PHYSICS 218 PROBLEM SET #4 BEN LEHMANN 1. We denote the lepton momentum by p` and the neutrino momentum by pn to avoid confusion with Lorentz index. The squared matrix element is 1 (1) |M|2 = Fπ2 G2F m2π pµ pν ū(pn )γ µ (1 − γ5 )v(p` )v̄(p` )(1 − γ5 )γ ν u(pn ) 2 Let us work in the rest frame, where pµ γ µ = mπ γ 0 . Now we can sum over the spins of the products, finding |M|2 = 4Fπ2 G2F m2π 2p0` p0n − p` · pn (2) From the kinematics in the rest frame, assuming a massless neutrino, we have Thus p` · pn = 1 2 m2 − m2` m2 + m2` , p0n = |pn | = |p` | = π p0` = π 2mπ 2mπ 2 2 mπ − m` , and our squared matrix element becomes |M|2 = 2Fπ2 G2F m2` m2π − m2` (3) (4) Now we can find the decay width using λ1/2 m2π , m2n , m2` Γ= |M|2 16πm3π (5) where λ(M, m1 , m2 ) = (s − m21 − m22 )2 − 4m21 m22 is the triangle function. With our matrix element, we have Fπ2 G2F m3` − m` m2π 2 + + (6) Γ π → ` ν` = 8πm3π The branching ratio for ` = e versus ` = µ is determined by the respective lepton masses. Plugging in numbers, we find that 3 2 Γ (π + → e+ ν` ) me − me m2π = ≈ 1.3 × 10−4 (7) Γ (π + → µ+ ν` ) m3µ − mµ m2π 2. We have just one diagram contributing to this process at tree level (fig. 1). We evaluate the p1 p3 e e H Z; k µ p2 Z p4 Figure 1. The only tree-level diagram contributing to e+ e− → HZ. 1 PHYSICS 218 PROBLEM SET #4 2 matrix element as1 −i g αν − kα kν m2Z 2 mZ ig ig m2Z νµ µ∗ γα (cV − cA γ5 ) u(p1 ) g 4 cos θw sin θw mW k2 − αµ − kα kµ µ∗ −i g 2 2 2 4 mZ g mZ v̄(p2 )γα (cV − cA γ5 ) u(p1 ) 2 2 cos θw sin θw k − mZ iM = −v̄(p2 ) = mW (8) (9) We take the adjoint as † (iM) = i g αµ − m2Z g 2 kα kµ m2Z 2 k − m2Z mW cos θw sin θw µ4 ū(p1 ) (cV − cA γ5 ) γα v(p2 ) (10) β ν ν g βν − kmk2 µ∗ 4 4 Z 2 2 2 k − mZ (11) and thus find the squared matrix element |M|2 = 2 m2Z g 2 mW cos θw sin θw g αµ − kα kµ m2Z × ū(p1 )γα (cV − cA γ5 ) v(p2 )v̄(p2 ) (cV − cA γ5 ) γβ u(p1 ) Since me this is √ s, we take the electrons to be massless. Then, summing over spins and polarizations, |M|2 = 1 4 m2Z ge mW cos θw sin θw 2 − g αµ − kα kµ m2Z g βν − k2 − g µν − kβ kν m2Z 2 m2Z pµ 4 2 pν4 p4 (12) × tr [p1 γα (cV − cA γ5 ) p2 (cV − cA γ5 ) γβ ] We evaluate the trace as i h tr p1 γα (cV − cA γ5 ) p2 (cV − cA γ5 ) γβ = p1ρ p2σ tr [γρ γα (cV − cA γ5 ) γσ (cV − cA γ5 ) γβ ] i h = 2 (cA − cV ) (cA + cV ) sg αβ − 2 pβ1 pα2 + pα1 pβ2 where we have used p1 · p2 = 21 s. Putting it all together, we have αµ − kα kµ βν − kβ kν 2 g g g µν − 2 2 2 mZ ge 1 mZ mZ − |M|2 = 2 4 mW cos θw sin θw k 2 − m2Z h i × 2 (cA − cV ) (cA + cV ) sg αβ − 2 pβ1 pα2 + pα1 pβ2 (13) (14) ν pµ 4 p4 2 mZ (15) Now we contract the remaining indices and simplify. Since k 2 = s and p1 · p2 = 12 s, we have |M|2 = 2m2Z g 4 (cA − cV ) (cA + cV ) csc2 (2θW ) 4(p1 · p4 )(p2 · p4 ) + m2Z s 2 2 2 mW (mZ − s) We can further simplify this result with a bit of kinematics: 1 1 p2 · p4 = m2z − t , p1 · p4 = m2z − u , s − t − u = 2s − (m2z + m2H ) 2 2 (16) (17) 1I started working this out using a reference that wrote out G in terms of m . I decided not to change this F W back, but I used GF in problem 3. PHYSICS 218 PROBLEM SET #4 3 Making these substitutions, we have |M|2 = − 2m2Z g 4 csc2 (2θw ) (cA − cV )(cA + cV ) m2H (m2Z − t) + t(s + t) − m2Z (2s + t) 2 2 2 mW (mZ − s) (18) Before we find the differential cross section, we rewrite this result in terms of the scattering angle. From kinematics, we have √ m2Z − m2H + s 1√ √ − s |p4 | cos θ (19) p2 · p4 = E2 E4 − p2 · p4 = 12 s 2 2 s We can thus write t in terms of θ, as q 1 2 2 2 2 2 2 2 t= mH + mZ − s − mH + (mZ − s) − 2mH (mZ + s) cos θ (20) 2 Making this substitution in our matrix element and simplifying, we have |M|2 = − g 4 m2Z csc2 (2θw ) (cA − cV ) (cA + cV ) (21) 2m2W (m2Z − s)2 × −(m2H − m2Z )2 + 2(m2H − 3m2Z )s − s2 + (mH − mZ )2 − s (mH + mZ )2 − s cos2 θ Now the differential cross section can be written in the form dσ 1 |p4 | √ |M|2 = dΩ (2E1 )(2E2 ) |vrel,i | (2π)2 4 s q |M|2 = m4H + (m2Z − s)2 − 2m2H (m2Z + s) 64π 2 s2 Finally, we can integrate to find the total cross section: Z dσ σ = dΩ dΩ m2 g 4 (cA − cV )(cA + cV ) csc2 (2θw ) 4 mH + m4Z + 10m2Z s + s2 − 2m2H (m2Z + s) = Z 2 2 2 2 48πmW (mZ − s) s (22) (23) (24) (25) Inserting numerical values gives σ ≈ 6.5 pb, so we expect about 452 Higgs bosons2 to be produced at LEP. 2This result is different from what I heard some other folks mention. I think I might be using the wrong values for cA and cV . PHYSICS 218 PROBLEM SET #4 q1 ; µ; a 4 q1 ; µ; a k − q1 ; i p p k; j k + q2 ; ` q2 ; ν; b q2 ; ν; b Figure 2. Diagrams contributing to H → gg at 1-loop. 3. (a) We have two diagrams related under the interchange of q1 , q2 and µ, ν (fig. 2). We evaluate the first diagram as Z √ k + mt ) ν b i( k + q2 + mt ) i( k − q1 + mt ) 1∗ 2∗ d4 k 1/2 µ a i( tr iγ Tij 2 iM1 = −(−1)4πiαs ( 2GF ) mt iγ Tj` δi` (2π)4 k − m2t (k + q2 )2 − m2t (k − q1 )2 − m2t µ ν (26) b = tr(T a T b ) = 1 δ ab . Pulling everything out, we can write this The color factor is just δi` Tija Tj` 2 2∗ M µν for as iM1 = 1∗ µ ν 1 Z √ d4 k k + mt ) ν i( k + q2 + mt ) i( k − q1 + mt ) µν 1/2 ab µ i( M1 = −2πiαs ( 2GF ) mt δ tr γ γ (27) (2π)4 k 2 − m2t (k + q2 )2 − m2t (k − q1 )2 − m2t The trace is straightforward, if cumbersome, to compute; we simplify with q1 · q2 = 12 m2H . But now, by Lorentz invariance and symmetry of q1µ and q2µ , we know that M µν must have the form M µν = Ag µν + B(q1µ q2ν + q1ν q2µ ). Eliminating other terms, we must have Z Z −m2H g µν + 2q1ν q2µ + 2q1µ q2ν d4 k d4 k tr(· · · ) = −2im (28) t (2π)4 (2π)4 k 2 − m2t (k + q2 )2 − m2t (k − q1 )2 − m2t Putting it all together, we have M1µν = −m2H g µν + 2q1ν q2µ + 2q1µ q2ν Z √ d4 k 4παs ( 2GF )1/2 m2t δ ab (2π)4 k 2 − m2t (k + q2 )2 − m2t (k − q1 )2 − m2t (29) The second diagram contributes M2µν identical to M1µν up to the interchange of µ and ν and of q1 and q2 , which gives us the same amplitude. Thus, √ Z 8παs ( 2GF )1/2 m2t δ ab d4 k µ ν µν 2 µν ν µ (30) M = −mH g + 2q1 q2 + 2q1 q2 (2π)4 k 2 − m2t (k + q2 )2 − m2t (k − q1 )2 − m2t (b) All of the Lorentz indices on M µν lie in the −m2H g µν + 2q1ν q2µ + 2q1µ q2ν term, so we have q1µ M µν ∝ −m2H q1ν + 2q1ν (q1 · q2 ) + 2q12 q2µ (31) But q1 · q2 = 12 m2H and q12 = 0, so this is q1µ M µν ∝ −m2H q1ν + m2H q1ν = 0 (32) Since this term is symmetric in q1 and q2 , it is clear that q2µ M µν = 0 for the same reason. (c) We use Feynman parameters to evaluate the integral. Recall that Z 1 1 2δ(x + y + z − 1) = dx dy dz (33) ABC (Ax + By + Cz)3 0 PHYSICS 218 PROBLEM SET #4 Thus, our integrand can be written in the form 1 = 2 2 2 k − mt (k + q2 ) − m2t (k − q1 )2 − m2t Z 1 2δ(x + y + z − 1) dx dy dz 3 0 k 2 − m2t x + (k + q2 )2 − m2t y + (k − q1 )2 − m2t z Expanding the denominator and dropping q12 = q22 = 0, this is Z 1 2δ(x + y + z − 1) dx dy dz 3 0 −2(k · q1 )z + 2(k · q2 )y + k 2 (x + y + z) − m2t (x + y + z) Taking advantage of the delta function, we set x + y + z = 1, which leaves Z 1 2δ(x + y + z − 1) dx dy dz 3 2 0 k − 2(k · q1 )z + 2(k · q2 )y − m2t 5 (34) (35) (36) We can complete the square in this expression, since (k + q2 y + q1 z)2 = k 2 − 2(k · q1 )z + 2(k · q2 )y − 2(q1 · q2 )yz (37) Define ` = k + q2 y + q1 z and ∆ = −2(q1 · q2 )yz + m2t , so that our integral can be written in the form Z 1 Z 2δ(x + y + z − 1) d4 k dx dy dz (38) 4 (2π) 0 (`2 − ∆)3 But ` is just a shift of k, so we can equivalently write Z 1 Z d4 ` 2δ(x + y + z − 1) dx dy dz (39) (2π)4 (`2 − ∆)3 0 The integral with respect to ` can be performed directly: Z δ(x + y + z − 1) d4 ` 2δ(x + y + z − 1) √ = 3 4 2 (2π) 16π 2 −∆2 (` − ∆) = δ(x + y + z − 1) q 2 16π 2 m2H yz − m2t (40) (41) where we have again used q1 · q2 = 12 m2H . In evaluating the remaining integrals, we expend the delta function on the integral with respect to z, replacing z → 1 − x − y. Then Z 1 δ(x + y + z − 1) q dx dy dz (42) 2 = 2 2 0 2 16π mH yz − mt We can do the integrals in x and y by hand, finding 2 Z 1 Z 1 mH δ(x + y + z − 1) 1 dz q dx dy dz log 1 − z(1 − z) 2 = − 16π 2 m2 m2t 0 H 0 z 16π 2 m2H yz − m2t We are given the value of this integral: 2 Z 1 mH 1 dz 1 2 1 mH − log 1 − z(1 − z) = 2 2 arcsin 2 mt 16π 2 m2H 0 z m2t 8π mH (43) (44) Since the rest of M µν is real, let us find the imaginary part of this expression. We know the integral will be purely real for mH /mt < 2, which we note is exactly the condition required for the top quarks to be produced on-shell. PHYSICS 218 PROBLEM SET #4 To find the imaginary part, observe that 2 p p arcsin2 z = − log iz + 1 − z 2 = − log 2iz + 2 1 − z 2 6 (45) In general, log(r eiθ ) = log r + iθ, so log(r eiθ )2 = (log r)2 − θ2 + 2iθ log r, so we have Im (log z)2 = 2(log |z|) arg z (46) √ √ For real masses with z > 1, we have that 1 − z 2 = i z 2 − 1 is pure imaginary, so the argument is π/2, and the modulus is the imaginary part. If instead z < 1, the modulus is 1, so log |z| vanishes, and the imaginary part with it. Thus, minding factors of 2, we have s 2 m m m 1 m H H H H 2 = −π log + − 1Θ −1 (47) Im arcsin 2 mt 2mt 2mt 2mt Now we can write M µν and its imaginary part: √ m2t αs ( 2GF )1/2 δ ab µ ν µν 2 µν ν µ 2 1 mH M = −mH g + 2q1 q2 + 2q1 q2 arcsin , (48) 2 mt πm2H s √ 2 2 α ( 2G )1/2 δ ab m m mH m F H H µ ν t s 2 µν ν µ µν −mH g + 2q1 q2 + 2q1 q2 log + −1 −1 Θ Im M = − 2mt 2mt 2mt m2H (49) M µν (d) As mt → ∞, we can expand in a power series in mH /mt . We find √ αs ( 2GF )1/2 δ ab −m2H g µν + 2q1ν q2µ + 2q1µ q2ν + O(mH /mt ) M µν = 2π(mH /mt ) (50) Note that M µν is real in this limit. (e) We reattach the polarization vectors and square the matrix element: !2 √ 1/2 δ ab α ( 2G ) s F 2∗ 2 µν |M|2 = δ ab δab 1∗ + 2q1ν q2µ + 2q1µ q2ν 1ρ 2σ −m2H g ρσ + 2q1σ q2ρ + 2q1ρ q2σ µ ν −mH g 2π(mH /mt ) (51) Summing over color gives a factor of the number N of generators. Summing over polarizations, we have, for nµ = (1, 0, 0, 0), !2 √ 1/2 q1ρ nµ + q1µ nρ q1µ q1ρ α ( 2G ) s F 2 |M| = N −gρµ + − −m2H g µν + 2q1ν q2µ + 2q1µ q2ν 2 2π(mH /mt ) q1 · n (q1 · n) q2σ nν + q2ν nσ q2σ q2ν ρ σ 2 ρσ σ ρ × −gσν + − −m g + 2q q + 2q q2 (52) H 1 2 1 q2 · n (q2 · n)2 α2 N GF m2 m2 = s √ H t (53) 2π 2 Using eq. (5), this corresponds to a decay width of Γ(H → gg) = αs2 N GF mH m2t √ 16 2π 3 (54) Now consider the much simpler decay H → bb̄ at tree level, shown in fig. 3. We evaluate the diagram as 1/2 √ iM = i 2GF ū(q2 )v(q1 ) (55) PHYSICS 218 PROBLEM SET #4 7 q1 ; a p q2 ; b Figure 3. H → bb̄ at tree level. We will get a factor of N from color, as before. Taking the adjoint, squaring, and summing over fermion spins, we have √ |M|2 = 4 2N GF m2b (q1 · q2 ) (56) 1 2 2 From kinematics, q1 · q2 = 2 mH − 2mb , so we have √ (57) |M|2 = 2 2N GF m2b m2H − 2m2b and this gives us a decay width of q 2 N GF m2b m2H − 2m2b mH − 4m2b √ Γ(H → bb̄) = 4 2πm2H (58) The ratio is then Γ(H → gg) = Γ(H → bb̄) 4π 2 m2b m2H − 2m2b q 2 mH − 4m2b α2 m3H m2t ≈ 0.026 (59)
© Copyright 2026 Paperzz