Interpretation of the Raman spectra of graphene and carbon nanotubes: the effects of Kohn anomalies and non-adiabatic effects S. Piscanec Cambridge University Engineering Department: Centre for Advanced Photonics and Electronics, Cambridge, UK G-band in graphite and nanotubes Graphite: one single sharp G peak corresponding to q==0, mode E2g Nanotubes: • Two main bands, G+ and G-. • Modes derived from graphite E2g • Metallic semiconducting Common interpretation: curvature Jorio et al. PRB 65, 155412 (2002) G+: no diameter dependence LO axial G- diameter dependence TO circumferential Common interpretation: Fano resonance In metallic tubes the G- peak is: G • Downshifted + G • Broader • Depends on diameter Metallic SWNT Interpretation 1450 1500 1550 1600 1650 1700 -1 Raman Shift (cm ) • Fano resonance • Phonon-Plasmon interaction Electron-phonon coupling and Kohn anomalies have to be considered Kohn anomalies • Atomic vibrations are screened by electrons • In a metal this screening abruptly changes for vibrations associated to certain q points of the Brillouin zone. • Kink in the phonon dispersions: Kohn anomaly. • Graphite is a semi-metal • Nanotubes are folded graphite • Nanotubes can as well be metallic Kohn anomalies: when? Everything depends on the geometry of the Fermi surface Fermi surface q = phonon wavevector k2 = k1+ q q k = electron wavevector k1 1. k1 & k2= k1+q on the Fermi surface 2. Tangents to the Fermi surface at k1 and k2= k1+ q are parallel •W. Kohn, Phys. Rev. Lett. 2, 393 (1959) bold Kohn anomalies in graphite •Graphite is a semi metal: •Fermi surface = 2 points: K and K’ = 2 K K’ K p* E K EF p Kohn Anomalies for: • • q = K-K = 0 = q = K’-K = 2K - K = K Kohn anomalies in graphite IXS data: J. Maultzsch et al. Phys. Rev. Lett. 92, 075501 (2004) -1 Frequency (cm ) K 1700 1600 A’1 1500 1400 1300 E2g Calculations IXS data 1200 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Phonon Wave Vector (2p/a0) 1.4 • 2 sharp kinks for modes E2g at and A1’ at K Kohn Anomaly EPC ≠ 0 E2g Kohn anomalies in nanotubes Metallic tubes: same geometrical conditions as graphite p* Ef p •Metallic tubes: two Giant Kohn anomalies predicted •Semi-conducting tubes: NO Kohn anomalies predicted 1610 -1 TO: 1540 • Circumferential • No KA • G+ 1470 1400 1330 1260 1190 0.0 LO: • Axial • strong EPC • G- 0.1 0.2 0.3 0.4 Phonon Frequency (cm ) Metallic tubes: LO-TO splitting 0.5 Phonon Wavevector (2p/a units) Opposite Interpretation 10 Dynamic Effects • Frozen phonons • Finite differences • Density functional perturbation theory Rely on Born-Oppenheimer approximation: electrons see fixed ions Static approaches For 3D crystals this is 100% OK This is no longer true for 1D systems • The dynamic nature of phonons can be taken into account • Beyond Born-Oppenheimer… Dynamic effects in nanotubes 0.00 1610 0.01 0.02 0.03 0.04 0.05 0.06 0.07 a) 1600 (11,11) 315K 1580 -1 Phonon Frequency (cm ) •KA@LO: smeared •New KA@TO LO 1590 1570 1560 Dynamic Static EZF (static) 1550 1540 1650 b) (11,11) 315K TO 1620 1590 •LO: increased •TO: decreased 1560 1530 Dynamic Static EZF (static) 1500 0.00 0.01 0.02 0.03 0.04 0.05 0.06 Phonon wavevector (2p/a0 units) 0.07 Dynamic effects Phonons are not static deformations 0.00 0.02 0.03 0.04 0.05 0.06 0.07 0.00 1590 0.00 1620 0.01 0.02 0.03 0.04 0.05 a) 1590 LO 1570 1560 -1 Dynamic Static EZF (static) 1550 1540 b) (11,11) 315K TO 1620 1560 1550 -1 1570 Phonon Frequency (cm ) (11,11) 315K 1580 -1 0.03 1580 1590 Phonon Frequency (cm ) 0.02 a) a) 1600 1650 0.01 LO T=30K T=300K T=1000K 1750 1700 Phonon Frequency (cm ) 1610 0.01 b) 1650 1590 1530 1710 d=0.8 nm d=1.6 nm d=2.4 nm b) 1620 1600 1560 1530 0.01 0.02 0.03 0.04 0.05 0.06 Phonon wavevector (2p/a0 units) •KA@LO: smeared •New KA@TO 1530 1550 Dynamic Static EZF (static) 1500 0.00 LO 1560 1500 0.07 0.00 TO TO 1440 0.01 0.02 0.03 Phonon Wavevector (2p/a0 units) •T increases: •KA@LO: weaker •KA@TO: no changes 0.00 0.01 0.02 0.03 0.04 Phonon Wavevector (2p/a0 units) •d increases: •KA@LO: weaker •KA@TO: weaker 0.05 LO and TO frequencies 1620 1600 TO 1580 TO LO Phonon Frequency (cm-1) 1560 LO 1540 LO Dynamic + curvature Refolding-static Dynamic effects Metallic Metallic 1520 1500 1590 LO LO 1580 1570 TO LO TO 1560 1550 TO 1540 0.8 1.0 Dynamic + curvature Semiconducting Semiconducting 1.2 1.4 1.6 1.8 Diameter (nm) 2.0 2.2 2.4 Th Vs Exp: Room Temperature 1600 G+ 1590 Metallic tubes 150 -1 FWHM(G ) (cm ) TO 1580 100 Raman Shift (cm-1) - 1570 Brown [10] Jorio [11] Maultzsch [14] Oron-Carl [17] Doorn [18] G- 1560 1550 1540 LO 1530 Metallic 0 0.6 1600 1590 1580 LO 1550 1.2 1.4 1.6 1.8 2.1 • Metallic tubes: G-LO & G+TO • Semiconducting tubes: G- TO & G+ LO Semiconducting 1.0 1.5 G- 1540 1520 0.8 1.2 Diameter (nm) TO 1530 0.9 G+ 1570 1560 50 1.8 Diameter (nm) 2.0 2.2 2.4 • Fermi golden rule: •EPC FWHM(G-) 2.4 Interpretation of Raman spectra TO – circumferential LO – axial 1592 Semiconducting: + G 1570 • LO-TO splitting curvature • G+ axial • G- circumferential - G Semiconducting SWNT 1450 1500 1550 1600 1650 1700 -1 Raman Shift (cm ) LO – axial TO – circumferential 1550 1587 G G - Metallic: + • LO-TO splitting Kohn an. • G+ circumferential • G- axial (KA) • FWHM(G-) EPC Metallic SWNT 1450 1500 1550 1600 1650 1700 -1 Raman Shift (cm ) Piscanec et al. PRB (2007) G- interpretation: EPC and not Phonon-plasmon resonance G- band Vs T: experiments • Metallic SWNTs • Dielectrophoresis • HiPCo SWNTs (Houston), d~1.1nm • Vpp = 20 V and f=3MHz • Raman Spectroscopy • = 514 nm (resonant with semicon.) • = 633 nm (resonant with metallic) • Linkam stage: 80K < T < 630K Krupke et al. Science 301, 344 (2003) G- band Vs T: experiments • Semiconducting tubes: G+ - G- constant Anharmonicity • Metallic tubes: G+ - G- increases with T ??? (EPC) Th Vs Exp: Temperature Dependence 70 static dynamic 65 60 -1 45 + G -G (cm ) 50 - 55 Metallic d=1.0nm 40 35 Semiconducting d=1.1nm 30 25 0 150 300 450 600 750 900 Temperature (K) Metallic tubes from R. Krupke Conclusions • Measurement of the Raman G-band Vs T Metallic tubes from dielecrophoresis Semiconducting tubes G+ - G- = constant Metallic tubes G+ - G- changes with T • Kohn anomalies and electron phonon coupling and dynamic effects Interpretation of G-band in SWNTs Raman spectra Explanation of the T-dependence of the G- in metallic SWNTs •
© Copyright 2026 Paperzz