AnintroductiontoExtendedFormulationscapturingtheexpressivepowerofLPsandSDPs
SebastianPokutta
GeorgiaInstituteofTechnology
SchoolofIndustrialandSystemsEngineering(ISyE)
AlgorithmsandRandomnessCenter(ARC)
OptimizationWithoutBorders
DedicatedtoYuriNesterovโs 60th Birthday
LesHouches,2/2016
IntroductionandMotivation
Projections candrasticallyincreasethecomplexityofadescription.
Canweinvert theprocesstofind
smallformulations forcomplicatedproblems?
2
IntroductionandMotivation
Thisphenomenon iswellknown(but notunderstood):
1. Quantifier elimination
2. ThequestofPvs.NPisexactlyofthistype:๐ โ ๐ณ โ โ๐: ๐ ๐, ๐ = ๐,
3. Fourier-Motzkin elimination leadstoexponential blow-up
Extendedformulations =quantifierelimination backwards
Naturalquestions.
1. Maybeany 0/1polytope haspoly-sizeextendedformulations?
2. โ problems inP,howeverdonotadmitsmallformulations?
3. โ problems thatadmitgood approximations viasmallSDPsbutnotLPs?
3
IntroductionandMotivation
Howitallstartedโฆ
In86/87,Swartclaimedhecouldprove๐ท = ๐ต๐ท
How?
Bygiving a(purported) poly-sizelinearprogramfortheTSPproblem.
Theorem. [Yannakakis 88/91]EverysymmetricLPfortheTSPhassize21(3) .
Swartโs LPwassymmetricandofsize๐๐๐๐ฆ(๐) =>itwaswrong.
4
IntroductionandMotivation
However,thatwasnottheendbutthebeginning.
1. [Kaibel,Pashkovich, Theis 10]symmetrycanmakeahuge difference.
2. [Yannakakis 11](20yearsafterhisinitialproof):
3. Hugeinterestinfinallyruling outallLPsof polynomial sizeforTSP.
4. [Fiorini, Massar,P.,Tiwary,deWolf12]TheTSPpolytope hasnosmallLPs.
Thenotion ofLP-complexity(#inequalities) isindependent ofPvs.NP.
=>verystrongindicationsfor Pvs.NP
5
ProblemsandLPs
Disclaimer.SimilarforSDPs,howeverforsimplicity confinetoLPs.
6
ApproximationProblems
Anapproximationproblem๐ท (maxorminproblem):
๐:setoffeasiblesolutions
๐น:setofconsidered objectivefunctions (for simplicity:nonnegative)
๐
:completenessguarantee,๐
(๐) โ โ foreach๐ โ ๐น
๐:soundness guarantee,๐(๐) โ โ foreach๐ โ ๐น
Goal.Whenever ๐ โ ๐น withmax ๐ ๐ โค ๐ ๐
EโF
Find:approximatesolution withval โค ๐
(๐)
(maxproblem)
Example (exactmin VertexCover):Givenagraph๐บ
๐:allvertexcoversofgraph๐บ (i.e.,subsetsofnodes coveringalledges)
๐น: allnonnegative weightvectorsonvertices
๐
, ๐:define ๐
๐ = ๐(๐) โ min ๐(๐ )
EโF
7
LPscapturingApproximationProblems
Modelof[Chan, Lee,Raghavendra,Steurer13]and[Braun,P.,Zink14]
AnLPformulationofanapproximationproblem๐ท = ๐บ, ๐ญ, ๐ฟ, ๐ isanLP๐ด๐ฅ โค ๐
with๐ฅ โ โT andrealizations,where๐นU = {๐ โ ๐น โฃ max ๐ ๐ โค ๐ ๐ }
a)Feasiblesolutions: forevery๐ โ ๐ wehavex Y โ โT with
๐ด๐ฅ E โค ๐ forall๐ โ ๐,
(relaxation๐๐๐๐ฃ(๐ฅ E โฃ ๐ โ ๐))
b)Objectivefunctions: forevery๐ โ ๐นU wehaveanaffine ๐ค ] : โT โ โ with
๐ค] ๐ฅE = ๐ ๐
forall๐ โ ๐,
(linearization thatisexacton๐)
c)Achieving (ฮบ, ฯ)-approximation: forevery๐ โ ๐นU
๐a = max ๐ค ] ๐ฅ ๐ด๐ฅ โค ๐ โค ๐
(๐)
8
FormulationComplexity
Approximation
Problem
๐บ, ๐ญ, ๐ฟ, ๐
Slackmatrixof
problem
๐U (๐, ๐ ) = ๐
(๐) โ ๐(๐ )
LPfactorization
๐U = ๐ โ
๐ + ๐ โ
๐
(restr.NMF)
Factorizationtheorem. Let ๐ = ๐, ๐น, ๐
, ๐ beaproblem and๐ slackmatrixof๐
๐๐ ๐ = ๐๐๐๐pq (๐U )
Formulationcomplexity.
โข
โข
โข
โข
โข
Independent ofPvs.NP
Independent ofaspecific polyhedralrepresentation
DonotliftgivenrepresentationbutconstructtheoptimalLPfromfactorization
Infact:LPistrivial.Construct optimalencodingfromfactorization
Restrictednotionofnonnegativematrixfactorizationtosupport approximations
OptimalLP.
๐ฅโฅ0
withencodings
feasiblesolutions: ๐ฅ E โ ๐E objectivefunctions: ๐ค ] (๐ฅ) โ ๐
(๐) โ ๐ ๐ โ ๐] โ
๐ฅ
9
OptimalLPs
non-optimal
forallf
optimal
forsomef
๐ฅ โฅ0
๐ค ]t (๐ฅ) = ๐
(๐u ) โ ๐ ๐u โ ๐]t ๐ฅ
๐๐๐๐ฃ{๐ฅE โฃ ๐ โ ๐}
๐ค ]r (๐ฅ) = ๐
(๐s ) โ ๐ ๐s โ ๐]r ๐ฅ
10
Lowerboundingtechniques
11
Asimplelowerboundingtechnique
Therectanglecoveringbound.
Consider hypothetical
๐ = ๐๐
(nonnegative rank-๐ factorization)
= โwxs,โฆ,z ๐ w ๐w
(sum of๐ nonneg. rank-1 matrices)
Takesupport
supp ๐ = โwxs,โฆ,z supp ๐ w ๐w
= โwxs,โฆ,z supp ๐ w ×supp(๐w )
(union of๐ rectangles)
Rectanglecoveringnumber. rc ๐ = min ๐ โ๐-sizecoverofsupp(๐)}
โ rk โฆ ๐ โฅ rc(๐)
12
Thecorrelationpolytopeโ anexample
[Razborov 92]establishedinthecontextofnondeterministic communication:
Theorem. ๐๐ UDISJโน = 2ล3
Thisimplies[Fiorini, Massar,P.,Tiwary,deWolf12]
2ล3 = ๐๐ UDISJโน โค ๐๐โฆ UDISJโน โค ๐๐โฆ ๐3 โค fc(COR ๐ )
Hardnessofapproximation via
1. Communication complexity[Braun,Fiorini, P.,Steurer12]and
2. Information Theory[Braverman,Moitra13]and[Braun,P.13].
Theorem. AnyLPapproximatingCOR(๐) within afactor๐sโล isofsize2โ(s)ล3 .
13
Thematchingproblemโ amuchmorecomplicatedcase
ViaageneralizationofRazborovโs technique:
Theorem. [Rothvoss14]AnyLPformulation ofthematchingpolytope isof
exponentialsize.
Thisisveryspecialandimportant:
1. Matchingcanbesolved inpolynomial time
2. YetanyLPcapturingitisofexponentialsize
=>Separatesthepowerof Pfrompolynomial sizeLPs
Withinformation theory: ruling outtheexistenceofFPTAS-typeLPformulations
Theorem. [Braun,P.14]Forsome๐ > 0 anyLPapproximatingtheMatching
ล
Polytope withinafactor1 + 3 isofexponential size.
14
Recentresultsfor
SDPextendedformulations
15
WhyareSDPEFssomuchhardertounderstand?
โฆbecausetheyaresomuchstronger:
1. [Braun,Fiorini, P.,Steurer12]:โ (bounded) spectrahedron
1. indimension ๐u ,i.e.,smallSDP-EF
2. anyLPthatapproximatesitwithinafactorof๐sโล isof size21(3)
2. [Chain,Lee,Raghavendra,Steurer13]:SeparationviaMaxCut
1. TheGoemans-Williams SDPgivesanapproximationof0.87
2. Nopolynomial-size LPcandobetterthan0.5
3. [Yannakakis 91]:Stablesetpolytope overperfectgraphs
1. BasicSDPgivesperfectEFof theproblem
2. Nopolynomial sizeLPisknown; bestknown ๐ห(โขลกโบ 3)
16
KnownSDPEFlowerbounds
RecentSDPEFlowerbounds:
1. [Brïet,Dadush, P.13]:Viacounting argument
1. Thereexist0/1polytopes thatdonotadmitpoly-sizeSDPEFs
2. However, argumentisonly existentialinnature
2. [Lee,Raghavendra,Steurer14]:Bounds via(quantum) learning
1. ReuseLasserregapinstancesandlowerbounds
2. ShowthatahypotheticalsmallSDPEFcanbeusedtolearnagood small
LasserrebasedSDPEF->contradiction
3. [Braun,Brown-Cohen, Huq, P.,Raghavendra,Roy,Weitz,Zink 15]:Y.forSDPs
1. Matchinghasno smallsymmetricSDPs
2. Among allsymmetricSDPsof size๐(๐w ) forTSP๐-levelLasserrearebest
4. Noother direct/explicitlowerbounding techniquesareknown
17
Reductionsfor
forextendedformulations
(reusewhatyouknow)
18
ReductionsbetweenProblems
Incomplexitytheory.Howtoshowthataproblem ๐ isNP-hard(toapproximate)?
P
Q
Reductionf
Your
Problem
Polynomial-time
computablemap
NP-hard
Problem
Intuition. ๐ embeds instancesof๐ into๐.Nowif๐ wouldbeeasy,thentogether
with๐,theproblem ๐ would beeasy.Contradiction tohardnessof๐.
Note. Reduction canbealsoused inreversetoestablishupper bounds onthe
complexityof๐ if๐ isknown tobeeasy.
19
ReductionsforEFs
NowforEFs.Howtoshowthataproblem ๐ doesnotadmitsmallLPs?
P
Q
Reductionf
Your
Problem
Computationally unbounded
(wecareonlyfor#ineqs)
BUTother restrictionsโฆ
LP-hard
Problem
Intuition. ๐ embeds instancesof๐ into๐.However,somehow thishastopreservethe
structureofbeing anLPorSDPโฆ
Note. Reduction canbealsoused inreverseagain.Thiscanleadtointerestingresults.
20
ReductionsforLPsandSDPs
Affinereductions. ๐s = ๐s , ๐นs , ๐
s, ๐s reducesto๐u = ๐u ,๐นu , ๐
u ,๐u viatwomaps
1. Rewritefeasiblesolutions:
โ: ๐s โ ๐u with ๐ s โฆ ๐ sโ โ ๐u
2. Rewriteobjectivefunctions:
โ: ๐นs โ ๐นu with๐s โฆ ๐sโ โ ๐นu
Sothatthefollowing holds:
๐
s ๐s โ ๐s ๐ s = [๐
u ๐sโ โ ๐sโ ๐ sโ ] โ
๐s (๐s , ๐ s ) + ๐u (๐s , ๐ s)
max๐sโ โค ๐u ๐sโ
(completeness)
ifmax๐s โค ๐s ๐s
(soundness)
Important. โ mapssolutions andfunctions independently ofeachother.
๐s , ๐u โ ๐
โฆz×T capturelow-ranknon-affine partoffunction
Theorem. [Braun,P.,Roy15]If๐s reducesto๐u ,then(essentially)
fc ๐s โค ๐๐๐๐pq/F§q ๐s โ
fc(๐u ) + ๐๐๐๐pq/F§q (๐u )
Enablescertainformsofgap-amplification.
21
Reductions:afewexamples(LP)
[BPZ15]
MaxCut
1
+๐
2
[BPZ15]
[BPR15]
UniqueGames
๐(1)
[BPR15]
Max3Sat*โ
7
+๐
8
StableSet
๐(1)
Max2Sat*โ
3
+๐
4
VertexCover*
2โ๐
SparsestCut*
btw(supply)
2โ๐
q-VertexCover*
qโ ๐
1/QF-CSP
๐(1)
[BPR15]
Matching
๐
1+
๐
[BPR15]
Matching(deg โค 3)
ล
1 + 3t
Sparsestcut
btw(demand)
๐(1)
Bal.separator
btw(demand) ๐(1)
Bal.separator
btw(supply)
2โ๐
*Optimal
โHavebeenalsoobtaineddirectly
22
Reductions:afewexamples(SDP)
SparsestCut
btw(demand)
๐(1)
Max-3-XOR/0
2โ๐
MaxCut
15
+๐
16
SparsestCut
btw(supply)
16/15 โ ๐
VertexCover
7
โ๐
6
SparsestCut
๐(1)
[Sch08]+[LRS14]
Lasserre
reduction
Max-k-CSP
1/๐ w
(ฮฉ(๐) rounds)
[BCV+12]
Independent Set
๐ (sโ®)
(ฮฉ(๐ ®)rounds)
=>Lasserre is suboptimalfor
IndependentSet
OpenProblems
1. (general) SDPformulation complexityofthematchingproblem
2. Lowerbounding techniques forSDPEFs
3. LP-hardnessofapproximation forcomplexproblems suche.g.,TSP
4. Extensioncomplexityoveralternativecones:
1. Hyperbolic programming (inP)
2. Copositive programming (NPhard)
5. Understanding thedifferencebetweenhierarchiesandgeneralEFs
24
Thankyou!
25
© Copyright 2026 Paperzz