Mathematical Habits of Mind for Teaching: Using Language in

The Mathematics Enthusiast
Volume 10
Number 3 Number 3
Article 9
7-2013
Mathematical Habits of Mind for Teaching: Using
Language in Algebra Classrooms
Ryota Matsuura
Sarah Sword
Mary Beth Piecham
Glenn Stevens
Al Cuoco
Follow this and additional works at: http://scholarworks.umt.edu/tme
Part of the Mathematics Commons
Recommended Citation
Matsuura, Ryota; Sword, Sarah; Piecham, Mary Beth; Stevens, Glenn; and Cuoco, Al (2013) "Mathematical Habits of Mind for
Teaching: Using Language in Algebra Classrooms," The Mathematics Enthusiast: Vol. 10: No. 3, Article 9.
Available at: http://scholarworks.umt.edu/tme/vol10/iss3/9
This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The
Mathematics Enthusiast by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact
[email protected].
TME, vol10, no.3, p. 735
MathematicalHabitsofMindforTeaching:
UsingLanguageinAlgebraClassrooms1
RyotaMatsuura2
St.OlafCollege
SarahSword
EducationDevelopmentCenter,Inc.
MaryBethPiecham
EducationDevelopmentCenter,Inc.
GlennStevens
BostonUniversity
AlCuoco
EducationDevelopmentCenter,Inc.
ABSTRACT:Thenotionofmathematicalknowledgeforteachinghasbeenstudiedbymany
researchers,especiallyattheelementarygrades.Ourunderstandingsofthisnotionparallel
muchofwhatwehavereadintheliterature,butarebasedonourparticularexperiences
overthepast20years,asmathematiciansengagedindoingmathematicswithsecondary
teachers.AspartoftheworkofFocusonMathematics,PhaseIIMSP,wearedeveloping,in
collaborationwithothersinthefield,aresearchprogramwiththeultimategoalof
understandingtheconnectionsbetweensecondaryteachers’mathematicalknowledgefor
teachingandsecondarystudents’mathematicalunderstandingandachievement.Wearein
theearlystagesofafocusedresearchstudyinvestigatingtheresearchquestion:Whatare
themathematicalhabitsofmindthathighschoolteachersuseintheirprofessionallivesand
howcanwemeasurethem?Themainfocusofthispaperisthediscussionofthehabitof
usingmathematicallanguage,andparticularlyhowthishabitplaysoutinaclassroom
setting.
Keywords:Mathematicalhabitsofmind,mathematicallanguage,algebra
1ThismaterialisbaseduponworksupportedbytheNationalScienceFoundationunder
GrantNo.0928735.Anyopinions,findings,andconclusionsorrecommendations
expressedinthismaterialarethoseoftheauthorsanddonotnecessarilyreflecttheviews
oftheNationalScienceFoundation.
[email protected]
The Mathematics Enthusiast, ISSN 1551-3440, Vol. 10, no.3, pp.735-776
2013©The Author(s) & Dept. of Mathematical Sciences-The University of Montana
Matsuura et al.
OurPhilosophyandApproach
Buildingontwodecadesofpriorwork,theFocusonMathematics(FoM)MathandScience
Partnershipprogram(MSP)has,overthelastdecade,developedandrefinedadistinctive
frameworkforamathematics‐centeredapproachtodevelopingteacherleaders,andithas
builtamathematicalcommunitybasedonthatframework.TheFoMapproachinvolves
teachers,mathematicians,andeducatorsworkingtogetherinprofessionaldevelopment
activities.Thecommonthreadrunningthroughthistightlyconnectedsetofactivitiesisan
explicitfocusonmathematicalhabitsofmind.
Wedefinemathematicalhabitsofmind(MHoM)tobethewebofspecializedwaysof
approachingmathematicalproblemsandthinkingaboutmathematicalconceptsthat
resemblethewaysemployedbymathematicians(Cuoco,Goldenberg,&Mark,1997,2010;
Goldenberg,Mark,&Cuoco,2010;Mark,Cuoco,Goldenberg,&Sword,2010).Thesehabits
arenotaboutparticulardefinitions,theorems,oralgorithmsthatonemightfindina
textbook;instead,theyareaboutthethinking,mentalhabits,andresearchtechniquesthat
mathematiciansemploytodevelopsuchdefinitions,theorems,oralgorithms.Some
examplesofMHoMfollow:

Discoveringthestructurethatisnotapparentatfirstbyexperimentingandseeking
regularityand/orcoherence.

Choosingausefulrepresentation—orpurposefullytogglingamongvarious
representations—ofamathematicalconceptorobject.

Purposefullytransformingand/orinterpretingalgebraicexpressions(e.g.,rewriting
x 2  6x 10 as (x  3)2 1torevealitsminimumvalue).
TME, vol10, no.3, p. 737

Usingmathematicallanguagetoexpressideas,assumptions,observations,
definitions,orconjectures.
OurworkoverthepastdecadehasconvincedusoftheimportanceofMHoMfor
studentsandforteachersofmathematics,particularlyatthesecondarylevel.Thesehabits
fosterthedevelopmentanduseofgeneralpurposetoolsthatmakeconnectionsamong
varioustopicsandtechniquesofsecondaryschoolmathematicscontent;theycanbring
parsimony,focus,andcoherencetoteachers’mathematicalthinkingand,inturn,totheir
workwithstudents.Inthissense,weenvisionMHoMasacriticalcomponentof
mathematicalknowledgeforteaching(Hill,Rowan&Ball,2005)atthesecondarylevel(i.e.,
theknowledgenecessarytocarryouttheworkofteachingmathematics).
Webeginthispaperbydescribingthemathematicalcommunitythatwehavebuilt
andtheimpactthatithashadonourteachers,inparticular,theimpactonteachers’
mathematicalunderstandingandinstructionalpractices.Thenwediscusstheresearchthat
grewoutofourdesiretostudyscientificallyhowMHoMmightbeanindicatorofteacher
effectiveness.Lastly,weshedlightononehabitthatemergedprominentlyinour
research—usingmathematicallanguage.Weexaminehowateachermightusethishabitin
aclassroom,possibleimplicationsforstudentlearning,andhowuseofthehabitrelatesto
teachers’useofothermathematicalhabitsintheclassroom.
Weendthissectionwithafewremarks.Althoughwedescribeourresearchon
MHoM,theemphasisofthispaperisnotonourstudy,onitsparticularoutcomes,oronthe
measurementinstrumentsindevelopment.Instead,weintendtoillustrate,usingexamples,
ourmotivationforwhywethinkthesemathematicalhabitsareimportant.Hence,themain
focusofthepaperisthediscussionofthehabitofusingmathematicallanguage,and
Matsuura et al.
particularlyhowthishabitplaysoutinaclassroomsetting.Weincludeadetailed
discussionoftheFoMMSP,partlytosituateourworkwithintheMSPcontextinthisspecial
issueofTheMathematicsEnthusiast.Wealsowanttoprovidebackgroundfortheresearch
thatemergedfromandismotivatedbyourongoingMSPworkwithsecondaryteachers.
Indeed,ourstudyofteachers’MHoMandcorrespondinginstrumentdevelopmentarose
fromourdesiretomeasureprogressinandcontinuetoimproveourworkwithourown
FoMteachers.
FocusonMathematics
FocusonMathematics(NSFDUE0314692)isatargetedMSPfundedbytheNational
ScienceFoundationsince2003.Ourpartnershipisdevotedtoimprovingstudent
achievementinmathematicsthroughprogramsthatprovideteacherswithsolidcontent‐
basedprofessionaldevelopmentsustainedbymathematicallearningcommunitiesinwhich
mathematicians,educators,administrators,andteachersworktogethertoputmathematics
atthecoreofsecondarymathematicseducation.
TheoriginalFoMdistrictpartnersincludetheMassachusettsschoolsystemsof
Arlington,Chelsea,Lawrence,Waltham,andWatertown.Thesesystemsrangefrom
suburbantourban,withmiddleandhighschoolstudentpopulationsfrom1,300to6,000.
Overtheyears,FoMhasofferedavarietyofprofessionalopportunitiesforteachers,
including:(a)apubliccolloquiumseriesdevotedtomathematicsandeducation;(b)
partnership‐widemathematicsseminars;(c)week‐longsummerinstitutesforteachers;
(d)onlineproblem‐solvingcourses;and(e)anewMathematicsforTeachingMasters
ProgramatBostonUniversity.Twoactivitiesdeservespecialmention.
TME, vol10, no.3, p. 739

PROMYSforTeacherssummerinstitute,asix‐weekintensiveimmersionin
mathematics,engagesparticipantsinexperiencingmathematicsasmathematicians
do,solvingproblemsandpursuingresearchprojectsappropriateforthem.Each
summer,theinstitutecombinesteachersfrommultipledistricts,Grades5–12.

Academic‐yearstudygroupsaredistrict‐based—oftenbuilding‐based—groupsthat
meetbiweeklyfortwotothreehoursoverthecourseofayear.Thoughfocusedon
doingmathematics(ratherthanbeingtaughtitsresultsorhowtoteachit)—again,
experiencingmathematicsasamathematicianwould—thesetradetheintensityand
immersionofthesummerinstituteforlong‐term,ongoingstudy.
Thesemathematicallearningcommunitieswithcoreinvolvementof
mathematiciansaredesignedtohelpteachersdevelopthemathematicalhabitsofmind
thatarecentraltothedisciplineofmathematics.Ourteachershaveresponded
enthusiastically,withcommentssuchas:

“[Thestudygroup]isthebest‘professionaldevelopment’thatIhavebeeninvolved
inthroughoutmy35‐yearteachingcareer.Iguessthebesttestamentforthesuccess
ofFocusonMathematicscomesfromthecontinuedattendanceofsomanyteachers.
Wecontinuetotalkaboutthetopicsdiscussedatourstudygroupslongafterthe
weeklysessionisover”(Cuoco,Harvey,Kerins,Matsuura,&Stevens,2011).

“The[Masters]programhasexpandedmyknowledgeofmathematicsanddeepened
myunderstandingofhowchildrenlearnmathematics,but—moreimportantly—I
amnowconnectedtopeoplewhoareaspassionateaboutchildrenlearningand
doingmathematicsasIam”(Cuoco,Harvey,Kerins,Matsuura,&Stevens,2011).
Matsuura et al.
TostudytheimpactofFoM’sprofessionaldevelopmentprogramsonteachers’
professionallives,theProgramEvaluationResearchGroupatLesleyUniversity(FoM’s
evaluators)collectedandanalyzedteacherandstudentdataoverfiveyears(Lee,
Baldassari,Leblang,&Osche,2009)andconductedcasestudiesofteachers(Baldassari,
Lee,&Torres,2009).Belowarethosefindingsmoststronglyinformingourcurrentwork:

Teacherbeliefsandattitudesaboutthenatureofmathematics:Ininterviews,
teachersreportedunderstandingthestructureofmathematicsingreaterdepth—
howtopicsandideasareconnectedandhowtheyaredevelopedthroughthegrade
levels.Teachersreferredtodevelopingamorecompletepictureorunderstandingof
mathematicsasasystemandunderstandingtheconnectionsbetweendifferent
threadswithinit(Lee,Baldassari,&Leblang,2006;Lee,Baldassari,Leblang,Osche,
&Hoyer‐Winfield,2007).

Teacherchangesininstructionalpractice:Manyoftheinstructionalchangesteachers
reportedstemfromthewaysinwhichtheyexperiencedlearningthroughFoM(Lee
etal.,2006).Whenteachersdevelopedadeeperunderstandingofmathematics,
theirconfidenceoftenincreasedandtheydevelopedmoreflexibilityintheir
teachingandtheabilitytoadjustlessonsbasedonstudentresponses.
ThroughourworkinFoM,wehaveseenthatMHoMisindeedacollectionofhabits
teacherscanacquire,ratherthansomestaticyou‐have‐it‐or‐you‐don’twayofthinking.And
teachersreporttousthatdevelopingthesehabitshashadatremendouseffectontheir
teaching.Wehavecollectedampleanecdotalevidence,butrecognizetheneedfor
scientifically‐basedevidencetoestablishthattheseteachershaveindeedlearnedMHoM
TME, vol10, no.3, p. 741
andthatthesehabitshavehadapositiveimpactontheirteachingpractices.Wealso
recognizetheneedtostudystudentoutcomesaffectedbyteachers’usesofMHoM.
MathematicalHabitsofMindforTeachingResearchStudy
FocusonMathematics,PhaseII:LearningCulturesforHighStudentAchievement(NSF
DUE0928735)isanMSPprojectthatbeganin2009.InFoM‐II,wecontinuedtorefineour
mathematicallearningcommunitiesandbegananexploratoryresearchstudyfocusedon
teachers’mathematicalhabitsofmind.
Asabasisforbeginningtheresearchstudy,weusedthetheoreticalframeworks
developedbyClarkeandHollingsworth(2002)fortheir“InterconnectedModelofTeacher
ProfessionalGrowth,”whichischaracterizedbynetworksof“growthpathways”among
four“changedomains”inteachers’professionallives—theexternaldomain(E),the
personaldomain(K)(ofknowledge,beliefsandattitudes),andthedomainsofpractice(P)
andsalientoutcomes(S).Significant,fromourpointofview,istheClarke‐Hollingsworth
theoryofprofessionalgrowth(asdistinctfromsimplechange),whichtheyrepresentas“an
inevitableandcontinuingprocessoflearning”(p.947).Theyaptlydistinguishtheir
frameworkfromothers:“Thekeyshiftisoneofagency:fromprogramsthatchange
teacherstoteachersasactivelearnersshapingtheirprofessionalgrowththroughreflective
participationinprofessionaldevelopmentprogramsandinpractice”(Clarke&
Hollingsworth,2002,p.948).Theagencyofteachersintheirownprofessionalgrowth
characterizesvirtuallyallFoMprograms,soweseetheClarke‐Hollingsworthmodelof
professionalgrowthaswellsuitedforourpurposes.
WeillustrateouruseoftheClarke‐Hollingsworthframeworkwithanexample.
ShowninFigure1isachangeenvironmentdiagramfor“Ms.Crew,”amiddleschool
Matsuura et al.
teacherandactivememberoftheFoMlearningcommunity.Thediagramrepresentsthe
changedomainsasfourboxes,labeledE,K,P,andS,asexplainedabove.Thesolidarrows
refertogrowthsduetoenactment,whilethedashedarrowsdepictthoseduetoreflection.
TheloopontheboxEreferstointeractionbetweenstudygroupsandtheimmersion.
Figure1.SchematicdiagramofMs.Crew’schangeenvironment
ThisparticulardiagramdepictsactivityrelatedtoMs.Crew’sresearchon
PythagoreanTriplesandshowshowthisactivityledtohergrowth,bothmathematically
andasateacher.EacharrowrepresentsagrowthinMs.Crewthatoccurredasaresultofa
changeinherprofessionallife.Forexample,arrow6depictshowherincreasedbelief
aboutherself(achangeinboxK,thepersonaldomain)leadstoMs.Crewencouragingher
studentstoperformmoreexplorations(achangeinboxP,thedomainsofpractice).
Moreover,arrow6issolid,becausethechangeinherclassroomisdueanenactment,i.e.,a
particularcourseofactionthatshetookasateacher.Thearrowsarenumberedin
chronologicalorder,soarrow1denotesagrowthinMs.Crewthatoccurredbeforethat
depictedbyarrow2,andsoon.ThedashedarrowfromboxEtoKhasmultiplenumbers
TME, vol10, no.3, p. 743
(asdoesthesolidarrowfromKtoE).Here,thedashedarrowmaybeinterpretedasthree
separatearrows(arrow1,arrow3,andarrow5)—wesimplycondensedthemintoone
arrowtosavespaceinthediagram.
Ms.CrewfirstencounteredtheconceptofPythagoreanTripleswhilestudying
Gaussianintegersduringhersummerimmersionexperience.Thetopicleftsuchan
impressiononher(reflectivearrow1)thatshepursuedit(enactivearrow2)asaresearch
projectundertheguidanceofanFoMmathematician.Throughmonthsofhardwork—
familiarizingherselfwithPythagoreanTriplesthroughdozensofexamples,makingcareful
datarecordingandanalysis,discoveringbeautifulpatterns,comingupwithinteresting
conjectures(someweretrue,somewerefalse),andfinallywritingdownclearandconcise
propositionsandprovingthem—shecametounderstand(reflectivearrow3)featuresof
Pythagoreantriplesthatwouldhavebeenbeyondherconceptionbeforethisexperience.
Ms.Crewproducedanindependentresearchpaperandaone‐hourmathematicstalkfor
herpeers(enactivearrow4).
Neitherthesummerimmersionexperiencenortheindependentresearchproject
waseasyforMs.Crew,whocameintoourprogramwitharatherweakmathematics
background.Butcompletingthisprojecthadasignificanteffectonhermathematicalself‐
confidence(reflectivearrow5).TheloopsofthisupwardspiralbetweendomainsKandE
repeatedmanytimes.Amongstherpeers,Ms.Crewbecameoneoftheleadersinherstudy
group(4).Inhercurriculumplanning,shenowhasmorebeliefinherdecision‐making
abilities(5).Andinherclassroom,sheengagesherstudentsinperformingmathematical
exploration(6).Thisnewclassroomatmosphere,aswellashernewattitudetowards
mathematics,ledtomorecuriosityandquestionsfromherstudents(7,8).Andwhileshe
Matsuura et al.
maynotbeabletoanswerallofthemonthespot,shenowwelcomesmathematicaldialogs
anduncertaintyinherclassroom(9,10).Allofthisrepresentssignificantprofessional
growthandMs.Crew’schangediagramenablesustoseetheelementsofthatgrowthata
glance.
LookingatMs.Crew’schangediagram,onecannotfailtonoticetheintenseactivity
takingplacearoundthenodeK,whichincludesgrowthinMs.Crew’sknowledgeof
mathematics.Butitseemstousthatmoreisinvolvedthansimplyknowingmathematicsas
abodyofknowledge.Ms.Crewislearningmathematicsinacertainway.Herbeliefsabout
thenatureofmathematicsarechanging.Sheisacquiringcertainmathematicalhabitsof
mindandsheisfindingthesehabitsusefulforherworkintheclassroomandalsofor
leadershiprolesintheschool.
Applyingthisframeworkofteacherchange,webegantobuildforourselvesa
theoreticalunderstandingofhowMHoMplaysaroleintheworkofteaching.Recognizing
theneedforascientificapproachtotestthetheory,andindeedinvestigatethewaysin
whichMHoMisanindicatorofteachereffectiveness,weconductedanexploratorystudy
titledMathematicalHabitsofMindforTeachingthatcentersonthefollowingquestion:
Whatarethemathematicalhabitsofmindthatsecondaryteachersuseintheir
professionandhowcanwemeasurethem?
Toinvestigatethisquestion,wedevelopedadetaileddefinitionofMHoMandhavebeen
buildingthefollowingtwoinstruments:

Apaperandpencil(P&P)assessmentthatmeasureshowteachersengageMHoM
whendoingmathematicsforthemselves.
TME, vol10, no.3, p. 745

Anobservationprotocolmeasuringthenatureanddegreeofteachers’usesofMHoM
intheirteachingpractice.
Weemphasizethatbothinstrumentsareneeded,becauseinourworkwithteachers,we
haveseenthosewhohaveverystrongMHoMforthemselvesbutdonotnecessarilyemploy
thesamemathematicalhabitsintheirteachingpractices.
Ourcurrentworkfitsintoalargerresearchagendathatwearedevelopingin
collaborationwithleadersinthefield,withtheultimategoalofunderstandingthe
connectionsbetweensecondaryteachers’mathematicalknowledgeforteachingand
secondarystudents’mathematicalunderstandingandachievement.
OperationalizingMHoM
TooperationalizetheMHoMconcept,wereliedonourownexperiencesas
mathematiciansdoingmathematicswithsecondaryteachers(Stevens,2001).Wealso
studiedexistingliterature—inparticular,Dewey’s(1916)andDeweyandSmall’s(1897)
earliertreatmentsofhabitsandhabitsofmind,theStudyofInstructionalImprovement
(SII)andtheLearningMathematicsforTeaching(LMT)projectstodevelopmeasuresof
mathematicalknowledgeforteaching(MKT)forelementaryteachers(Ball&Bass,2000;
Ball,Hill,&Bass,2005;Hill,Schilling,&Ball,2004;Hill,Ball,&Schilling,2008),andthe
descriptionbyCuocoetal.ofmathematicalhabitsofmind(1997,2010).Andweconsulted
thenationalstandards,i.e.,theNCTMPrinciplesandStandardsforSchoolMathematics
(NationalCouncilofTeachersofMathematics[NCTM],2000)andtheCommonCore
StandardsforMathematicalPractice(NationalGovernorsAssociationCenterforBest
PracticesandtheCouncilofChiefStateSchoolOfficers[NGACenter&CCSSO],2010).But
aboveall,wewentintotheclassroomsofFoMteachers,whereweobservedabroad
Matsuura et al.
samplingofMHoMstrengths.Someteachersexhibitedpreciseuseoflanguageandcareful
reasoningskills;othershadstrongexplorationskills,weregoodatdesigningmathematical
experiments,orshowedspecialstrengthatgeneralizingfromconcreteexamples.
Fromthesevarioussources,webegantocompilealistofhabitsthatconstitute
MHoM.Asthelistgrew,weidentifiedfourbroadandoverlappingcategoriesintowhichour
mathematicalhabitsnaturallyfell:
●
Seeking,using,anddescribingmathematicalstructure
●
Usingmathematicallanguage
●
Performingpurposefulexperiments
●
Applyingmathematicalreasoning
Indeed,thesearecategoriesofmathematicalpracticesthatareubiquitousinthediscipline.
Andinordertoconductafine‐grainedstudyofthesecategories,weteasedapartmultiple
habitswithineachcategorythatwewantedtomeasure,someofwhichwereidentified
earlier.Thatbeingsaid,weprimarilyenvisionMHoMasbeingcomprisedofthefour
categories,withthelistofhabitswithineachcategoryprovidingmoredetailandtextureto
thesefour.Bynomeansisourlistfinal.Infact,weconsideritanevolvingdocumentthat
wewillcontinuetoreviseasweobtainmoredatausingourinstruments.Fromourdata,
wewilllearnwhichhabitsaremoreprominentlyusedbysecondaryteachers,bothwhen
doingandteachingmathematics.
PaperandPencil(P&P)Assessment
WedevelopedapilotP&Passessmentthatmeasureshowsecondaryteachersuse
MHoMwhiledoingmathematics.Thisassessmentcontainssevenopen‐endedproblems
andisdesignedtobecompletedinonehour.Inparticular,wedevelopedproblemsthat
TME, vol10, no.3, p. 747
mostteachershavetherequisiteknowledgetosolve,oratleastbegintosolve.Andwhat
weareassessingishowtheygoaboutsolvingit.Itisthechoiceoftheirapproachthatwe
areinterestedin,asopposedtowhetherornottheyhavethenecessaryknowledge/skills
tosolveit.Eachitemisdesignedtorevealwhathabitsandtoolsteacherschoosetousein
familiarcontexts.Todate,wehavegonethroughseveralroundsofdesign,pilot‐test,data
analysis,andrevisionofthisinstrument.Forourlatestpilot‐testinthesummerof2011,we
administeredtheP&Passessmentto43secondarymathematicsteachersparticipatingin
theNSF‐fundedstudyChangingCurriculum,ChangingPractice(NSFDRL1019945).Wewill
carryoutanotherfieldtestwithapproximately50teachersinthesummerof2012.
Togatherinitialdataontherolethatteachers’approachtosolvingmathematics
problemsplaysintheirapproachtomathematicsinstruction,weaskedafollow‐up
questiontosomeofourP&Passessmentproblems:Whatstrategieswouldyouwantyour
studentstodevelopforaproblemlikethis?Our43respondentsalmostunanimously
reportedthattheywanttheirstudentstoapproachtheproblemsexactlyastheydid
themselves.(Note:Afewteacherswantedtheirstudentstoappreciateavarietyof
approaches.)Thisfindingprovidesinitialevidencethatteachers’ownmathematicalwork
maybeindicativeofhowtheychoosetoexplain/formulatethesubjectmatterfortheir
students.Recognizingtheneedforfurtherstudyofthishypothesis,webegantocreatean
observationprotocol.
ObservationProtocol
Weareintheprocessofdesigninganobservationprotocolandcodingschemethat
measurethenatureanddegreeofteachers’usesofMHoMintheirclassroominstruction.
Todeveloptheinstrument,weconductedliveandvideotapedobservationsoftwotothree
Matsuura et al.
consecutivemathematicslessonscollectedfromatotalof30secondaryteacherstoidentify
teacherbehaviorsthatreflecttheusesofaparticularmathematicalhabit.Inaddition,we
developedasimpleprotocolforpre‐andpost‐interviewswithteacherswevideotape.We
alsocollectedclassroomartifacts(lessonplans,in‐classworksheets,homework,and
assignments)fromeachclassroomweobserved.
Animportantfeatureofourobservationprotocolisthatitmeasureshowteachers
useMHoMintheirinstruction.Thusteachersarecodednotforpossessingcertain
mathematicalhabitsintheabstract,butforchoosingtobringthemtobearinaclassroom
setting.Todevelopsuchaninstrument,wearecurrentlystudyingourvideosandslicing
theselessonsintosmallepisodes—i.e.,shortinstructionalsegmentslasting30secondsto4
minutes.Ineachepisode,wedeterminewhethertherewerebehavioralindicatorsthat
reflectedteachers’usesofMHoM,andwecreatecodesthatgeneralizeandcharacterize
theseteacherclassroombehaviors.Weemphasizethatourcurrentfocusisonteacher
behaviorsandusesofMHoMintheclassroom.Wearestillastepawayfromconnecting
teachingpracticescenteredonMHoMtostudents’developmentofMHoMandtostudent
achievement—partlybecausewedonotyethavetheinstrumentstoassessthesehabitsin
students—butimpactingstudents,ofcourse,isourultimategoal.
Later,wedescribethreeteachersfromwhomwegatheredvideodataforour
observationprotocoldevelopment.Specifically,wewilldiscusshowtheyapplythehabitof
usingmathematicallanguageintheirclassroominstruction.Wewillalsoconsiderhow
teacheruseofthisparticularhabitmayaffectstudentunderstanding.
TME, vol10, no.3, p. 749
RelevantLiteratureandRelatedWork
ThetheoryofmathematicalhabitsofmindisphilosophicallygroundedinDewey’s
(1916)andDeweyandSmall’s(1897)earliertreatmentsofhabitsandhabitsofmind.
Theirseminalworkhassinceencouragededucators(Duckworth,1996;Meier,1995)and
educationresearchers(Kuhn,2005;Resnick,1987;Tishman,Perkins,&Jay,1995)to
furtheroperationalizetheconceptofhabitsofmind—thatis,torespondtothegeneral
question:Whatdohabitsofmindlooklikeinthecontextoflearning?Notasevidentinthe
literaturearethehabitsofmindthatpromotesuccessfullearninginspecificdisciplines.In
thecaseofmathematics,thequestionthathasgainedresearchattentionwithinthelast
decadeis:Whatdohabitsofmindlooklikeinthecontextoflearninganddoingmathematics?
Whileaddressingthisquestionisnotanunfamiliartask(Hardy,1940;Polya,1954a,1954b,
1962),whatislessfamiliaristhetaskofgatheringevidenceofmathematicalhabitsofmind
fromteachersofmathematics.WebeganthisworkinourFoM‐IIstudy;weareinthelong‐
termprocessofdevelopingvalidandreliableinstrumentsthatwillallowustomore
rigorouslyinvestigatetherelationshipbetweenteachers’ownMHoM,theirusesofMHoM
intheirteachingpractice,andstudentachievement.
Asmentionedearlier,weenvisionMHoMasanintegralcomponentofMKTatthe
secondarylevel.ThenotionofMKThasbeenstudiedbymanyresearchers(Ball,1991;Ball,
Thames,&Phelps,2008;Heid,2008;Heid&Zembat,2008;Heid,Lunt,Portnoy,&Zembat,
2006;Hilletal.,2008;Kilpatrick,Blume,&Allen,2006;Leinhardt&Smith,1985;Ma,1999;
Stylianides&Ball,2008).Ourunderstandingsofthisnotionparallelmuchofwhatwehave
readintheliterature,butarebasedonourparticularexperiencesoverthepast20years,as
mathematiciansengagedindoingmathematicswithsecondaryteachers.
Matsuura et al.
Asmathematiciansworkinginschoolsandprofessionaldevelopment,wehavecome
tounderstandsomeofthewaysinwhichteachersknowandunderstandmathematics.
Thesefitintofourlargeandoverlappingcategories:
(1) Teachersknowmathematicsasascholar:Theyhaveasolidgroundinginclassical
mathematics,includingitsmajorresults,itshistoryofideas,anditsconnectionsto
precollegemathematics.
(2) Teachersknowmathematicsasaneducator:Theyunderstandthethinkingthat
underliesmajorbranchesofmathematicsandhowthisthinkingdevelopsin
learners.
(3) Teachersknowmathematicsasamathematician:Theyhaveexperiencedasustained
immersioninmathematicsthatincludesperformingexperimentsandgrappling
withproblems,buildingabstractionsfromtheexperiments,anddevelopingtheories
thatbringcoherencetotheabstractions.
(4) Teachersknowmathematicsasateacher:Theyareexpertinusesofmathematics
thatarespecifictotheprofession,includingtheabilityto“thinkdeeplyofsimple
things”(Jackson,2001,p.696),thecraftoftaskdesign,andthe“mining”ofstudent
ideas.
Thefirsttwoofthesewaysofknowingmathematicsarecommontomostpre‐serviceand
in‐serviceprofessionaldevelopmentprograms.FoMhaspaidparticularattentiontothe
lasttwo,whichtypicallyreceivelessemphasis.Wehavebecomeconvincedthat(3)greatly
enrichesandenhancestheotherwaysofknowingmathematicsandthatmanyteachers
whogothroughsuchanexperiencedevelopthehabitsofmindusedbymany
mathematicians.Furthermore,wehaveseenthatparticipationinamathematicallearning
TME, vol10, no.3, p. 751
communityhelpssuchteachers“bringithome”inthesensethattheycreatestrategiesfor
helpingtheirstudentsdevelopthemathematicalhabitsthattheythemselveshavefoundso
transformative.
Otherresearchersaredevelopinginstrumentstoassesssecondaryteachers’content
knowledgeanduseofmathematicsintheirclassrooms(Bushetal.,2005;Ferrini‐Mundy,
Senk,McCrory,&Schmidt,2005;HorizonResearch,Inc.,2000;MeasuresofEffective
TeachingProject,2010;Piburn&Sawada,2000;Reinholzetal.,2011;Shechtman,
Roschelle,Haertel,Knudsen,&Vahey,2006;Thompson,Carlson,Teuscher,&Wilson,n.d.).
Indevelopingourowninstruments,wehavedrawninsightfromalloftheseprojects.But
wehavemostcloselyfollowedthemodeldevelopedbyBallandHill—specifically,their
MKTassessmentandMathematicalQualityofInstruction(MQI)protocolfordocumenting
MKTinelementaryteachers(Hilletal.,2005;LearningMathematicsforTeaching,2006).
Theirinstrumentsmeasure“specialized”mathematicalknowledge,thatis,knowledgethat
teachersuse,asdistinctfromthemathematicalknowledgeheldbythegeneralpublicor
usedinotherprofessions,whosecomponentsincluderepresentationofmathematical
ideas,carefuluseofreasoningandexplanation,andunderstandinguniquesolution
approaches.Theseskillsresemblethekindsofmathematicalhabitsthatweareinterested
instudyingatthesecondarylevel.
ThecollectiveeffortsofthefieldwillallcontributetowhatweknowaboutMKT,but
thereareimportantdifferencesbetweenourinstrumentsandthoseofothers.The
differencesarelistedbelow.

AfocusonMHoM—themethodsandwaysofthinkingthroughwhichmathematics
iscreated—ratherthanonspecificresults(Cuocoetal.,1997).Itisimpossible,even
Matsuura et al.
inthreeorfouryearsofhighschoolmathematicsalignedwiththeCommonCore,to
equipstudentswithallofthefactstheywillneedforcollegeandcareerreadiness.
Butlearningtothinkincharacteristicallymathematicalwaysisatickettosuccessin
fieldsrangingfrombusiness,finance,STEM‐relateddisciplines,andevenbuilding
trades.

Thecoreinvolvement,ateverylevel,ofmathematicianswhohavethoughtdeeply
abouttheimplicationsoftheirownhabitsofmindforprecollegemathematics
curricula,teaching,andlearning(Bass,2011;Schmidt,Huang,&Cogan,2002).
Ourinstrumentsare,therefore,aimedatdiscerningtheextenttowhichsecondary
classroomsarecenteredonthepracticeofdoingmathematicsratherthanonthespecial‐
purposemethodsthatoftenplaguesecondarycurricula(Cuoco,2008).Inourworkwith
teachers,wehaveseenhowexpertteachersusecoremathematicalhabitsofmindintheir
profession—inclass,inlessonplanning,andincurricularsequencing.And,astheCommon
Corebecomesthenationallyaccepteddefinitionofschoolmathematics,teacherswillbe
expectedtomakethedevelopmentofmathematicalhabitsanexplicitpartoftheirteaching
andlearningagenda.Ourwork,therefore,makesauniquecontributiontothefield’s
increasinglevelofattentiontosecondarymathematicsteaching.
UsingMathematicalLanguage
Inthissection,wewillfocusonaspecificmathematicalhabit—usingmathematical
language—andexaminehowteachersusethiscorehabitintheirinstructionalpractice.We
willalsoconsideritspotentialimplicationsforstudentlearning,andhowthishabitmay
workinconjunctionwithothermathematicalhabitsintheclassroom.
TME, vol10, no.3, p. 753
Inparticular,wewilldiscussexamplesofthreeteacherswhoseAlgebra1
classroomsweobservedinourresearchstudy.WewillbeginwithMr.Hart,whouses
mathematicallanguagetoencapsulatetheexperiences,observations,anddiscoveriesofhis
students.Second,wewilllookatMs.Graham,whousespreciseandoperationalizable
languageasawayofpromotingconceptualunderstandingandeaseofproblem‐solving.
Andthird,wewilldescribeanexampleofateacher,Mr.Braun,whosechoiceoflanguage
caninterferewithstudents’engagementinactivitiesdesignedtopromoteotherMHoM.
AllthreeoftheseteachershaveshownevidenceofstrongMHoMintheirowndoing
ofmathematics.Mr.Harthasheldformalandinformalleadershiprolesinanumberof
FoM’smathematicallearningcommunities;andinthoseroles,hehasexhibitedstrong
MHoM.TheothertwoteachersperformedwellonourP&Passessment.Thenamesofthese
teachershavebeenalteredtoprotecttheiridentities.
Mr.Hart
WeconsiderMr.Hart,anAlgebra1teacherwhousesmathematicallanguageto
encapsulatetheunderlyingstructurethatstudentsdiscoveredthroughexperimentation.
Themathematicaltopicofthedayisrecursiverules.Theclassbeginswithstudents
workingonthefollowingwarm‐upproblem.
Afunctionfollows[thisrule]forintegervaluedinputs:Theoutputforagiveninputis
3
2
greaterthanthepreviousoutput.Makeatablethatmatchesthedescription.Canyou
makemorethanonetable?
Notethattheruleisincomplete,becauseitismissingthebasecase.Studentsexperiment
withthisrule,creatinginput/outputtablesandtryingtoderiveclosed‐formequations.
Matsuura et al.
Becauseoftheirdifferentchoicesofbasecases,theycomeupwithdifferentfunctions
definedbyexpressionsoftheform f (x) 
3
x  b .Studentsconcludethatthegraphsof
2
thesefunctionsareparallellineswithdifferenty‐intercepts.Mr.Hartalsoasks,“Sowhat’s
thepartwhereyougettobecreativeinmakingthesetables?”Hethenexplains,“Soyouget
topickonenumber,andtheneverythingelseisdecidedbythepartthatIgaveyou[inthe
warm‐up].Butthere’sstillanawfullotofdifferentnumbers.”Here,heisforeshadowingthe
needtofixthebasecase.
ThenMr.Hartformallyintroducesthenotionsofrecursiveruleandbasecaseto
summarizestudents’experiencesandtocapturetheunderlyingstructuretheyobserved
whenworkingonthewarm‐upproblem.Hesays,
Arecursiverule,that’sjustthedescriptionthattellsushowtogetfromanoutput—
toanoutputfromthepreviousones.Sobasically,whatweweredoing.Nowasyou
saw,there’sanotherpiecethat’snotreallyenoughinformation.It’sjustmetelling
youhowtogetfromone,tothenext,tothenext.Tohaveacompleterule,wealso
needtoknowwheretostart.Becauseotherwise,wewon’tknowifwehavetherule
that—thefirstrule,thesecondrule,thethirdrule,orsomeotherrulecompletely.
(Videotranscript,February14,2011.)
Next,theclassstudiesthefunctiondescribedbythefollowingtable:
n
f (n)
0
3
1
8
2
13
3
18
TME, vol10, no.3, p. 755
4
23
5
28
6
33
Inthistableofdata,studentsrecognizethe+5pattern,i.e.,“Youadd5totheoutput.”
Throughdiscussion,Mr.Hartguidesthemtoarticulatetherelationshipmoreprecisely:
f (5)  f (4)  5. Usingthisconcreteexample,studentsareabletoderiveageneralequation:
f (n)  f (n 1)  5. Tomakesenseofthisrecursiverule,Mr.Hartpointsoutthattheequation
f (n)  f (n 1)  5 “letsusrelateanyoutputtoapreviousone.”Inessence,itisthesymbolic
representationofwhathetoldstudentsinthewarm‐upproblem.Thenhedescribesthe
needforthebasecase,saying,“Butthatwasn’tquiteenoughbecauselotsofyouwrote
downdifferentrules.And[Student1]hadone,[Student2]hadadifferentone,[Student3]
hadadifferentoneprobably,andsoon.Soweneedsomethingelsetosortoffixitinplace.”
Here,astudentinterruptsandproposesaclosed‐formrule: f (n)  5n  3.Thereare
nowtwowaystodescribethefunctionathand,namelythe(stillincomplete)recursiverule
f (n)  f (n 1)  5 andtheclosedformrule f (n)  5n  3.Hesays,“[Therecursiverule]tells
ushowtoworkourwaydownthetable.IfIknowonevalue,Iknow23,Icanfindthenext
onereallyeasily.Nowthisone’s[pointstotheclosed‐formrule]nicetoobecauseitletsme
workacrossthetable.IfIknowtheinput,Icansaytheoutputreallyquickly.”Inthisshort
episode,Mr.Hartusesthesymbolicrepresentationofeachruletodiscussitsunderlying
structure.
Mr.Hartreturnstotheequationwrittenontheboard(i.e., f (n)  f (n 1)  5 )and
says,“Butstill,this—thisrulealmosttellsmethewholetable,butitdoesn’tquitebecause
Matsuura et al.
I’mmissingonecriticalpieceofinformation.”Astudentchimesin,“Well,youdon’tknow
whatyoustartedwith.”Mr.Hartrespondswith,“That’sagoodpoint.Yeah,solike
[Student]’ssayingthis3inthetable,that’swherewe’restarting.Sowekindofneedto
knowthat.Sotheway(pause)agoodwaythatwecansortofkeeptrackofthisandwrite
ourrule...”Almost20minutesintothelesson,Mr.Hartfinallyintroducesthecomplete
notation
 3
if n  0,
f (n)  
 f (n 1)  5 if n  0.
Heexplainsthisnewequationbysaying,“Sothisformulacapturesexactlywhatwedid.The
keypartistherecursivepartthatwehadwrittendownalready.Andthisjustaddsthatlast
bit,thebasecase,sowecansummarizeitintoonecompactrule.”
Insteadofbeingastartingpoint,thisnotationistheculminationofthestructures
thatstudentsdiscoveredthroughtheirexperimentationandthefollow‐updiscussion.
Studentsreadilymakesenseofthenewnotationandtheaccompanyingideasthatit
encapsulates,becausetheexperiencegainedthroughtheir“struggles”allowsthemto
connectthenewlanguagetoalready‐establishedideas.
Mr.Hartusesthestructurethatstudentsfoundthroughtheirexperimentstomotivate
thelanguageneededtodescribetheirobservedresults.Forinstance,students’experiments
withthewarm‐upproblem,inwhichtheyproposedifferentfunctionsthatallsatisfythe
givenrule,maketheneedforthebasecasecomealiveforthem.Indeed,hismathematical
habitsofmindallowMr.Harttocreatealearningenvironmentwherestudentsbuildnew
knowledgefromtheirexperiences(NCTM,2000).
TME, vol10, no.3, p. 757
Ms.Graham
ThroughMs.Graham,welookathowanAlgebra1teacherusespreciseand
operationalizablelanguageasawayofpromotingeaseofproblem‐solving.More
specifically,shehelpsstudentsmakesenseoftheobjectiveofthegivenproblemand,
subsequently,providesinsightintohowtoproceed.
Inthisepisode,astudentasksaboutthefollowingquestion:
Determineif r  2 isasolutionto 6r  2  12  r. Ms.Grahamasks,“Didwenotunderstandwhattheywereasking?”Thestudentconfirms,
“Yeah,obviouslythere’saneasierwaytodoit,butIjustdidn’tknowhow.”Thenthe
followingdialogueoccurs,inwhichMs.Grahampressesforthemeaningoftheword
“solution”:
Teacher(T): Allright.Whenweusetheword“solution,”allright,we’vetalkedalotabout
whatasolutionis.Whatdoes“solution”mean?
Student(S): Like,does—it—whenitworks.
T:
Whenyousaid“itworks,”whatdoyoumean?BecauseIthinkyou’reontheright
track.
S:
Like,doesitmakesense?
T:
Bealittlemorespecific.
S:
Idon’tknowhow,like…
T:
Whatdoes“solution”mean,anyoneknow?Allright.
Newstudent(SN): Theanswer?
T:
“Theanswer.”Wetalkedaboutthisalot.What’sasolutiontoanequation?
SN:
Somethingthatcangointomakeanequationwork.
Matsuura et al.
T:
Somethingthatmakestheequationtrue,OK?
AswewillseelaterinMr.Braun’sexample,“works”isoftenusedbystudentsand
teacherstodescribewhatitmeansforanumbertobeasolutiontoanequation.Ms.
Grahamdoesnotsettleforthisnorotheroft‐usedphrasessuchas“itmakessense”and
“theanswer.”Thelanguageusedbystudentsdoesnothelpthemunraveltheproblemto
understandwhattheyarebeingaskedtodo.Onlyaftertheoperationaldefinitionof
“solution”hasbeengivencanMs.Grahamcontinuewithanexplanationofhowtoproceed.
T:
We’restatingthat 6r  2 willbeequalto 12  r. Andthey’reasking,“Is r  2 a
solution?”Soyougottotestitout,justasIaskedyoutotestoutthatonethatwe
justdid.So 6r  2  12  r. Substitutein r  2.So6times 2 plus2—doesthathave
thesamevalueas12plus 2 ?Andwehavetotest.Allright?We’reaskingourselves
thequestionof,doesthisequalthat?[Pointstoeachsideoftheequation.]OK?
ThenMs.Grahamleadstheclassthroughtheprocessofsubstituting r  2 intothe
equationandconcludingthatitisnotasolution,since r  2 yieldsunequalvaluesof 10 and10forthetwosidesoftheequation.Thestudentwhooriginallyinquiredaboutthis
questionsays,“Ok.NowIgetit.”Thedefinitionof“solution”providedbyMs.Graham—
namely,“somethingthatmakestheequationtrue”isoperational(i.e.,studentscanusethis
definitiontounderstandandaccomplishthetaskposedbythegivenquestion).Indeed,
oncethedefinitionhasbeengiven,substituting r  2 andcheckingifitmakesthe
equationtrueisanaturalnextstep.
Ms.Grahamconcludesthisepisodebyforeshadowingwhatstudentswillbelearning
next,byprovidingthemwithanotherdefinition:
TME, vol10, no.3, p. 759
T:
We’regettingtothepointwherewe’regoingtoaskyou,“Whatisthevalueofrthat
makestheequationtrue?”Andthat’scalledsolvingtheequation.
Throughoutthelesson,Ms.Grahamconsistentlyuseslanguagecarefully.Shecorrectsa
studentwhowrites 82  8  90  3  30  5  25, callingita“run‐onsentenceinmath.”When
astudentdescribestwosidesofanequationbysaying,“It’sequals,”Ms.Graham
immediatelyresponds,“They’reequaltoeachother.”Sherepeatedlytellsstudentstocheck
theiransweraftersolvinganequation,remindingthemwhat“solution”means.Sheisalso
preciseinherinstructions(e.g.,askingthestudentsto“writeanexpressionfortheright
sideoftheequation,sothatyou’vegotanequationthatworksandistruewhen x  3 ”).
Mr.Braun
Oneoftheissueswehaveencounteredinthedevelopmentofourobservation
protocolis,“Whatcountsasevidenceofnon‐useofMHoM?”Inthecaseofthehabitofusing
mathematicallanguage,wedoseemomentsinwhichteacherschooselesscarefullanguage.
Forexample,ateachermightchoosetouseinformallanguage.Sometimesthereisevidence
thattheteacherismakingthischoicebecausetheinformallanguageseemsmoreaccessible
tostudents.Butsuchchoices—ifnotmadecarefully—canleadtostudentconfusion.
Inthefollowingexample,Mr.Braunissettingupaninvestigationthataimstolay
thefoundationthatthegraphofanequationisarepresentationofthesolutionsetofthe
equation(EducationDevelopmentCenter,Inc.,2009b).Tolaunchtheinvestigation,Mr.
Braunwritestheequation 3x  2 y  12 ontheoverheadprojectorandasksstudents,
“What’stheanswer?”Hethendescribessomeofthesolutionsstudentsofferas“that
works”or“thatdoesn’twork.”Thefollowingisanexcerptfromthelaunchofthe
investigation.Therearetwothingstonote.First,Mr.Braunismodelinghowstudents
Matsuura et al.
mightexperimentwithnumbersasawayofmakingsenseoftherelationshipbetween
graphsandequations.Second,observehowfrequentlyheusestheword“works.”
T:
3x  2 y  12 .What’stheanswer?
SN:
It’scomplicated.
T:
Oh,no.Whatdoyouthink?
SN:
1and2?
T:
YouthinkIcanuse1and2?
S:
xis1andyis2.
T:
xis1andyis2.HowwouldIfindoutif[name]isright?Icouldputinthenumbers
thathegaveme,soI’mgoingtoputin1forxandI’mgoingtoputin2fory,anddoI
get12,likeI’msupposedto?What’s 31 ?
Students(Ss):3.
T:
What’s 2  2 ?
Ss:
4.
T:
What’s3+4?
Ss:
7.
T:
DidIget12?
Ss:
No.
T:
Man,[name],that’sabummer.OK,so—
SN:
Oh,Iknowit.
T:
—thatwassomethingthatdidn’twork.It’snotbadtofindoutthingsthatdon’t
work.Sometimes,you’regoingtobeaskedintheseinvestigationstofindthingsthat
don’twork,sorememberhowwedidthat.
TME, vol10, no.3, p. 761
Atthispoint,theteachercontinuestotakestudentguessesforxandy.Students
makeguessesandonestudentsuggests x  2 and y  3.Mr.Brauntriesthatsuggestion,
andseesthatindeed, 3(2)  2(3)  12. T:
OK,sowefoundoutthat1and2didnotwork;wefoundoutthat2and3didwork.
Doyouthinkthereareanymorethingsthatdon’twork?
SN:
Yes.
T:
Alotmorethingsthatdon’twork.OK,doyouthinkthereareanymorethingsthat
dowork?
S:
Yes.
T:
Canyouthinkofanotherthingthatdoeswork?[...]
SN:
3(3)…
T:
OK,ifIputathreethere,OK.
S:
Andthen,the2yis2,2(1).
T: 2 1. OK,thisis9,right?Plus2,makes11insteadof12.So,wefoundanotherthing
thatdoesn’twork.So,I—[name],youmusthavebeenright,thereweremorethings
thatdonotwork.Canyoufindanythingelsethatdoeswork?
SN:
4and1.
T:
Youthink4and1works?WheredoIputmy4,forxorfory?
S:
Forx,yeah.
T:
OK,soIputin3(4)+2(1),thatgivesme12+2=14.Wefoundanotherthingthat
doesn’twork.
S:
Actually,put3fory,plus1.5.
T:
[…]2(1.5),whatarewegoingtoget?
Matsuura et al.
Ss:
It’s3.
T:
3,andwehad9.Is3+9=12?
Ss:
Yes.
T:
Hey,lookatthat.Allright,now,that’sthekindofthingIwantyoutodo.You’rejust
goingtotrysomethings.Someofthemwillwork;someofthemwon’twork.
Mr.Braunhasmodeledadetailedinvestigationoflookingforpointsthatsatisfythe
equation 3x  2y  12, usingtheword“works”asasubstitutefor“satisfiestheequation.”
Heusesthephrases“works”and“doesn’twork”repeatedly.Hethenhandsoutaworksheet
forinvestigationthatincludestheproblems:
Eachpointinthefollowingtablesatisfiestheequation x  y  5. a) Completethetable.
x
y
(x,y)
1
4
(1,4)
2
3
0
2  113 1
2
b) Graphthe (x, y) coordinatesthatsatisfytheequation x  y  5. [Gridsupplied.]
c) Whatshapeisthegraph?
and
Usetheequation 2x  3y  12.
TME, vol10, no.3, p. 763
a) Findfivepointsthatsatisfytheequation.
b) Findfivepointsthatdonotsatisfytheequation.
Studentsbegintheinvestigation.Somedonotknowwhatitmeansforapointto
“satisfyanequation.”Mr.Braunhadcreatedtheworksheetbasedonproblemsinan
Algebra1textbook—inthebook,studentsareremindedthat“Ifapoint’scoordinatesmake
anequationtrue,thepoint‘satisfiestheequation’”(EducationDevelopmentCenter,Inc.,
2009a,p.251).Mr.Braunhadleftthatreminderoffofhisworksheet,andsomeofthe
studentsgetstuck.Forexample:
S:
…Please!
T:
Youjusttoldme,though.[Laughter]Whatarewetryingtodo?What’sitaskingyou
todo?
S:
Findthispoint…
T:
OK,whatdoes“satisfy”mean?That’sthesameequationweplayedwithatthe
beginningofclass,right?
S:
Idon’tknow.
T:
Itis,right?Wedidn’tsay“satisfy”and“notsatisfy”;whatwerethewordsthatwe
used?
S:
Idon’tknow.Idon’tknow.
T:
When[name]gaveus3and1.5,whatdidwesay?
S:
Decimal?
T:
Well,wesaidtheyweredecimals,wesighedat[name],butbesidethat,whatelse
didwesay?Whatdoesthissideequal?
S:
x?y?What?
Matsuura et al.
T:
What’s 3 3 ?
S:
9.
T:
What’s 2 1.5 ?
S:
3.
T:
What’s9+3?
S:
12.
T:
So,whatdidwesay?“[Name]’ssolution...”
S:
Works?
T:
Works!“Works”isanotherwordfor“satisfies.”Ifyouwanttosoundsmart,yousay,
“Itsatisfiestheequation.”OK?Allright.
Similarly,anotherstudentasks:
S:
Idon’tunderstandwhatit’saskingus![Laughter]
T:
Allright,fairenough.Itsays,“Sketchagraphofallthe(x,y)coordinatesthat
satisfy”—work—“inthisequation,”andhere’smyequation.
Ononehand,thisisnotabigdeal.Theteachercantravelfromgrouptogroup,
remindingthemwhat“satisfiestheequation”means,butheusuallysimplysaysthat“it
means‘works.’”However,“works”asadescriptionisnotoperational.Whenstudentsare
solvingproblems,theyrepeatedlyaskaboutthephrase“satisfiestheequation.”Rather
thanoffertheoperationalizabledefinition:“ifapoint’scoordinatesmakeanequationtrue,
thepointsatisfiestheequation,”Mr.Braunreturnstothephrase“works.”
Itisworthnotingthatthefollowingday,Mr.Braunposesawarm‐upquestiontohis
class:“Whatdoesitmeantobeasolution?”Althoughhedoesnotspecificallyaddressthe
TME, vol10, no.3, p. 765
definitionofapointsatisfyinganequation(andtheissuecontinuestopersistforstudents),
hedoesstartworkingonunpackingthatlanguageforstudents.
CommonThemesintheExamples
Severalobservationsandquestionsemergeforusintheseexamples.First,what
strikesusagainandagainisthecomplexityofteachers’usesofMHoM.Thesehabitscannot
bedeployedindependentlyintheclassroomanymorethantheycanbewhenteachers(and
mathematicians)domathematicsforthemselves.Infact,wesawthatthehabitofusing
mathematicallanguagecaneithercomplementorgetinthewayofstudent
experimentationandinquiry,dependingonhowtheteacherusesthehabit.InMr.Hart’s
class,theprecisedefinitionofrecursivefunctionismotivatedbythestructurethathis
studentsdiscoveredthroughexperimentation.And,inturn,Mr.Hartplanstousethis
functionnotationasaninvestigativetooltoexplorefurthertopics(e.g.,theconnection
betweenlinearandexponentialfunctions).Mr.Braunalsobringsexperimentationintohis
classroom.Indeed,hisstudentsconductaninvestigationtoexploretherelationship
betweenanequationanditsgraph.However,somestudentshavedifficultybeginningthe
investigation,becausetheydonotunderstandthelanguagetheyencounterinthetask.
Here,anoperationaldefinitionofthephrase“satisfiestheequation”mayhaveledthemto
understandtheproblemstatementsandgiventheminsightintohowtoproceed.
Throughouttheseexamples,wealsosawhowtheuseofmathematicallanguagecan
supportstudents’understanding.InMs.Graham’sclass,weseehowshepushesher
studentstoclearlystatethemeaningoftheword“solution.”Anditsdefinitionbecomesa
vehiclethatfacilitatestheproblem‐solvingprocess.Incontrast,weseeMr.Braunwhose
studentsencounterthephrase,“satisfytheequation.”Insteadofprovidingausable
Matsuura et al.
definition,heoffersanalternative,namely“works.”WebelieveMr.Brauniswell‐
intentionedhere.Specifically,thereisevidencethatheistryingtomakethelanguageless
intimidatingforstudentsbyofferingamoreinformalphrase.Indeed,hesays,“‘Works’is
anotherwordfor‘satisfies.’Ifyouwanttosoundsmart,yousay,‘Itsatisfiestheequation.’”
Butasdiscussedearlier,“works”isaphrasethatisdifficulttooperationalize.Itleadsto
confusionforhisstudents,becausetheydonotknowhowtouseit.Oneofthemathematical
practicesadvocatedbytheCommonCoreisattendingtoprecision.TheCommonCore
statesthat,“Mathematicallyproficientstudentstrytocommunicatepreciselytoothers.
Theytrytousecleardefinitionsindiscussionwithothersandintheirownreasoning”
(NGACenter&CCSSO,2010,p.7).That“usability”oflanguageisanimportantpartof
communicatingprecisely,andonethatseemsespeciallyimportantforteachers.
Inparticular,thecarefuluseofmathematicallanguagenotonlyhelpsclarifyideas
forstudents,asitdidinMs.Graham’sclass,butithelpsthemunderstandthemathematics
itselfinadeeperway.WeseethisinMr.Hart’slesson,wheretherecursiveformulafor
f (n) capturesthepropertiesofthefunctionthatstudentsfoundthroughtheir
investigations.Indeed,thisformulaisbothaproductandareflectionoftheirexperiences.
InourworkwithFoMteachers,wehavefoundthatencapsulatingvariousinsightsinto
preciselanguage—aswesawinMr.Hart’sclass—helpsonebetterunderstandtheideas
themselves.
Mr.Hartalsorecognizesthepowerofpreciselanguagetodrivefurther
investigations.Laterintheschoolyear,thesestudentswillusefunctionnotationtostudy
transformationsoffunctions(e.g.,stretches,shrinks,andtranslations).Headds,“Ithink
TME, vol10, no.3, p. 767
thatwillbeaplacewherestudentswillreallyappreciatethefunctionnotationin
representingthosetransformationsmoreeasily.”
Mr.Hartconcludesthepost‐interviewbydescribinghowtoday’slessonispartofa
biggerunitandhowitsetsthefoundationforlaterlessons.Heplanstousetheserecursive
rulesasavehicleforbetterunderstandingtheirclosed‐formcounterparts.Inafuture
lesson,studentswillinvestigatetheconnectionbetweenlinearandexponentialfunctions.
“Iwantmystudentstoseethatrecursively,exponentialfunctionsarevery,verysimilarin
theirrepresentationtolinearfunctions.Ithinkthatwillprovideanicefoundationfor
studyingexponents,”hesays.Here,Mr.Hartisusingthelanguageofrecursivefunctionsto
shedlightontheconnectionsbetweentheircorrespondingclosed‐formrepresentations.
Ourowngoalsinwatchingthesevideoshavebeentobetterunderstandteachers’
usesofMHoM,andtolearnabouthowwemightmeasurethatuse.Partofourdesireto
measuretheusestemsfromourdesiretounderstand(eventually)thelinkbetween
teachers’usesofMHoMandlearningoutcomesforstudents,particularlyifwecanmeasure
students’usesofMHoMorstudents’facilitywithCommonCore’sMathematicalPractices,
whichincludesignificantoverlapwithMHoM.Withinthecontextoftheexamplesinthis
paper,mightteachers’useoflanguagehaveanimpactonstudentachievement?Evento
begintoanswersuchaquestion,wemusthavesomeobjectivewayofdecidingwhetheror
notagiventeacherisusingclear,usable,andpreciselanguage.This,too,iscomplex.
Establishingwhatcountsas“clear,usable,andprecise”languagedependsverymuchonthe
classroomcontext.Mr.Braunusestheword“works”soconsistentlyinhisclassroom
discussion,thatifitdidnotcauseconfusion,surelywewouldwantto“rate”thatastotally
acceptablelanguage,takenassharedbythewholeclassroom.
Matsuura et al.
ImpactandNextSteps
Webeganourresearchworkpartlybecausewewantedtoassesstheeffectsofour
ownMSPprofessionaldevelopmentprogramsusingtoolsthatwereconsistentwiththe
goalsofourMSP,andpartlybecausewewantedtounderstandtheMHoMofsecondary
teachersbetter.Wedidnotfindinstrumentsthatmeasuredteachers’MHoM—eitherwhen
doingmathematicsforthemselvesorteachingmathematicsintheirclassrooms—in
existenceinthefield,sowebegantocreateourown.Althoughweexpectedtolearnfrom
thedatagatheredusingourinstruments,wedidnotanticipatetheimmediateimplications
thatourresearchwouldhaveontheprofessionaldevelopmentprogramsinourMSP.For
example,basedonwhatwehadlearnedfromourresearch,wepilotedtheMathematical
HabitsofMindShadowSeminarinthesummerof2011,gearedtowardteacherparticipants
returningtoPROMYSforTeachers(oursummerimmersionprogram)forasecond
summer.Throughdiscussions,readings,curriculumanalyses,andlessondesigns,thegoal
ofthisseminarwastoexplore(a)thewaysinwhichsecondaryteachersknowanduse
MHoMintheirprofession,and(b)theeffectsthatalearningenvironmentthatstresses
MHoMmighthaveonsecondarystudents.Wewillcontinuetoofferandrefinethiscourse
aspartofoursummerimmersionprogramforteachers.
Wealsodidnotanticipatethepotentialforimpactonthefield.Whiledevelopment
andvalidationoftrulyreliabletoolsisbeyondthescopeofthecurrentFoM‐IIstudy,we
havebeenlayingthegroundworkforourMHoMinstruments—theP&Passessmentandthe
observationprotocol—overthelastfewyears.Thisexploratoryphaseofinstrument
developmentalsocoincidedwiththeemergenceoftheCommonCoreStateStandardsand
itsadoptionby45states(NGACenter&CCSSO,2010).OurMHoMconstructisclosely
TME, vol10, no.3, p. 769
alignedwiththeCommonCore,especiallyitsStandardsforMathematicalPractice,and
thereisconsiderableoverlapinthetwo.Forexample,bothplaceimportanceonseeking
andusingmathematicalstructure,usesofprecision,andtheactofabstractingregularity
fromrepeatedactions.Aswepresentedourpreliminaryfindingsatnationalconferences
(Matsuura,Cuoco,Stevens,&Sword,2011;Matsuura,Sword,Cuoco,Stevens,&Faux,
2011),wereceivedseveralrequeststouseourinstruments,eventhoughtheywereinthe
pilotphaseofdevelopment.Onedistrictleaderwantedtodiagnosethepreparednessofher
teacherstoteachfromacurriculumbasedontheCommonCore.Otherswantedtousethe
instrumentsaspre‐andpost‐measuresforevaluatingprofessionaldevelopmentprograms
alignedtotheCommonCore.Wehavebecomeabundantlyawareofthenationalneedfor
validandreliableinstrumentstomeasureteachers’knowledgeanduseof
MHoM/MathematicalPractices,aswellasguidelinesforacceptableuseofsuch
instruments.Thus,inthenextphaseofourresearch,weplantosubjectourpilot
instrumentstorigorousscientifictesting.Theexamplesinthispaperareexemplarsof
thosethatprovideboththecontentbasisfortheP&Passessmentandthebehavioral
indicatorsfortheobservationprotocol.
Matsuura et al.
References
Baldassari,C.,Lee,S.,&Torres,R.T.(2009).Thecaseofahighschoolmathematicsteacher.
Retrievedfromhttp://focusonmath.org/FOM/PERG
Ball,D.L.(1991).Researchonteachingmathematics:Makingsubjectmatterknowledgepart
oftheequation.InJ.Brophy(Ed.),Advancesinresearchonteaching(Vol.2,pp.1–
47).Greenwich,CT:JAIPress.
Ball,D.L.,&Bass,H.(2000).Interweavingcontentandpedagogyinteachingandlearning
toteach:Knowingandusingmathematics.InJ.Boaler(Ed.),Multipleperspectiveson
theteachingandlearningofmathematics(pp.83‐104).Westport,CT:Ablex.
Ball,D.L.,Hill,H.C.,&Bass,H.(2005).Knowingmathematicsforteaching:Whoknows
mathematicswellenoughtoteachthirdgrade,andhowcanwedecide?American
MathematicalEducator,29(3),14–17,20–22,43–46.
Ball,D.L.,Thames,M.H.,&Phelps,G.(2008).Contentknowledgeforteaching:Whatmakes
itspecial?JournalofTeacherEducation,59(5),389–407.
Bass,H.(2011).Vignetteofdoingmathematics:Ameta‐cognitivetouroftheproductionof
someelementarymathematics.TheMontanaMathematicsEnthusiast,8(1&2),3–34.
Bush,W.,Karp,K.,Ronau,B.,Thompson,C.,McGatha,M.&Brown,T.(2005,April).The
reliabilityandvalidityofdiagnosticmathematicsassessmentsformiddleschool
teachers.PaperpresentedattheannualmeetingoftheAmericanEducation
ResearchAssociation.Montreal,Canada.
Clarke,D.J.&Hollingsworth,H.(2002).Elaboratingamodelofteacherprofessionalgrowth.
TeachingandTeacherEducation,18(8),947–967.
TME, vol10, no.3, p. 771
Cuoco,A.(2008).IntroducingExtensibleToolsinMiddle‐andHigh‐SchoolAlgebra.InC.
Greenes(Ed.),AlgebraandAlgebraicThinkinginSchoolMathematics:2008
YearbookoftheNationalCouncilofTeachersofMathematics(NCTM)(pp.51–62).
Reston,VA:NCTM.
Cuoco,A.,Goldenberg,E.P.,&Mark,J.(1997).Habitsofmind:Anorganizingprinciplefor
mathematicscurriculum.JournalofMathematicalBehavior,15(4),375–402.
Cuoco,A.,Goldenberg,E.P.,&Mark,J.(2010).Contemporarycurriculumissues:Organizing
acurriculumaroundmathematicalhabitsofmind.MathematicsTeacher,103(9),
682–688.
Cuoco,A.,Harvey,W.,Kerins,B.,Matsuura,R.,&Stevens,G.(2011).Whatisa“Community
ofMathematicalPractice”?[PDFdocument].Retrievedfrom
http://cbmsweb.org/Forum4/Presentations/C.1_Cuoco_Harvey_Kerins_Matsuura_S
tevens.pdf
Dewey,J.(1916).Democracyandeducation:Anintroductiontothephilosophyofeducation.
NewYork,NY:TheFreePress.
Dewey,J.,&Small,A.W.(1897).Mypedagogiccreed&thedemandsofsociologyupon
pedagogy.NewYork,NY:E.L.Kellogg.
Duckworth,E.(1996).Thehavingofwonderfulideas&otheressaysonteaching&learning
(2nded.).NewYork,NY:TeachersCollegePress.
EducationDevelopmentCenter,Inc.(2009a).CMEProjectAlgebra1.Boston,MA:Pearson
Education,Inc.
EducationDevelopmentCenter,Inc.(2009b).CMEProjectAlgebra1,Teacher’sEdition.
Boston,MA:PearsonEducation,Inc.
Matsuura et al.
Ferrini‐Mundy,J.,Senk,S.,McCrory,R.,&Schmidt,W.(2005,May).Measuringsecondary
schoolmathematicsteachers’knowledgeofmathematicsforteaching:Issuesof
conceptualizationanddesign.WorkingsessionattheInternationalCommitteeon
MathematicsInstructionStudy15Meeting,Lindoia,Brazil.
Goldenberg,E.P.,Mark,J.,&Cuoco,A.(2010).Contemporarycurriculumissues:An
algebraic‐habits‐of‐mindperspectiveonelementaryschool.TeachingChildren
Mathematics,16(9),548–556.
Hardy,G.H.(1940).Amathematician’sapology.NewYork,NY:CambridgeUniversityPress.
Heid,M.K.(2008,July).Mathematicalknowledgeforsecondaryschoolmathematics
teaching.Paperpresentedatthe11thInternationalCongressofMathematics
Education,Monterrey,Mexico.
Heid,M.K.,&Zembat,I.O.(2008).Understandingmathematicalentitiesasobjectsoras
inscriptions.[Paperinprogress.]
Heid,M.K.,Lunt,J.,Portnoy,N.,&Zembat,I.O.(2006).Waysinwhichprospective
secondarymathematicsteachersdealwithmathematicalcomplexity.InProceedings
ofthe27thAnnualMeeting,InternationalGroupforPsychologyofMathematics
EducationNorthAmericanChapter[CD].Merida,MEXICO.
Hill,H.C.,Schilling,S.G.,&Ball,D.L.(2004).Developingmeasuresofteachers’mathematics
knowledgeforteaching.ElementarySchoolJournal,105,11–30.
Hill,H.C.,Rowan,B.,&Ball,D.L.(2005).Effectsofteachers’mathematicalknowledgefor
teachingonstudentachievement.AmericanEducationalResearchJournal,42(2),
371–406.
TME, vol10, no.3, p. 773
Hill,H.C.,Ball,D.L.,&Schilling,S.G.(2008).Unpackingpedagogicalcontentknowledge:
Conceptualizingandmeasuringteachers’topic‐specificknowledgeofstudents.
JournalforResearchinMathematicsEducation,39(4),372–400.
Hill,H.C.,Blunk,M.,Charalambous,C.,Lewis,J.,Phelps,G.,Sleep,L.,&Ball,D.L.(2008).
Mathematicalknowledgeforteachingandthemathematicalqualityofinstruction:
Anexploratorystudy.CognitionandInstruction,26(4),430–511.
HorizonResearch,Inc.(2000).Insidetheclassroomobservationandanalyticprotocol.
Retrievedfromhttp://www.horizon‐research.com/instruments/clas/cop.php
Jackson,Allyn.(2001).InterviewwithArnoldRoss.NoticesoftheAMS,48(7),691‐698.
Kilpatrick,J.,Blume,G.,&Allen,B.(2006).Theoreticalframeworkforsecondary
mathematicalknowledgeforteaching.Unpublishedmanuscript.Universityof
GeorgiaandPennsylvaniaStateUniversity.
Kuhn,D.(2005).Educationforthinking.Cambridge,MA:HarvardUniversityPress.
LearningMathematicsforTeaching.(2006).Acodingrubricformeasuringthe
mathematicalqualityofinstruction(TechnicalreportLMT1.06).Unpublished
technicalreport.AnnArbor:UniversityofMichigan,SchoolofEducation.
Lee,S.,Baldassari,C.,&Leblang,J.(2006,May).FocusonMathematics:Creatinglearning
culturesforhighstudentachievementyear3evaluationreport.Retrievedfrom
http://focusonmath.org/FOM/PERG
Lee,S.,Baldassari,C.,Leblang,J.,Osche,E.,&Hoyer‐Winfield,S.(2007,May).Focuson
Mathematics:Creatinglearningculturesforhighstudentachievementyear4
evaluationreport.Retrievedfromhttp://focusonmath.org/FOM/PERG
Matsuura et al.
Lee,S.,Baldassari,C.,Leblang,J.,&Osche,E.(2009,January).FocusonMathematics:
Creatinglearningculturesforhighstudentachievementsummativeevaluationreport.
Retrievedfromhttp://focusonmath.org/FOM/PERG
Leinhardt,G.,&Smith,D.A.(1985).Expertiseinmathematicsinstruction:Subjectmatter
knowledge.JournalofEducationalPsychology,77(3),247–271.
Ma,L.(1999).Knowingandteachingelementarymathematics:Teachers’understandingof
fundamentalmathematicsinChinaandtheUnitedStates.Mahwah,NJ:Lawrence
ErlbaumAssociates.
Mark,J.,Cuoco,A.,Goldenberg,E.P.,&Sword,S.(2010).Contemporarycurriculumissues:
Developingmathematicalhabitsofmind.MathematicsteachingintheMiddleSchool,
15(9),505–509.
Matsuura,R.,Cuoco,A.,Stevens,G.,&Sword,S.(2011,April).Mathematicalhabitsofmind
forteaching:Assessingmathematicalknowledgeforteachingatthesecondarylevel.
PaperpresentedattheNationalCouncilofSupervisorsofMathematicsAnnual
Conference,Indianapolis,IN.
Matsuura,R.,Sword,S.,Cuoco,A.,Stevens,G.,&Faux,R.(2011,April).Mathematicalhabits
ofmindforteaching.PaperpresentedattheNationalCouncilofTeachersof
MathematicsResearchPresession,Indianapolis,IN.
MeasuresofEffectiveTeachingProject.(2010,September).Contentknowledgeforteaching
andtheMETproject.Retrievedfrom
http://www.metproject.org/downloads/Teacher_Knowledge_092110.pdf
Meier,D.(1995).Thepoweroftheirideas:LessonsforAmericafromasmallschoolin
Harlem.Boston,MA:Beacon.
TME, vol10, no.3, p. 775
NationalCouncilofTeachersofMathematics.(2000).Principlesandstandardsforschool
mathematics.Reston,VA:Author.
NationalGovernorsAssociationCenterforBestPracticesandtheCouncilofChiefState
SchoolOfficers.(2010).CommonCoreStateStandardsforMathematics.Retrieved
fromhttp://www.corestandards.org/the‐standards/mathematics
Piburn,M.,&Sawada,D.(2000).Reformedteachingobservationprotocol(TechnicalReport
No.IN00‐3).Tempe,AZ:ArizonaStateUniversity,ArizonaCollaborativefor
ExcellenceinthePreparationofTeachers.(ERICDocumentReproductionService
No.ED447205)
Polya,G.(1954a).Mathematicsandplausiblereasoning:Inductionandanalogyin
mathematics(Vol.1).Princeton,NJ:PrincetonUniversityPress.
Polya,G.(1954b).Mathematicsandplausiblereasoning:Patternsofplausibleinference(Vol.
2).Princeton,NJ:PrincetonUniversityPress.
Polya,G.(1962).Mathematicaldiscovery:Onunderstanding,learning,andteachingproblem
solving(Vol.1).NewYork,NY:JohnWiley.
Reinholz,D.,Levin,M.,Kim,H.,Champney,D.,Floden,R.,Katwibun,D.,Lepak,J.,Louie,N,
Nix,S.,Sanchez,J.,Schoenfeld,A.,Seashore,K.,Shah,N.,&Wernet,J.(2011,April).
Capturingwhatcounts:Classroompracticesthatleadtorobustunderstandingof
Algebra.PaperpresentedattheannualmeetingoftheAmericanEducational
ResearchAssociation,NewOrleans,LA.
Resnick,L.B.(1987).Educationandlearningtothink.Washington,DC:NationalAcademy
Press.
Matsuura et al.
Schmidt,W.,Huang,R.,&Cogan,L.(2002,Summer).Acoherentcurriculum:Thecaseof
mathematics.AmericanEducator,26(2),10–26,47.Retrievedfrom
http://www.aft.org/pdfs/americaneducator/summer2002/curriculum.pdf
Shechtman,N.,Roschelle,J.,Haertel,G.,Knudsen,J.,&Vahey,P.(2006,April).Measuring
middleschoolteachers’mathematicalknowledgeofteachingrateandproportionality.
PaperpresentedattheannualmeetingoftheAmericanEducationalResearch
Association,SanFrancisco,CA.
Stevens,G.(2001).LearningintheSpiritofExploration:PROMYSforTeachers.
MathematicsEducationReformForum,13(3),7–10.
Stylianides,A.J.&Ball,D.L.(2008).Understandinganddescribingmathematical
knowledgeforteaching:Knowledgeaboutproofforengagingstudentsinthe
activityofproving.JournalofMathematicsTeacherEducation,11(4),307–332.
Thompson,P.,Carlson,M.,Teuscher,D.D.,&Wilson,M.(n.d.).ProjectAspire:Definingand
assessingmathematicalknowledgeforteachingsecondarymathematics[Abstract].
RetrievedfromTheMathandSciencePartnershipNetwork,NationalScience
Foundation:http://aspire.mspnet.org/index.cfm/profile
Tishman,S.,Perkins,D.N.,&Jay,E.(1995).Thethinkingclassroom:Learningandteaching
inacultureofthinking.Boston,MA:AllynandBacon.