PPT Template

Upaya menumbuhkan
kemampuan berpikir kritis dan
kreatif dalam belajar matematika
di Sekolah Dasar:
Kajian penelitian desain di Yogyakarta
KONFERENSI
PENELITIAN MENGENAI ISU-ISU TENTANG ANAK DI INDONESIA
Jakarta, 22 November 2010
Latar Belakang
 Pemerataan pendidikan dan peningkatan
kualitas hidup (Millenium Development Goals
Indonesia 2010)
 Perluasan program wajib belajar 6  9 tahun
sejak 1994
 Cakupan sempit pembelajaran matematika
 sikap negatif terhadap matematika
 Kompetisi global - kritis dan kreatif –
masyarakat demokratis
 Pendidikan Matematika Realistik Indonesia
(PMRI)
Tujuan Penelitian
 Pengembangan desain pembelajaran
matematika  kemampuan berpikir kritis dan
kreatif anak
 Konsep melek matematika (mathematical literacy)
(OECD, 2003)
Mathematical literacy is an individual’s capacity to identify and
understand the role that mathematics plays in the world, to make a
well-founded judgment, and to engage in mathematics in ways that
meet the needs of that individual’s current and future life as a
constructive, concerned and reflective citizen.
(OECD, 2003, 24)
Critical thinking &
Creative thinking
 Ennis (1991, 1-2)
reasonable reflective thinking that is focused on deciding
what to believe or do.
 Khun (1999)
To be competent and motivated to “know how you know” puts
one in charge of one’s own knowing, of deciding what to
believe and why and of updating and revising those beliefs as
one deems warranted
(Khun, 1999, p.23)
Creative thinking
 Yackel and Cobb (1996):
‘intellectually autonomous’ in mathematics – creativity
 Aspek sosial dan kultural dalam proses belajar
(Kazemi & Stipek (2001); Khisty & Chval (2002); Cobb,
Boufi, McClain, & Whitenack (1997); Cobb, et al
(2001); Sfard, (2001a, 2001b))
 Silver (1997):
“creativity not as a domain of only a few exceptional
individuals but rather as an orientation or disposition toward
mathematical activity that can be fostered broadly in the
general school population”
(p. 79).
Peran interaksi, norma
kelas, konteks dan guru
 Peran pemecahan
masalah
(Polya, 1971; Schoenfeld, 2002)
…But if he challenges the curiosity of
his students by setting them
problems proportionate to their
knowledge, and helps them to
solve their problems with
stimulating questions, he may
give them a taste for, and some
means of , independent thinking.
(Polya, 1971, v; in Boaler (2009,
27).
 Desain pembelajaran dan
peran guru (Boaler, 2009; Cobb,
Wood, Yackel & McNeal, 1996;
Schoenfeld, 2002; Widjaja & Dolk, 2010)
… However, classrooms that support that
kind of reasoning do not tend to occur
by spontaneous generation. It is an act
of great pedagogical skill to shape a
classroom discourse community so
that it facilitates productive
exchanges among students.
(Schoenfeld, 2002, 155)
Metodologi Penelitian
 Design research
(Cobb et al., 2001; Gravemeijer, 2004)
 Tahapan Design research:
 Desain
 Uji coba kelas
 Refleksi
 Subyek:70 siswa kelas 6 SD
dari 2 sekolah
 Lokasi: Yogyakarta
 Agustus-September 2009
Dana: Hibah Stranas DIKTI
(2009) No:378/SP2H/PP/DP2M/VI/2009
Proses siklis desain, eksperimen dan refleksi
dalam Design Research
(Dolk, Widjaja, Zonneveld, & Fauzan, 2010)
Data proses pembelajaran
Implementasi desain dalam proses pembelajaran
Temuan Penelitian
Interaksi proses belajar dalam kelompok dan presentasi poster
Cerminan pemikiran kreatif anak
Berbagai representasi data dalam poster anak
Pemikiran kritis dan kreatif
Deni: Gambar air-nya ini mewakili10 mililiter,
jadi kalau 10 kali 10 sama dengan 100
mililiter
Adi: Bagaimana kalau datanya 433 mililiter bu,
nanti gambarnya bagaimana?
Guru: Ada yang punya ide? Temanmu bertanya
kalau datanya 1300 mililiter, apa berarti nanti
menggambar airnya banyak sekali?
Karina: Kalau untuk 1300 mililiter, gambar
airnya bisa mewakili 100 mililiter.
Guru: Oh jadi menurut Karina kalau datanya
lebih banyak, simbol airnya boleh diganti
mewakili 100 mililiter. Bagaimana Adi?
Adi: Bu, kalau di poster gambar airnya
mewakili 10 mililiter, kenapa kalau
datanya 1300 mililiter, simbolnya jadi
mewakili 100 mililiter?
Guru: Menurutmu kalau Karina mengubah
keterangan di posternya, sekarang simbol
airnya mewakili 100 mililiter, kalian bisa
paham tidak?
Kelas : Ya, bisa
Kesimpulan
 Pemikiran kritis dan kreatif dapat
dibangun
 Pembelajaran berpusat pada anak:
- Anak aktif didorong berpikir
- Anak diundang untuk kritis dan
mendengarkan
- Keragaman cara dan tingkat berpikir
dihargai
- Kreatifitas dipacu dan dihargai
 Guru membimbing dengan
pertanyaan (‘inquiry style’)
 Budaya kelas yang mendorong
demokrasi
 Masalah terbuka dengan banyak
cara penyelesaian
Rekomendasi
 Evaluasi cakupan mata pelajaran kurikulum
nasional pendidikan dasar sejalan kebijakan MDG
(Bappenas, 2010)
 Pemerataan guru berkualitas (sabbatical in-service)
 Peningkatan kualitas pendidikan dengan penekanan
pada proses pembelajaran – anak kritis dan kreatif
 Ujian Nasional sebagai katalisator perubahan
pendidikan
Copyright © <Wanty Widjaja>. Any other usage is prohibited without the consent or permission of
the author.
Kontribusi dari tim peneliti (Hongki Julie & Arif Budi P); guru (Hanna Desi & Jumadi), asisten
peneliti (Yoyok & Made) dan seluruh siswa yang terlibat dalam penelitian ini sangat dihargai.
Penelitian ini didanai oleh Hibah Strategi Nasional DIKTI 2009 No: 378/SP2H/PP/DP2M/VI/2009.
Daftar Pustaka
Bappenas. (2010). Report on the achievement of
Millenium Development Goals in Indonesia
2010. Jakarta: Ministry of Development
Planning/National Development Planning
Agency.
Boaler, J. (1998). Open and closed mathematics:
Student experiences and understandings.
Journal for Research in Mathematics Education,
29(1), 41-62.
Cobb, P., Boufi, A., McClain, K., & Whitenack, J.
(1997). Reflective discourse and collective
reflection. Journal for Research in Mathematics
Education, 28(3), 258-277.
Cobb, P., Stephan, M., McClain, K., & Gravemeijer,
K. (2001). Participating in classroom
mathematical practices. The Journal of the
Learning Sciences, 10(1&2), 113-163.
Dolk, M., Widjaja, W., Zonneveld, E., & Fauzan, A.
(2010). Examining teacher's role in relation to
their beliefs and expectations about students'
thinking in design research In R. K. Sembiring,
K. Hoogland & M. Dolk (Eds.), A decade of PMRI
in Indonesia (pp. 175-187). Bandung, Utrecht:
APS International.
Ennis, C. (1989). Critical thinking and subject
specificity: clarification and needed research
Educational Reseacher, 18(4), 4-10.
Freudenthal, H. (1973). Mathematics as an
educational task. Dordrecht, The Netherlands:
D. Reidel Publishing Company.
Freudenthal, H. (1983). Didactical phenomenology
of mathematical structures. Dordrecht: D.
Reidel Publishing Company.
Freudenthal, H. (1991). Revisiting mathematics
education, China lectures. Dordrecht: Kluwer
Academic Publishers.
Gijse, A. (2010). Towards a democratic future. In R.
K. Sembiring, K. Hoogland & M. Dolk (Eds.), A
decade of PMRI in Indonesia (pp. 13-27).
Utrecht: APS.
Gravemeijer, K. (2004). Local instruction theories as
means of support for teachers in reform
mathematics education. Mathematical Thinking
and Learning, 6(2), 105-128.
Kazemi, E., & Stipek, D. (2001). Promoting
conceptual thinking in four upper-elementary
mathematics classrooms. The Elementary
School Journal, 102(1), 59-80.
Khisty, L. L., & Chval, K. B. (2002). Pedagogic
discourse and equity in mathematics: When
teachers' talk matters. Mathematics Education
Research Journal, 14(3), 154-168.
Khun, D. (1999). A developmental model of critical
thinking. Educational Reseacher, 28(2), 16-26,
46.
Daftar Pustaka
OECD. (2003). The PISA 2003 Assessment Framework
- Mathematics, Reading, Science and Problem
Solving Knowledge and Skills. Paris: OECD.
Schoenfeld, A. H. (2002). Making mathematics work for
all students Educational Researcher, 31(1), 13-25.
Schoenfeld, A. (2002). A highly interactive discourse
structure. Social Constructivist Teaching 9, 131169.
Sembiring, R. K., Hoogland, K., & Dolk, M. (2010). A
decade of PMRI in Indonesia. Utrecht: Ten Brink.
Sfard, A. (2001a). Learning discourse: Sociocultural
approaches to research in mathematics education.
Educational Studies in Mathematics, 46(1/3), 1-12.
Sfard, A. (2001b). There is more to discourse than
meets the ears: Looking at thinking as
communicating to learn more about mathematical
learning Educational Studies in Mathematics,
46(1/3, Bridging the individual and the social:
Discursive approaches to research in mathematics
education), 13-57.
Sfard, A., & Kieran, C. (2001). Cognition as
communication: Rethinking of students'
mathematical learning-by-talking through multifaceted analysis of students' mathematical
interactions. Mind, Culture, and Activity, 8(1), 4276.
Silver, E. A. (1997). Fostering creativity through
instruction rich mathematical problem solving and
problem posing ZDM, The International Journal of
Mathematics Education, 29(3), 75-80.
ten Dam, G., & Volman, M. (2004). Critical thinking as
a citizenship competence: teaching strategies.
Learning and Instruction, 14, 359-379.
Widjaja, W., & Dolk, M. (2010). Building, supporting,
and enhancing teachers’ capacity to foster
mathematical learning: Insights from Indonesian
classroom. In Y. Shimizu, Y. Sekiguchi & K. Hino
(Eds.), the Proceedings of the 5th East Asian
Regional Conference on Mathematics Education
(EARCOME). (Vol. 2, pp. 332-339). Tokyo: 18-22
August 2010. : ICMI - International Commission on
Mathematical Instruction.
Widjaja, W., Fauzan, A., & Dolk, M. (2009). The role of
contexts and teachers' questioning to enhance
students' thinking. In U.H. Cheah, Wahyudi,
R.B.Devadson, K.H. Ng, W. Preechaporn & J. C.
Aligaen (Eds.), Proceedings of the 3rd International
Conference on Science and Mathematics. (pp. 466474). Penang: SEAMEO RECSAM.
Yeap, B. H. (2009). Improving mathematical literacy
through assessment In U.H. Cheah, Wahyudi,
R.B.Devadson, K.H. Ng, W. Preechaporn & J. C.
Aligaen (Eds.), Proceedings of the 3rd International
Conference on Science and Mathematics. Penang:
SEAMEO RECSAM.