertainway.Herbeliefsabout thenatureofmathematicsarechanging.Sheisacquiringcertainmathematicalhabitsof mindandsheisfindingthesehabitsusefulforherworkintheclassroomandalsofor leadershiprolesintheschool. Applyingthisframeworkofteacherchange,webegantobuildforourselvesa theoreticalunderstandingofhowMHoMplaysaroleintheworkofteaching.Recognizing theneedforascientificapproachtotestthetheory,andindeedinvestigatethewaysin whichMHoMisanindicatorofteachereffectiveness,weconductedanexploratorystudy titledMathematicalHabitsofMindforTeachingthatcentersonthefollowingquestion: Whatarethemathematicalhabitsofmindthatsecondaryteachersuseintheir professionandhowcanwemeasurethem? Toinvestigatethisquestion,wedevelopedadetaileddefinitionofMHoMandhavebeen buildingthefollowingtwoinstruments: Apaperandpencil(P&P)assessmentthatmeasureshowteachersengageMHoM whendoingmathematicsforthemselves. TME, vol10, no.3, p. 745 Anobservationprotocolmeasuringthenatureanddegreeofteachers’usesofMHoM intheirteachingpractice. Weemphasizethatbothinstrumentsareneeded,becauseinourworkwithteachers,we haveseenthosewhohaveverystrongMHoMforthemselvesbutdonotnecessarilyemploy thesamemathematicalhabitsintheirteachingpractices. Ourcurrentworkfitsintoalargerresearchagendathatwearedevelopingin collaborationwithleadersinthefield,withtheultimategoalofunderstandingthe connectionsbetweensecondaryteachers’mathematicalknowledgeforteachingand secondarystudents’mathematicalunderstandingandachievement. OperationalizingMHoM TooperationalizetheMHoMconcept,wereliedonourownexperiencesas mathematiciansdoingmathematicswithsecondaryteachers(Stevens,2001).Wealso studiedexistingliterature—inparticular,Dewey’s(1916)andDeweyandSmall’s(1897) earliertreatmentsofhabitsandhabitsofmind,theStudyofInstructionalImprovement (SII)andtheLearningMathematicsforTeaching(LMT)projectstodevelopmeasuresof mathematicalknowledgeforteaching(MKT)forelementaryteachers(Ball&Bass,2000; Ball,Hill,&Bass,2005;Hill,Schilling,&Ball,2004;Hill,Ball,&Schilling,2008),andthe descriptionbyCuocoetal.ofmathematicalhabitsofmind(1997,2010).Andweconsulted thenationalstandards,i.e.,theNCTMPrinciplesandStandardsforSchoolMathematics (NationalCouncilofTeachersofMathematics[NCTM],2000)andtheCommonCore StandardsforMathematicalPractice(NationalGovernorsAssociationCenterforBest PracticesandtheCouncilofChiefStateSchoolOfficers[NGACenter&CCSSO],2010).But aboveall,wewentintotheclassroomsofFoMteachers,whereweobservedabroad Matsuura et al. samplingofMHoMstrengths.Someteachersexhibitedpreciseuseoflanguageandcareful reasoningskills;othershadstrongexplorationskills,weregoodatdesigningmathematical experiments,orshowedspecialstrengthatgeneralizingfromconcreteexamples. Fromthesevarioussources,webegantocompilealistofhabitsthatconstitute MHoM.Asthelistgrew,weidentifiedfourbroadandoverlappingcategoriesintowhichour mathematicalhabitsnaturallyfell: ● Seeking,using,anddescribingmathematicalstructure ● Usingmathematicallanguage ● Performingpurposefulexperiments ● Applyingmathematicalreasoning Indeed,thesearecategoriesofmathematicalpracticesthatareubiquitousinthediscipline. Andinordertoconductafine‐grainedstudyofthesecategories,weteasedapartmultiple habitswithineachcategorythatwewantedtomeasure,someofwhichwereidentified earlier.Thatbeingsaid,weprimarilyenvisionMHoMasbeingcomprisedofthefour categories,withthelistofhabitswithineachcategoryprovidingmoredetailandtextureto thesefour.Bynomeansisourlistfinal.Infact,weconsideritanevolvingdocumentthat wewillcontinuetoreviseasweobtainmoredatausingourinstruments.Fromourdata, wewilllearnwhichhabitsaremoreprominentlyusedbysecondaryteachers,bothwhen doingandteachingmathematics. PaperandPencil(P&P)Assessment WedevelopedapilotP&Passessmentthatmeasureshowsecondaryteachersuse MHoMwhiledoingmathematics.Thisassessmentcontainssevenopen‐endedproblems andisdesignedtobecompletedinonehour.Inparticular,wedevelopedproblemsthat TME, vol10, no.3, p. 747 mostteachershavetherequisiteknowledgetosolve,oratleastbegintosolve.Andwhat weareassessingishowtheygoaboutsolvingit.Itisthechoiceoftheirapproachthatwe areinterestedin,asopposedtowhetherornottheyhavethenecessaryknowledge/skills tosolveit.Eachitemisdesignedtorevealwhathabitsandtoolsteacherschoosetousein familiarcontexts.Todate,wehavegonethroughseveralroundsofdesign,pilot‐test,data analysis,andrevisionofthisinstrument.Forourlatestpilot‐testinthesummerof2011,we administeredtheP&Passessmentto43secondarymathematicsteachersparticipatingin theNSF‐fundedstudyChangingCurriculum,ChangingPractice(NSFDRL1019945).Wewill carryoutanotherfieldtestwithapproximately50teachersinthesummerof2012. Togatherinitialdataontherolethatteachers’approachtosolvingmathematics problemsplaysintheirapproachtomathematicsinstruction,weaskedafollow‐up questiontosomeofourP&Passessmentproblems:Whatstrategieswouldyouwantyour studentstodevelopforaproblemlikethis?Our43respondentsalmostunanimously reportedthattheywanttheirstudentstoapproachtheproblemsexactlyastheydid themselves.(Note:Afewteacherswantedtheirstudentstoappreciateavarietyof approaches.)Thisfindingprovidesinitialevidencethatteachers’ownmathematicalwork maybeindicativeofhowtheychoosetoexplain/formulatethesubjectmatterfortheir students.Recognizingtheneedforfurtherstudyofthishypothesis,webegantocreatean observationprotocol. ObservationProtocol Weareintheprocessofdesigninganobservationprotocolandcodingschemethat measurethenatureanddegreeofteachers’usesofMHoMintheirclassroominstruction. Todeveloptheinstrument,weconductedliveandvideotapedobservationsoftwotothree Matsuura et al. consecutivemathematicslessonscollectedfromatotalof30secondaryteacherstoidentify teacherbehaviorsthatreflecttheusesofaparticularmathematicalhabit.Inaddition,we developedasimpleprotocolforpre‐andpost‐interviewswithteacherswevideotape.We alsocollectedclassroomartifacts(lessonplans,in‐classworksheets,homework,and assignments)fromeachclassroomweobserved. Animportantfeatureofourobservationprotocolisthatitmeasureshowteachers useMHoMintheirinstruction.Thusteachersarecodednotforpossessingcertain mathematicalhabitsintheabstract,butforchoosingtobringthemtobearinaclassroom setting.Todevelopsuchaninstrument,wearecurrentlystudyingourvideosandslicing theselessonsintosmallepisodes—i.e.,shortinstructionalsegmentslasting30secondsto4 minutes.Ineachepisode,wedeterminewhethertherewerebehavioralindicatorsthat reflectedteachers’usesofMHoM,andwecreatecodesthatgeneralizeandcharacterize theseteacherclassroombehaviors.Weemphasizethatourcurrentfocusisonteacher behaviorsandusesofMHoMintheclassroom.Wearestillastepawayfromconnecting teachingpracticescenteredonMHoMtostudents’developmentofMHoMandtostudent achievement—partlybecausewedonotyethavetheinstrumentstoassessthesehabitsin students—butimpactingstudents,ofcourse,isourultimategoal. Later,wedescribethreeteachersfromwhomwegatheredvideodataforour observationprotocoldevelopment.Specifically,wewilldiscusshowtheyapplythehabitof usingmathematicallanguageintheirclassroominstruction.Wewillalsoconsiderhow teacheruseofthisparticularhabitmayaffectstudentunderstanding. TME, vol10, no.3, p. 749 RelevantLiteratureandRelatedWork ThetheoryofmathematicalhabitsofmindisphilosophicallygroundedinDewey’s (1916)andDeweyandSmall’s(1897)earliertreatmentsofhabitsandhabitsofmind. Theirseminalworkhassinceencouragededucators(Duckworth,1996;Meier,1995)and educationresearchers(Kuhn,2005;Resnick,1987;Tishman,Perkins,&Jay,1995)to furtheroperationalizetheconceptofhabitsofmind—thatis,torespondtothegeneral question:Whatdohabitsofmindlooklikeinthecontextoflearning?Notasevidentinthe literaturearethehabitsofmindthatpromotesuccessfullearninginspecificdisciplines.In thecaseofmathematics,thequestionthathasgainedresearchattentionwithinthelast decadeis:Whatdohabitsofmindlooklikeinthecontextoflearninganddoingmathematics? Whileaddressingthisquestionisnotanunfamiliartask(Hardy,1940;Polya,1954a,1954b, 1962),whatislessfamiliaristhetaskofgatheringevidenceofmathematicalhabitsofmind fromteachersofmathematics.WebeganthisworkinourFoM‐IIstudy;weareinthelong‐ termprocessofdevelopingvalidandreliableinstrumentsthatwillallowustomore rigorouslyinvestigatetherelationshipbetweenteachers’ownMHoM,theirusesofMHoM intheirteachingpractice,andstudentachievement. Asmentionedearlier,weenvisionMHoMasanintegralcomponentofMKTatthe secondarylevel.ThenotionofMKThasbeenstudiedbymanyresearchers(Ball,1991;Ball, Thames,&Phelps,2008;Heid,2008;Heid&Zembat,2008;Heid,Lunt,Portnoy,&Zembat, 2006;Hilletal.,2008;Kilpatrick,Blume,&Allen,2006;Leinhardt&Smith,1985;Ma,1999; Stylianides&Ball,2008).Ourunderstandingsofthisnotionparallelmuchofwhatwehave readintheliterature,butarebasedonourparticularexperiencesoverthepast20years,as mathematiciansengagedindoingmathematicswithsecondaryteachers. Matsuura et al. Asmathematiciansworkinginschoolsandprofessionaldevelopment,wehavecome tounderstandsomeofthewaysinwhichteachersknowandunderstandmathematics. Thesefitintofourlargeandoverlappingcategories: (1) Teachersknowmathematicsasascholar:Theyhaveasolidgroundinginclassical mathematics,includingitsmajorresults,itshistoryofideas,anditsconnectionsto precollegemathematics. (2) Teachersknowmathematicsasaneducator:Theyunderstandthethinkingthat underliesmajorbranchesofmathematicsandhowthisthinkingdevelopsin learners. (3) Teachersknowmathematicsasamathematician:Theyhaveexperiencedasustained immersioninmathematicsthatincludesperformingexperimentsandgrappling withproblems,buildingabstractionsfromtheexperiments,anddevelopingtheories thatbringcoherencetotheabstractions. (4) Teachersknowmathematicsasateacher:Theyareexpertinusesofmathematics thatarespecifictotheprofession,includingtheabilityto“thinkdeeplyofsimple things”(Jackson,2001,p.696),thecraftoftaskdesign,andthe“mining”ofstudent ideas. Thefirsttwoofthesewaysofknowingmathematicsarecommontomostpre‐serviceand in‐serviceprofessionaldevelopmentprograms.FoMhaspaidparticularattentiontothe lasttwo,whichtypicallyreceivelessemphasis.Wehavebecomeconvincedthat(3)greatly enrichesandenhancestheotherwaysofknowingmathematicsandthatmanyteachers whogothroughsuchanexperiencedevelopthehabitsofmindusedbymany mathematicians.Furthermore,wehaveseenthatparticipationinamathematicallearning TME, vol10, no.3, p. 751 communityhelpssuchteachers“bringithome”inthesensethattheycreatestrategiesfor helpingtheirstudentsdevelopthemathematicalhabitsthattheythemselveshavefoundso transformative. Otherresearchersaredevelopinginstrumentstoassesssecondaryteachers’content knowledgeanduseofmathematicsintheirclassrooms(Bushetal.,2005;Ferrini‐Mundy, Senk,McCrory,&Schmidt,2005;HorizonResearch,Inc.,2000;MeasuresofEffective TeachingProject,2010;Piburn&Sawada,2000;Reinholzetal.,2011;Shechtman, Roschelle,Haertel,Knudsen,&Vahey,2006;Thompson,Carlson,Teuscher,&Wilson,n.d.). Indevelopingourowninstruments,wehavedrawninsightfromalloftheseprojects.But wehavemostcloselyfollowedthemodeldevelopedbyBallandHill—specifically,their MKTassessmentandMathematicalQualityofInstruction(MQI)protocolfordocumenting MKTinelementaryteachers(Hilletal.,2005;LearningMathematicsforTeaching,2006). Theirinstrumentsmeasure“specialized”mathematicalknowledge,thatis,knowledgethat teachersuse,asdistinctfromthemathematicalknowledgeheldbythegeneralpublicor usedinotherprofessions,whosecomponentsincluderepresentationofmathematical ideas,carefuluseofreasoningandexplanation,andunderstandinguniquesolution approaches.Theseskillsresemblethekindsofmathematicalhabitsthatweareinterested instudyingatthesecondarylevel. ThecollectiveeffortsofthefieldwillallcontributetowhatweknowaboutMKT,but thereareimportantdifferencesbetweenourinstrumentsandthoseofothers.The differencesarelistedbelow. AfocusonMHoM—themethodsandwaysofthinkingthroughwhichmathematics iscreated—ratherthanonspecificresults(Cuocoetal.,1997).Itisimpossible,even Matsuura et al. inthreeorfouryearsofhighschoolmathematicsalignedwiththeCommonCore,to equipstudentswithallofthefactstheywillneedforcollegeandcareerreadiness. Butlearningtothinkincharacteristicallymathematicalwaysisatickettosuccessin fieldsrangingfrombusiness,finance,STEM‐relateddisciplines,andevenbuilding trades. Thecoreinvolvement,ateverylevel,ofmathematicianswhohavethoughtdeeply abouttheimplicationsoftheirownhabitsofmindforprecollegemathematics curricula,teaching,andlearning(Bass,2011;Schmidt,Huang,&Cogan,2002). Ourinstrumentsare,therefore,aimedatdiscerningtheextenttowhichsecondary classroomsarecenteredonthepracticeofdoingmathematicsratherthanonthespecial‐ purposemethodsthatoftenplaguesecondarycurricula(Cuoco,2008).Inourworkwith teachers,wehaveseenhowexpertteachersusecoremathematicalhabitsofmindintheir profession—inclass,inlessonplanning,andincurricularsequencing.And,astheCommon Corebecomesthenationallyaccepteddefinitionofschoolmathematics,teacherswillbe expectedtomakethedevelopmentofmathematicalhabitsanexplicitpartoftheirteaching andlearningagenda.Ourwork,therefore,makesauniquecontributiontothefield’s increasinglevelofattentiontosecondarymathematicsteaching. UsingMathematicalLanguage Inthissection,wewillfocusonaspecificmathematicalhabit—usingmathematical language—andexaminehowteachersusethiscorehabitintheirinstructionalpractice.We willalsoconsideritspotentialimplicationsforstudentlearning,andhowthishabitmay workinconjunctionwithothermathematicalhabitsintheclassroom. TME, vol10, no.3, p. 753 Inparticular,wewilldiscussexamplesofthreeteacherswhoseAlgebra1 classroomsweobservedinourresearchstudy.WewillbeginwithMr.Hart,whouses mathematicallanguagetoencapsulatetheexperiences,observations,anddiscoveriesofhis students.Second,wewilllookatMs.Graham,whousespreciseandoperationalizable languageasawayofpromotingconceptualunderstandingandeaseofproblem‐solving. Andthird,wewilldescribeanexampleofateacher,Mr.Braun,whosechoiceoflanguage caninterferewithstudents’engagementinactivitiesdesignedtopromoteotherMHoM. AllthreeoftheseteachershaveshownevidenceofstrongMHoMintheirowndoing ofmathematics.Mr.Harthasheldformalandinformalleadershiprolesinanumberof FoM’smathematicallearningcommunities;andinthoseroles,hehasexhibitedstrong MHoM.TheothertwoteachersperformedwellonourP&Passessment.Thenamesofthese teachershavebeenalteredtoprotecttheiridentities. Mr.Hart WeconsiderMr.Hart,anAlgebra1teacherwhousesmathematicallanguageto encapsulatetheunderlyingstructurethatstudentsdiscoveredthroughexperimentation. Themathematicaltopicofthedayisrecursiverules.Theclassbeginswithstudents workingonthefollowingwarm‐upproblem. Afunctionfollows[thisrule]forintegervaluedinputs:Theoutputforagiveninputis 3 2 greaterthanthepreviousoutput.Makeatablethatmatchesthedescription.Canyou makemorethanonetable? Notethattheruleisincomplete,becauseitismissingthebasecase.Studentsexperiment withthisrule,creatinginput/outputtablesandtryingtoderiveclosed‐formequations. Matsuura et al. Becauseoftheirdifferentchoicesofbasecases,theycomeupwithdifferentfunctions definedbyexpressionsoftheform f (x) 3 x b .Studentsconcludethatthegraphsof 2 thesefunctionsareparallellineswithdifferenty‐intercepts.Mr.Hartalsoasks,“Sowhat’s thepartwhereyougettobecreativeinmakingthesetables?”Hethenexplains,“Soyouget topickonenumber,andtheneverythingelseisdecidedbythepartthatIgaveyou[inthe warm‐up].Butthere’sstillanawfullotofdifferentnumbers.”Here,heisforeshadowingthe needtofixthebasecase. ThenMr.Hartformallyintroducesthenotionsofrecursiveruleandbasecaseto summarizestudents’experiencesandtocapturetheunderlyingstructuretheyobserved whenworkingonthewarm‐upproblem.Hesays, Arecursiverule,that’sjustthedescriptionthattellsushowtogetfromanoutput— toanoutputfromthepreviousones.Sobasically,whatweweredoing.Nowasyou saw,there’sanotherpiecethat’snotreallyenoughinformation.It’sjustmetelling youhowtogetfromone,tothenext,tothenext.Tohaveacompleterule,wealso needtoknowwheretostart.Becauseotherwise,wewon’tknowifwehavetherule that—thefirstrule,thesecondrule,thethirdrule,orsomeotherrulecompletely. (Videotranscript,February14,2011.) Next,theclassstudiesthefunctiondescribedbythefollowingtable: n f (n) 0 3 1 8 2 13 3 18 TME, vol10, no.3, p. 755 4 23 5 28 6 33 Inthistableofdata,studentsrecognizethe+5pattern,i.e.,“Youadd5totheoutput.” Throughdiscussion,Mr.Hartguidesthemtoarticulatetherelationshipmoreprecisely: f (5) f (4) 5. Usingthisconcreteexample,studentsareabletoderiveageneralequation: f (n) f (n 1) 5. Tomakesenseofthisrecursiverule,Mr.Hartpointsoutthattheequation f (n) f (n 1) 5 “letsusrelateanyoutputtoapreviousone.”Inessence,itisthesymbolic representationofwhathetoldstudentsinthewarm‐upproblem.Thenhedescribesthe needforthebasecase,saying,“Butthatwasn’tquiteenoughbecauselotsofyouwrote downdifferentrules.And[Student1]hadone,[Student2]hadadifferentone,[Student3] hadadifferentoneprobably,andsoon.Soweneedsomethingelsetosortoffixitinplace.” Here,astudentinterruptsandproposesaclosed‐formrule: f (n) 5n 3.Thereare nowtwowaystodescribethefunctionathand,namelythe(stillincomplete)recursiverule f (n) f (n 1) 5 andtheclosedformrule f (n) 5n 3.Hesays,“[Therecursiverule]tells ushowtoworkourwaydownthetable.IfIknowonevalue,Iknow23,Icanfindthenext onereallyeasily.Nowthisone’s[pointstotheclosed‐formrule]nicetoobecauseitletsme workacrossthetable.IfIknowtheinput,Icansaytheoutputreallyquickly.”Inthisshort episode,Mr.Hartusesthesymbolicrepresentationofeachruletodiscussitsunderlying structure. Mr.Hartreturnstotheequationwrittenontheboard(i.e., f (n) f (n 1) 5 )and says,“Butstill,this—thisrulealmosttellsmethewholetable,butitdoesn’tquitebecause Matsuura et al. I’mmissingonecriticalpieceofinformation.”Astudentchimesin,“Well,youdon’tknow whatyoustartedwith.”Mr.Hartrespondswith,“That’sagoodpoint.Yeah,solike [Student]’ssayingthis3inthetable,that’swherewe’restarting.Sowekindofneedto knowthat.Sotheway(pause)agoodwaythatwecansortofkeeptrackofthisandwrite ourrule...”Almost20minutesintothelesson,Mr.Hartfinallyintroducesthecomplete notation 3 if n 0, f (n) f (n 1) 5 if n 0. Heexplainsthisnewequationbysaying,“Sothisformulacapturesexactlywhatwedid.The keypartistherecursivepartthatwehadwrittendownalready.Andthisjustaddsthatlast bit,thebasecase,sowecansummarizeitintoonecompactrule.” Insteadofbeingastartingpoint,thisnotationistheculminationofthestructures thatstudentsdiscoveredthroughtheirexperimentationandthefollow‐updiscussion. Studentsreadilymakesenseofthenewnotationandtheaccompanyingideasthatit encapsulates,becausetheexperiencegainedthroughtheir“struggles”allowsthemto connectthenewlanguagetoalready‐establishedideas. Mr.Hartusesthestructurethatstudentsfoundthroughtheirexperimentstomotivate thelanguageneededtodescribetheirobservedresults.Forinstance,students’experiments withthewarm‐upproblem,inwhichtheyproposedifferentfunctionsthatallsatisfythe givenrule,maketheneedforthebasecasecomealiveforthem.Indeed,hismathematical habitsofmindallowMr.Harttocreatealearningenvironmentwherestudentsbuildnew knowledgefromtheirexperiences(NCTM,2000). TME, vol10, no.3, p. 757 Ms.Graham ThroughMs.Graham,welookathowanAlgebra1teacherusespreciseand operationalizablelanguageasawayofpromotingeaseofproblem‐solving.More specifically,shehelpsstudentsmakesenseoftheobjectiveofthegivenproblemand, subsequently,providesinsightintohowtoproceed. Inthisepisode,astudentasksaboutthefollowingquestion: Determineif r 2 isasolutionto 6r 2 12 r. Ms.Grahamasks,“Didwenotunderstandwhattheywereasking?”Thestudentconfirms, “Yeah,obviouslythere’saneasierwaytodoit,butIjustdidn’tknowhow.”Thenthe followingdialogueoccurs,inwhichMs.Grahampressesforthemeaningoftheword “solution”: Teacher(T): Allright.Whenweusetheword“solution,”allright,we’vetalkedalotabout whatasolutionis.Whatdoes“solution”mean? Student(S): Like,does—it—whenitworks. T: Whenyousaid“itworks,”whatdoyoumean?BecauseIthinkyou’reontheright track. S: Like,doesitmakesense? T: Bealittlemorespecific. S: Idon’tknowhow,like… T: Whatdoes“solution”mean,anyoneknow?Allright. Newstudent(SN): Theanswer? T: “Theanswer.”Wetalkedaboutthisalot.What’sasolutiontoanequation? SN: Somethingthatcangointomakeanequationwork. Matsuura et al. T: Somethingthatmakestheequationtrue,OK? AswewillseelaterinMr.Braun’sexample,“works”isoftenusedbystudentsand teacherstodescribewhatitmeansforanumbertobeasolutiontoanequation.Ms. Grahamdoesnotsettleforthisnorotheroft‐usedphrasessuchas“itmakessense”and “theanswer.”Thelanguageusedbystudentsdoesnothelpthemunraveltheproblemto understandwhattheyarebeingaskedtodo.Onlyaftertheoperationaldefinitionof “solution”hasbeengivencanMs.Grahamcontinuewithanexplanationofhowtoproceed. T: We’restatingthat 6r 2 willbeequalto 12 r. Andthey’reasking,“Is r 2 a solution?”Soyougottotestitout,justasIaskedyoutotestoutthatonethatwe justdid.So 6r 2 12 r. Substitutein r 2.So6times 2 plus2—doesthathave thesamevalueas12plus 2 ?Andwehavetotest.Allright?We’reaskingourselves thequestionof,doesthisequalthat?[Pointstoeachsideoftheequation.]OK? ThenMs.Grahamleadstheclassthroughtheprocessofsubstituting r 2 intothe equationandconcludingthatitisnotasolution,since r 2 yieldsunequalvaluesof 10 and10forthetwosidesoftheequation.Thestudentwhooriginallyinquiredaboutthis questionsays,“Ok.NowIgetit.”Thedefinitionof“solution”providedbyMs.Graham— namely,“somethingthatmakestheequationtrue”isoperational(i.e.,studentscanusethis definitiontounderstandandaccomplishthetaskposedbythegivenquestion).Indeed, oncethedefinitionhasbeengiven,substituting r 2 andcheckingifitmakesthe equationtrueisanaturalnextstep. Ms.Grahamconcludesthisepisodebyforeshadowingwhatstudentswillbelearning next,byprovidingthemwithanotherdefinition: TME, vol10, no.3, p. 759 T: We’regettingtothepointwherewe’regoingtoaskyou,“Whatisthevalueofrthat makestheequationtrue?”Andthat’scalledsolvingtheequation. Throughoutthelesson,Ms.Grahamconsistentlyuseslanguagecarefully.Shecorrectsa studentwhowrites 82 8 90 3 30 5 25, callingita“run‐onsentenceinmath.”When astudentdescribestwosidesofanequationbysaying,“It’sequals,”Ms.Graham immediatelyresponds,“They’reequaltoeachother.”Sherepeatedlytellsstudentstocheck theiransweraftersolvinganequation,remindingthemwhat“solution”means.Sheisalso preciseinherinstructions(e.g.,askingthestudentsto“writeanexpressionfortheright sideoftheequation,sothatyou’vegotanequationthatworksandistruewhen x 3 ”). Mr.Braun Oneoftheissueswehaveencounteredinthedevelopmentofourobservation protocolis,“Whatcountsasevidenceofnon‐useofMHoM?”Inthecaseofthehabitofusing mathematicallanguage,wedoseemomentsinwhichteacherschooselesscarefullanguage. Forexample,ateachermightchoosetouseinformallanguage.Sometimesthereisevidence thattheteacherismakingthischoicebecausetheinformallanguageseemsmoreaccessible tostudents.Butsuchchoices—ifnotmadecarefully—canleadtostudentconfusion. Inthefollowingexample,Mr.Braunissettingupaninvestigationthataimstolay thefoundationthatthegraphofanequationisarepresentationofthesolutionsetofthe equation(EducationDevelopmentCenter,Inc.,2009b).Tolaunchtheinvestigation,Mr. Braunwritestheequation 3x 2 y 12 ontheoverheadprojectorandasksstudents, “What’stheanswer?”Hethendescribessomeofthesolutionsstudentsofferas“that works”or“thatdoesn’twork.”Thefollowingisanexcerptfromthelaunchofthe investigation.Therearetwothingstonote.First,Mr.Braunismodelinghowstudents Matsuura et al. mightexperimentwithnumbersasawayofmakingsenseoftherelationshipbetween graphsandequations.Second,observehowfrequentlyheusestheword“works.” T: 3x 2 y 12 .What’stheanswer? SN: It’scomplicated. T: Oh,no.Whatdoyouthink? SN: 1and2? T: YouthinkIcanuse1and2? S: xis1andyis2. T: xis1andyis2.HowwouldIfindoutif[name]isright?Icouldputinthenumbers thathegaveme,soI’mgoingtoputin1forxandI’mgoingtoputin2fory,anddoI get12,likeI’msupposedto?What’s 31 ? Students(Ss):3. T: What’s 2 2 ? Ss: 4. T: What’s3+4? Ss: 7. T: DidIget12? Ss: No. T: Man,[name],that’sabummer.OK,so— SN: Oh,Iknowit. T: —thatwassomethingthatdidn’twork.It’snotbadtofindoutthingsthatdon’t work.Sometimes,you’regoingtobeaskedintheseinvestigationstofindthingsthat don’twork,sorememberhowwedidthat. TME, vol10, no.3, p. 761 Atthispoint,theteachercontinuestotakestudentguessesforxandy.Students makeguessesandonestudentsuggests x 2 and y 3.Mr.Brauntriesthatsuggestion, andseesthatindeed, 3(2) 2(3) 12. T: OK,sowefoundoutthat1and2didnotwork;wefoundoutthat2and3didwork. Doyouthinkthereareanymorethingsthatdon’twork? SN: Yes. T: Alotmorethingsthatdon’twork.OK,doyouthinkthereareanymorethingsthat dowork? S: Yes. T: Canyouthinkofanotherthingthatdoeswork?[...] SN: 3(3)… T: OK,ifIputathreethere,OK. S: Andthen,the2yis2,2(1). T: 2 1. OK,thisis9,right?Plus2,makes11insteadof12.So,wefoundanotherthing thatdoesn’twork.So,I—[name],youmusthavebeenright,thereweremorethings thatdonotwork.Canyoufindanythingelsethatdoeswork? SN: 4and1. T: Youthink4and1works?WheredoIputmy4,forxorfory? S: Forx,yeah. T: OK,soIputin3(4)+2(1),thatgivesme12+2=14.Wefoundanotherthingthat doesn’twork. S: Actually,put3fory,plus1.5. T: […]2(1.5),whatarewegoingtoget? Matsuura et al. Ss: It’s3. T: 3,andwehad9.Is3+9=12? Ss: Yes. T: Hey,lookatthat.Allright,now,that’sthekindofthingIwantyoutodo.You’rejust goingtotrysomethings.Someofthemwillwork;someofthemwon’twork. Mr.Braunhasmodeledadetailedinvestigationoflookingforpointsthatsatisfythe equation 3x 2y 12, usingtheword“works”asasubstitutefor“satisfiestheequation.” Heusesthephrases“works”and“doesn’twork”repeatedly.Hethenhandsoutaworksheet forinvestigationthatincludestheproblems: Eachpointinthefollowingtablesatisfiestheequation x y 5. a) Completethetable. x y (x,y) 1 4 (1,4) 2 3 0 2 113 1 2 b) Graphthe (x, y) coordinatesthatsatisfytheequation x y 5. [Gridsupplied.] c) Whatshapeisthegraph? and Usetheequation 2x 3y 12. TME, vol10, no.3, p. 763 a) Findfivepointsthatsatisfytheequation. b) Findfivepointsthatdonotsatisfytheequation. Studentsbegintheinvestigation.Somedonotknowwhatitmeansforapointto “satisfyanequation.”Mr.Braunhadcreatedtheworksheetbasedonproblemsinan Algebra1textbook—inthebook,studentsareremindedthat“Ifapoint’scoordinatesmake anequationtrue,thepoint‘satisfiestheequation’”(EducationDevelopmentCenter,Inc., 2009a,p.251).Mr.Braunhadleftthatreminderoffofhisworksheet,andsomeofthe studentsgetstuck.Forexample: S: …Please! T: Youjusttoldme,though.[Laughter]Whatarewetryingtodo?What’sitaskingyou todo? S: Findthispoint… T: OK,whatdoes“satisfy”mean?That’sthesameequationweplayedwithatthe beginningofclass,right? S: Idon’tknow. T: Itis,right?Wedidn’tsay“satisfy”and“notsatisfy”;whatwerethewordsthatwe used? S: Idon’tknow.Idon’tknow. T: When[name]gaveus3and1.5,whatdidwesay? S: Decimal? T: Well,wesaidtheyweredecimals,wesighedat[name],butbesidethat,whatelse didwesay?Whatdoesthissideequal? S: x?y?What? Matsuura et al. T: What’s 3 3 ? S: 9. T: What’s 2 1.5 ? S: 3. T: What’s9+3? S: 12. T: So,whatdidwesay?“[Name]’ssolution...” S: Works? T: Works!“Works”isanotherwordfor“satisfies.”Ifyouwanttosoundsmart,yousay, “Itsatisfiestheequation.”OK?Allright. Similarly,anotherstudentasks: S: Idon’tunderstandwhatit’saskingus![Laughter] T: Allright,fairenough.Itsays,“Sketchagraphofallthe(x,y)coordinatesthat satisfy”—work—“inthisequation,”andhere’smyequation. Ononehand,thisisnotabigdeal.Theteachercantravelfromgrouptogroup, remindingthemwhat“satisfiestheequation”means,butheusuallysimplysaysthat“it means‘works.’”However,“works”asadescriptionisnotoperational.Whenstudentsare solvingproblems,theyrepeatedlyaskaboutthephrase“satisfiestheequation.”Rather thanoffertheoperationalizabledefinition:“ifapoint’scoordinatesmakeanequationtrue, thepointsatisfiestheequation,”Mr.Braunreturnstothephrase“works.” Itisworthnotingthatthefollowingday,Mr.Braunposesawarm‐upquestiontohis class:“Whatdoesitmeantobeasolution?”Althoughhedoesnotspecificallyaddressthe TME, vol10, no.3, p. 765 definitionofapointsatisfyinganequation(andtheissuecontinuestopersistforstudents), hedoesstartworkingonunpackingthatlanguageforstudents. CommonThemesintheExamples Severalobservationsandquestionsemergeforusintheseexamples.First,what strikesusagainandagainisthecomplexityofteachers’usesofMHoM.Thesehabitscannot bedeployedindependentlyintheclassroomanymorethantheycanbewhenteachers(and mathematicians)domathematicsforthemselves.Infact,wesawthatthehabitofusing mathematicallanguagecaneithercomplementorgetinthewayofstudent experimentationandinquiry,dependingonhowtheteacherusesthehabit.InMr.Hart’s class,theprecisedefinitionofrecursivefunctionismotivatedbythestructurethathis studentsdiscoveredthroughexperimentation.And,inturn,Mr.Hartplanstousethis functionnotationasaninvestigativetooltoexplorefurthertopics(e.g.,theconnection betweenlinearandexponentialfunctions).Mr.Braunalsobringsexperimentationintohis classroom.Indeed,hisstudentsconductaninvestigationtoexploretherelationship betweenanequationanditsgraph.However,somestudentshavedifficultybeginningthe investigation,becausetheydonotunderstandthelanguagetheyencounterinthetask. Here,anoperationaldefinitionofthephrase“satisfiestheequation”mayhaveledthemto understandtheproblemstatementsandgiventheminsightintohowtoproceed. Throughouttheseexamples,wealsosawhowtheuseofmathematicallanguagecan supportstudents’understanding.InMs.Graham’sclass,weseehowshepushesher studentstoclearlystatethemeaningoftheword“solution.”Anditsdefinitionbecomesa vehiclethatfacilitatestheproblem‐solvingprocess.Incontrast,weseeMr.Braunwhose studentsencounterthephrase,“satisfytheequation.”Insteadofprovidingausable Matsuura et al. definition,heoffersanalternative,namely“works.”WebelieveMr.Brauniswell‐ intentionedhere.Specifically,thereisevidencethatheistryingtomakethelanguageless intimidatingforstudentsbyofferingamoreinformalphrase.Indeed,hesays,“‘Works’is anotherwordfor‘satisfies.’Ifyouwanttosoundsmart,yousay,‘Itsatisfiestheequation.’” Butasdiscussedearlier,“works”isaphrasethatisdifficulttooperationalize.Itleadsto confusionforhisstudents,becausetheydonotknowhowtouseit.Oneofthemathematical practicesadvocatedbytheCommonCoreisattendingtoprecision.TheCommonCore statesthat,“Mathematicallyproficientstudentstrytocommunicatepreciselytoothers. Theytrytousecleardefinitionsindiscussionwithothersandintheirownreasoning” (NGACenter&CCSSO,2010,p.7).That“usability”oflanguageisanimportantpartof communicatingprecisely,andonethatseemsespeciallyimportantforteachers. Inparticular,thecarefuluseofmathematicallanguagenotonlyhelpsclarifyideas forstudents,asitdidinMs.Graham’sclass,butithelpsthemunderstandthemathematics itselfinadeeperway.WeseethisinMr.Hart’slesson,wheretherecursiveformulafor f (n) capturesthepropertiesofthefunctionthatstudentsfoundthroughtheir investigations.Indeed,thisformulaisbothaproductandareflectionoftheirexperiences. InourworkwithFoMteachers,wehavefoundthatencapsulatingvariousinsightsinto preciselanguage—aswesawinMr.Hart’sclass—helpsonebetterunderstandtheideas themselves. Mr.Hartalsorecognizesthepowerofpreciselanguagetodrivefurther investigations.Laterintheschoolyear,thesestudentswillusefunctionnotationtostudy transformationsoffunctions(e.g.,stretches,shrinks,andtranslations).Headds,“Ithink TME, vol10, no.3, p. 767 thatwillbeaplacewherestudentswillreallyappreciatethefunctionnotationin representingthosetransformationsmoreeasily.” Mr.Hartconcludesthepost‐interviewbydescribinghowtoday’slessonispartofa biggerunitandhowitsetsthefoundationforlaterlessons.Heplanstousetheserecursive rulesasavehicleforbetterunderstandingtheirclosed‐formcounterparts.Inafuture lesson,studentswillinvestigatetheconnectionbetweenlinearandexponentialfunctions. “Iwantmystudentstoseethatrecursively,exponentialfunctionsarevery,verysimilarin theirrepresentationtolinearfunctions.Ithinkthatwillprovideanicefoundationfor studyingexponents,”hesays.Here,Mr.Hartisusingthelanguageofrecursivefunctionsto shedlightontheconnectionsbetweentheircorrespondingclosed‐formrepresentations. Ourowngoalsinwatchingthesevideoshavebeentobetterunderstandteachers’ usesofMHoM,andtolearnabouthowwemightmeasurethatuse.Partofourdesireto measuretheusestemsfromourdesiretounderstand(eventually)thelinkbetween teachers’usesofMHoMandlearningoutcomesforstudents,particularlyifwecanmeasure students’usesofMHoMorstudents’facilitywithCommonCore’sMathematicalPractices, whichincludesignificantoverlapwithMHoM.Withinthecontextoftheexamplesinthis paper,mightteachers’useoflanguagehaveanimpactonstudentachievement?Evento begintoanswersuchaquestion,wemusthavesomeobjectivewayofdecidingwhetheror notagiventeacherisusingclear,usable,andpreciselanguage.This,too,iscomplex. Establishingwhatcountsas“clear,usable,andprecise”languagedependsverymuchonthe classroomcontext.Mr.Braunusestheword“works”soconsistentlyinhisclassroom discussion,thatifitdidnotcauseconfusion,surelywewouldwantto“rate”thatastotally acceptablelanguage,takenassharedbythewholeclassroom. Matsuura et al. ImpactandNextSteps Webeganourresearchworkpartlybecausewewantedtoassesstheeffectsofour ownMSPprofessionaldevelopmentprogramsusingtoolsthatwereconsistentwiththe goalsofourMSP,andpartlybecausewewantedtounderstandtheMHoMofsecondary teachersbetter.Wedidnotfindinstrumentsthatmeasuredteachers’MHoM—eitherwhen doingmathematicsforthemselvesorteachingmathematicsintheirclassrooms—in existenceinthefield,sowebegantocreateourown.Althoughweexpectedtolearnfrom thedatagatheredusingourinstruments,wedidnotanticipatetheimmediateimplications thatourresearchwouldhaveontheprofessionaldevelopmentprogramsinourMSP.For example,basedonwhatwehadlearnedfromourresearch,wepilotedtheMathematical HabitsofMindShadowSeminarinthesummerof2011,gearedtowardteacherparticipants returningtoPROMYSforTeachers(oursummerimmersionprogram)forasecond summer.Throughdiscussions,readings,curriculumanalyses,andlessondesigns,thegoal ofthisseminarwastoexplore(a)thewaysinwhichsecondaryteachersknowanduse MHoMintheirprofession,and(b)theeffectsthatalearningenvironmentthatstresses MHoMmighthaveonsecondarystudents.Wewillcontinuetoofferandrefinethiscourse aspartofoursummerimmersionprogramforteachers. Wealsodidnotanticipatethepotentialforimpactonthefield.Whiledevelopment andvalidationoftrulyreliabletoolsisbeyondthescopeofthecurrentFoM‐IIstudy,we havebeenlayingthegroundworkforourMHoMinstruments—theP&Passessmentandthe observationprotocol—overthelastfewyears.Thisexploratoryphaseofinstrument developmentalsocoincidedwiththeemergenceoftheCommonCoreStateStandardsand itsadoptionby45states(NGACenter&CCSSO,2010).OurMHoMconstructisclosely TME, vol10, no.3, p. 769 alignedwiththeCommonCore,especiallyitsStandardsforMathematicalPractice,and thereisconsiderableoverlapinthetwo.Forexample,bothplaceimportanceonseeking andusingmathematicalstructure,usesofprecision,andtheactofabstractingregularity fromrepeatedactions.Aswepresentedourpreliminaryfindingsatnationalconferences (Matsuura,Cuoco,Stevens,&Sword,2011;Matsuura,Sword,Cuoco,Stevens,&Faux, 2011),wereceivedseveralrequeststouseourinstruments,eventhoughtheywereinthe pilotphaseofdevelopment.Onedistrictleaderwantedtodiagnosethepreparednessofher teacherstoteachfromacurriculumbasedontheCommonCore.Otherswantedtousethe instrumentsaspre‐andpost‐measuresforevaluatingprofessionaldevelopmentprograms alignedtotheCommonCore.Wehavebecomeabundantlyawareofthenationalneedfor validandreliableinstrumentstomeasureteachers’knowledgeanduseof MHoM/MathematicalPractices,aswellasguidelinesforacceptableuseofsuch instruments.Thus,inthenextphaseofourresearch,weplantosubjectourpilot instrumentstorigorousscientifictesting.Theexamplesinthispaperareexemplarsof thosethatprovideboththecontentbasisfortheP&Passessmentandthebehavioral indicatorsfortheobservationprotocol. Matsuura et al. References Baldassari,C.,Lee,S.,&Torres,R.T.(2009).Thecaseofahighschoolmathematicsteacher. Retrievedfromhttp://focusonmath.org/FOM/PERG Ball,D.L.(1991).Researchonteachingmathematics:Makingsubjectmatterknowledgepart oftheequation.InJ.Brophy(Ed.),Advancesinresearchonteaching(Vol.2,pp.1– 47).Greenwich,CT:JAIPress. Ball,D.L.,&Bass,H.(2000).Interweavingcontentandpedagogyinteachingandlearning toteach:Knowingandusingmathematics.InJ.Boaler(Ed.),Multipleperspectiveson theteachingandlearningofmathematics(pp.83‐104).Westport,CT:Ablex. Ball,D.L.,Hill,H.C.,&Bass,H.(2005).Knowingmathematicsforteaching:Whoknows mathematicswellenoughtoteachthirdgrade,andhowcanwedecide?American MathematicalEducator,29(3),14–17,20–22,43–46. Ball,D.L.,Thames,M.H.,&Phelps,G.(2008).Contentknowledgeforteaching:Whatmakes itspecial?JournalofTeacherEducation,59(5),389–407. Bass,H.(2011).Vignetteofdoingmathematics:Ameta‐cognitivetouroftheproductionof someelementarymathematics.TheMontanaMathematicsEnthusiast,8(1&2),3–34. Bush,W.,Karp,K.,Ronau,B.,Thompson,C.,McGatha,M.&Brown,T.(2005,April).The reliabilityandvalidityofdiagnosticmathematicsassessmentsformiddleschool teachers.PaperpresentedattheannualmeetingoftheAmericanEducation ResearchAssociation.Montreal,Canada. Clarke,D.J.&Hollingsworth,H.(2002).Elaboratingamodelofteacherprofessionalgrowth. TeachingandTeacherEducation,18(8),947–967. TME, vol10, no.3, p. 771 Cuoco,A.(2008).IntroducingExtensibleToolsinMiddle‐andHigh‐SchoolAlgebra.InC. Greenes(Ed.),AlgebraandAlgebraicThinkinginSchoolMathematics:2008 YearbookoftheNationalCouncilofTeachersofMathematics(NCTM)(pp.51–62). Reston,VA:NCTM. Cuoco,A.,Goldenberg,E.P.,&Mark,J.(1997).Habitsofmind:Anorganizingprinciplefor mathematicscurriculum.JournalofMathematicalBehavior,15(4),375–402. Cuoco,A.,Goldenberg,E.P.,&Mark,J.(2010).Contemporarycurriculumissues:Organizing acurriculumaroundmathematicalhabitsofmind.MathematicsTeacher,103(9), 682–688. Cuoco,A.,Harvey,W.,Kerins,B.,Matsuura,R.,&Stevens,G.(2011).Whatisa“Community ofMathematicalPractice”?[PDFdocument].Retrievedfrom http://cbmsweb.org/Forum4/Presentations/C.1_Cuoco_Harvey_Kerins_Matsuura_S tevens.pdf Dewey,J.(1916).Democracyandeducation:Anintroductiontothephilosophyofeducation. NewYork,NY:TheFreePress. Dewey,J.,&Small,A.W.(1897).Mypedagogiccreed&thedemandsofsociologyupon pedagogy.NewYork,NY:E.L.Kellogg. Duckworth,E.(1996).Thehavingofwonderfulideas&otheressaysonteaching&learning (2nded.).NewYork,NY:TeachersCollegePress. EducationDevelopmentCenter,Inc.(2009a).CMEProjectAlgebra1.Boston,MA:Pearson Education,Inc. EducationDevelopmentCenter,Inc.(2009b).CMEProjectAlgebra1,Teacher’sEdition. Boston,MA:PearsonEducation,Inc. Matsuura et al. Ferrini‐Mundy,J.,Senk,S.,McCrory,R.,&Schmidt,W.(2005,May).Measuringsecondary schoolmathematicsteachers’knowledgeofmathematicsforteaching:Issuesof conceptualizationanddesign.WorkingsessionattheInternationalCommitteeon MathematicsInstructionStudy15Meeting,Lindoia,Brazil. Goldenberg,E.P.,Mark,J.,&Cuoco,A.(2010).Contemporarycurriculumissues:An algebraic‐habits‐of‐mindperspectiveonelementaryschool.TeachingChildren Mathematics,16(9),548–556. Hardy,G.H.(1940).Amathematician’sapology.NewYork,NY:CambridgeUniversityPress. Heid,M.K.(2008,July).Mathematicalknowledgeforsecondaryschoolmathematics teaching.Paperpresentedatthe11thInternationalCongressofMathematics Education,Monterrey,Mexico. Heid,M.K.,&Zembat,I.O.(2008).Understandingmathematicalentitiesasobjectsoras inscriptions.[Paperinprogress.] Heid,M.K.,Lunt,J.,Portnoy,N.,&Zembat,I.O.(2006).Waysinwhichprospective secondarymathematicsteachersdealwithmathematicalcomplexity.InProceedings ofthe27thAnnualMeeting,InternationalGroupforPsychologyofMathematics EducationNorthAmericanChapter[CD].Merida,MEXICO. Hill,H.C.,Schilling,S.G.,&Ball,D.L.(2004).Developingmeasuresofteachers’mathematics knowledgeforteaching.ElementarySchoolJournal,105,11–30. Hill,H.C.,Rowan,B.,&Ball,D.L.(2005).Effectsofteachers’mathematicalknowledgefor teachingonstudentachievement.AmericanEducationalResearchJournal,42(2), 371–406. TME, vol10, no.3, p. 773 Hill,H.C.,Ball,D.L.,&Schilling,S.G.(2008).Unpackingpedagogicalcontentknowledge: Conceptualizingandmeasuringteachers’topic‐specificknowledgeofstudents. JournalforResearchinMathematicsEducation,39(4),372–400. Hill,H.C.,Blunk,M.,Charalambous,C.,Lewis,J.,Phelps,G.,Sleep,L.,&Ball,D.L.(2008). Mathematicalknowledgeforteachingandthemathematicalqualityofinstruction: Anexploratorystudy.CognitionandInstruction,26(4),430–511. HorizonResearch,Inc.(2000).Insidetheclassroomobservationandanalyticprotocol. Retrievedfromhttp://www.horizon‐research.com/instruments/clas/cop.php Jackson,Allyn.(2001).InterviewwithArnoldRoss.NoticesoftheAMS,48(7),691‐698. Kilpatrick,J.,Blume,G.,&Allen,B.(2006).Theoreticalframeworkforsecondary mathematicalknowledgeforteaching.Unpublishedmanuscript.Universityof GeorgiaandPennsylvaniaStateUniversity. Kuhn,D.(2005).Educationforthinking.Cambridge,MA:HarvardUniversityPress. LearningMathematicsforTeaching.(2006).Acodingrubricformeasuringthe mathematicalqualityofinstruction(TechnicalreportLMT1.06).Unpublished technicalreport.AnnArbor:UniversityofMichigan,SchoolofEducation. Lee,S.,Baldassari,C.,&Leblang,J.(2006,May).FocusonMathematics:Creatinglearning culturesforhighstudentachievementyear3evaluationreport.Retrievedfrom http://focusonmath.org/FOM/PERG Lee,S.,Baldassari,C.,Leblang,J.,Osche,E.,&Hoyer‐Winfield,S.(2007,May).Focuson Mathematics:Creatinglearningculturesforhighstudentachievementyear4 evaluationreport.Retrievedfromhttp://focusonmath.org/FOM/PERG Matsuura et al. Lee,S.,Baldassari,C.,Leblang,J.,&Osche,E.(2009,January).FocusonMathematics: Creatinglearningculturesforhighstudentachievementsummativeevaluationreport. Retrievedfromhttp://focusonmath.org/FOM/PERG Leinhardt,G.,&Smith,D.A.(1985).Expertiseinmathematicsinstruction:Subjectmatter knowledge.JournalofEducationalPsychology,77(3),247–271. Ma,L.(1999).Knowingandteachingelementarymathematics:Teachers’understandingof fundamentalmathematicsinChinaandtheUnitedStates.Mahwah,NJ:Lawrence ErlbaumAssociates. Mark,J.,Cuoco,A.,Goldenberg,E.P.,&Sword,S.(2010).Contemporarycurriculumissues: Developingmathematicalhabitsofmind.MathematicsteachingintheMiddleSchool, 15(9),505–509. Matsuura,R.,Cuoco,A.,Stevens,G.,&Sword,S.(2011,April).Mathematicalhabitsofmind forteaching:Assessingmathematicalknowledgeforteachingatthesecondarylevel. PaperpresentedattheNationalCouncilofSupervisorsofMathematicsAnnual Conference,Indianapolis,IN. Matsuura,R.,Sword,S.,Cuoco,A.,Stevens,G.,&Faux,R.(2011,April).Mathematicalhabits ofmindforteaching.PaperpresentedattheNationalCouncilofTeachersof MathematicsResearchPresession,Indianapolis,IN. MeasuresofEffectiveTeachingProject.(2010,September).Contentknowledgeforteaching andtheMETproject.Retrievedfrom http://www.metproject.org/downloads/Teacher_Knowledge_092110.pdf Meier,D.(1995).Thepoweroftheirideas:LessonsforAmericafromasmallschoolin Harlem.Boston,MA:Beacon. TME, vol10, no.3, p. 775 NationalCouncilofTeachersofMathematics.(2000).Principlesandstandardsforschool mathematics.Reston,VA:Author. NationalGovernorsAssociationCenterforBestPracticesandtheCouncilofChiefState SchoolOfficers.(2010).CommonCoreStateStandardsforMathematics.Retrieved fromhttp://www.corestandards.org/the‐standards/mathematics Piburn,M.,&Sawada,D.(2000).Reformedteachingobservationprotocol(TechnicalReport No.IN00‐3).Tempe,AZ:ArizonaStateUniversity,ArizonaCollaborativefor ExcellenceinthePreparationofTeachers.(ERICDocumentReproductionService No.ED447205) Polya,G.(1954a).Mathematicsandplausiblereasoning:Inductionandanalogyin mathematics(Vol.1).Princeton,NJ:PrincetonUniversityPress. Polya,G.(1954b).Mathematicsandplausiblereasoning:Patternsofplausibleinference(Vol. 2).Princeton,NJ:PrincetonUniversityPress. Polya,G.(1962).Mathematicaldiscovery:Onunderstanding,learning,andteachingproblem solving(Vol.1).NewYork,NY:JohnWiley. Reinholz,D.,Levin,M.,Kim,H.,Champney,D.,Floden,R.,Katwibun,D.,Lepak,J.,Louie,N, Nix,S.,Sanchez,J.,Schoenfeld,A.,Seashore,K.,Shah,N.,&Wernet,J.(2011,April). Capturingwhatcounts:Classroompracticesthatleadtorobustunderstandingof Algebra.PaperpresentedattheannualmeetingoftheAmericanEducational ResearchAssociation,NewOrleans,LA. Resnick,L.B.(1987).Educationandlearningtothink.Washington,DC:NationalAcademy Press. Matsuura et al. Schmidt,W.,Huang,R.,&Cogan,L.(2002,Summer).Acoherentcurriculum:Thecaseof mathematics.AmericanEducator,26(2),10–26,47.Retrievedfrom http://www.aft.org/pdfs/americaneducator/summer2002/curriculum.pdf Shechtman,N.,Roschelle,J.,Haertel,G.,Knudsen,J.,&Vahey,P.(2006,April).Measuring middleschoolteachers’mathematicalknowledgeofteachingrateandproportionality. PaperpresentedattheannualmeetingoftheAmericanEducationalResearch Association,SanFrancisco,CA. Stevens,G.(2001).LearningintheSpiritofExploration:PROMYSforTeachers. MathematicsEducationReformForum,13(3),7–10. Stylianides,A.J.&Ball,D.L.(2008).Understandinganddescribingmathematical knowledgeforteaching:Knowledgeaboutproofforengagingstudentsinthe activityofproving.JournalofMathematicsTeacherEducation,11(4),307–332. Thompson,P.,Carlson,M.,Teuscher,D.D.,&Wilson,M.(n.d.).ProjectAspire:Definingand assessingmathematicalknowledgeforteachingsecondarymathematics[Abstract]. RetrievedfromTheMathandSciencePartnershipNetwork,NationalScience Foundation:http://aspire.mspnet.org/index.cfm/profile Tishman,S.,Perkins,D.N.,&Jay,E.(1995).Thethinkingclassroom:Learningandteaching inacultureofthinking.Boston,MA:AllynandBacon.
© Copyright 2026 Paperzz