capturing the expressive power of LPs and SDPs

AnintroductiontoExtendedFormulationscapturingtheexpressivepowerofLPsandSDPs
SebastianPokutta
GeorgiaInstituteofTechnology
SchoolofIndustrialandSystemsEngineering(ISyE)
AlgorithmsandRandomnessCenter(ARC)
OptimizationWithoutBorders
DedicatedtoYuriNesterovโ€™s 60th Birthday
LesHouches,2/2016
IntroductionandMotivation
Projections candrasticallyincreasethecomplexityofadescription.
Canweinvert theprocesstofind
smallformulations forcomplicatedproblems?
2
IntroductionandMotivation
Thisphenomenon iswellknown(but notunderstood):
1. Quantifier elimination
2. ThequestofPvs.NPisexactlyofthistype:๐’™ โˆˆ ๐‘ณ โ‡” โˆƒ๐’š: ๐’‡ ๐’™, ๐’š = ๐Ÿ,
3. Fourier-Motzkin elimination leadstoexponential blow-up
Extendedformulations =quantifierelimination backwards
Naturalquestions.
1. Maybeany 0/1polytope haspoly-sizeextendedformulations?
2. โˆƒ problems inP,howeverdonotadmitsmallformulations?
3. โˆƒ problems thatadmitgood approximations viasmallSDPsbutnotLPs?
3
IntroductionandMotivation
Howitallstartedโ€ฆ
In86/87,Swartclaimedhecouldprove๐‘ท = ๐‘ต๐‘ท
How?
Bygiving a(purported) poly-sizelinearprogramfortheTSPproblem.
Theorem. [Yannakakis 88/91]EverysymmetricLPfortheTSPhassize21(3) .
Swartโ€™s LPwassymmetricandofsize๐‘๐‘œ๐‘™๐‘ฆ(๐‘›) =>itwaswrong.
4
IntroductionandMotivation
However,thatwasnottheendbutthebeginning.
1. [Kaibel,Pashkovich, Theis 10]symmetrycanmakeahuge difference.
2. [Yannakakis 11](20yearsafterhisinitialproof):
3. Hugeinterestinfinallyruling outallLPsof polynomial sizeforTSP.
4. [Fiorini, Massar,P.,Tiwary,deWolf12]TheTSPpolytope hasnosmallLPs.
Thenotion ofLP-complexity(#inequalities) isindependent ofPvs.NP.
=>verystrongindicationsfor Pvs.NP
5
ProblemsandLPs
Disclaimer.SimilarforSDPs,howeverforsimplicity confinetoLPs.
6
ApproximationProblems
Anapproximationproblem๐‘ท (maxorminproblem):
๐‘†:setoffeasiblesolutions
๐น:setofconsidered objectivefunctions (for simplicity:nonnegative)
๐œ…:completenessguarantee,๐œ…(๐‘“) โˆˆ โ„ foreach๐‘“ โˆˆ ๐น
๐œ:soundness guarantee,๐œ(๐‘“) โˆˆ โ„ foreach๐‘“ โˆˆ ๐น
Goal.Whenever ๐‘“ โˆˆ ๐น withmax ๐‘“ ๐‘  โ‰ค ๐œ ๐‘“
EโˆˆF
Find:approximatesolution withval โ‰ค ๐œ…(๐‘“)
(maxproblem)
Example (exactmin VertexCover):Givenagraph๐บ
๐‘†:allvertexcoversofgraph๐บ (i.e.,subsetsofnodes coveringalledges)
๐น: allnonnegative weightvectorsonvertices
๐œ…, ๐œ:define ๐œ… ๐‘“ = ๐œ(๐‘“) โ‰” min ๐‘“(๐‘ )
EโˆˆF
7
LPscapturingApproximationProblems
Modelof[Chan, Lee,Raghavendra,Steurer13]and[Braun,P.,Zink14]
AnLPformulationofanapproximationproblem๐‘ท = ๐‘บ, ๐‘ญ, ๐œฟ, ๐‰ isanLP๐ด๐‘ฅ โ‰ค ๐‘
with๐‘ฅ โˆˆ โ„T andrealizations,where๐นU = {๐‘“ โˆˆ ๐น โˆฃ max ๐‘“ ๐‘  โ‰ค ๐œ ๐‘“ }
a)Feasiblesolutions: forevery๐‘  โˆˆ ๐‘† wehavex Y โˆˆ โ„T with
๐ด๐‘ฅ E โ‰ค ๐‘ forall๐‘  โˆˆ ๐‘†,
(relaxation๐‘๐‘œ๐‘›๐‘ฃ(๐‘ฅ E โˆฃ ๐‘  โˆˆ ๐‘†))
b)Objectivefunctions: forevery๐‘“ โˆˆ ๐นU wehaveanaffine ๐‘ค ] : โ„T โ†’ โ„ with
๐‘ค] ๐‘ฅE = ๐‘“ ๐‘ 
forall๐‘  โˆˆ ๐‘†,
(linearization thatisexacton๐‘†)
c)Achieving (ฮบ, ฯ„)-approximation: forevery๐‘“ โˆˆ ๐นU
๐‘“a = max ๐‘ค ] ๐‘ฅ ๐ด๐‘ฅ โ‰ค ๐‘ โ‰ค ๐œ…(๐‘“)
8
FormulationComplexity
Approximation
Problem
๐‘บ, ๐‘ญ, ๐œฟ, ๐‰
Slackmatrixof
problem
๐‘€U (๐‘“, ๐‘ ) = ๐œ…(๐‘“) โˆ’ ๐‘“(๐‘ )
LPfactorization
๐‘€U = ๐‘‡ โ‹… ๐‘ˆ + ๐œ‡ โ‹… ๐Ÿ
(restr.NMF)
Factorizationtheorem. Let ๐‘ƒ = ๐‘†, ๐น, ๐œ…, ๐œ beaproblem and๐‘€ slackmatrixof๐‘ƒ
๐‘“๐‘ ๐‘ƒ = ๐‘Ÿ๐‘Ž๐‘›๐‘˜pq (๐‘€U )
Formulationcomplexity.
โ€ข
โ€ข
โ€ข
โ€ข
โ€ข
Independent ofPvs.NP
Independent ofaspecific polyhedralrepresentation
DonotliftgivenrepresentationbutconstructtheoptimalLPfromfactorization
Infact:LPistrivial.Construct optimalencodingfromfactorization
Restrictednotionofnonnegativematrixfactorizationtosupport approximations
OptimalLP.
๐‘ฅโ‰ฅ0
withencodings
feasiblesolutions: ๐‘ฅ E โ‰” ๐‘ˆE objectivefunctions: ๐‘ค ] (๐‘ฅ) โ‰” ๐œ…(๐‘“) โˆ’ ๐œ‡ ๐‘“ โˆ’ ๐‘‡] โ‹… ๐‘ฅ
9
OptimalLPs
non-optimal
forallf
optimal
forsomef
๐‘ฅ โ‰ฅ0
๐‘ค ]t (๐‘ฅ) = ๐œ…(๐‘“u ) โˆ’ ๐œ‡ ๐‘“u โˆ’ ๐‘‡]t ๐‘ฅ
๐‘๐‘œ๐‘›๐‘ฃ{๐‘ฅE โˆฃ ๐‘  โˆˆ ๐‘†}
๐‘ค ]r (๐‘ฅ) = ๐œ…(๐‘“s ) โˆ’ ๐œ‡ ๐‘“s โˆ’ ๐‘‡]r ๐‘ฅ
10
Lowerboundingtechniques
11
Asimplelowerboundingtechnique
Therectanglecoveringbound.
Consider hypothetical
๐‘† = ๐‘‡๐‘ˆ
(nonnegative rank-๐‘Ÿ factorization)
= โˆ‘wxs,โ€ฆ,z ๐‘‡ w ๐‘ˆw
(sum of๐‘Ÿ nonneg. rank-1 matrices)
Takesupport
supp ๐‘† = โ‹ƒwxs,โ€ฆ,z supp ๐‘‡ w ๐‘ˆw
= โ‹ƒwxs,โ€ฆ,z supp ๐‘‡ w ×supp(๐‘ˆw )
(union of๐‘Ÿ rectangles)
Rectanglecoveringnumber. rc ๐‘€ = min ๐‘Ÿ โˆƒ๐‘Ÿ-sizecoverofsupp(๐‘€)}
โ‡’ rk โ€ฆ ๐‘€ โ‰ฅ rc(๐‘€)
12
Thecorrelationpolytopeโ€“ anexample
[Razborov 92]establishedinthecontextofnondeterministic communication:
Theorem. ๐‘Ÿ๐‘ UDISJโ€น = 2ล’3
Thisimplies[Fiorini, Massar,P.,Tiwary,deWolf12]
2ล’3 = ๐‘Ÿ๐‘ UDISJโ€น โ‰ค ๐‘Ÿ๐‘˜โ€ฆ UDISJโ€น โ‰ค ๐‘Ÿ๐‘˜โ€ฆ ๐‘€3 โ‰ค fc(COR ๐‘› )
Hardnessofapproximation via
1. Communication complexity[Braun,Fiorini, P.,Steurer12]and
2. Information Theory[Braverman,Moitra13]and[Braun,P.13].
Theorem. AnyLPapproximatingCOR(๐‘›) within afactor๐‘›sโ€˜ล’ isofsize2โ€™(s)ล’3 .
13
Thematchingproblemโ€“ amuchmorecomplicatedcase
ViaageneralizationofRazborovโ€™s technique:
Theorem. [Rothvoss14]AnyLPformulation ofthematchingpolytope isof
exponentialsize.
Thisisveryspecialandimportant:
1. Matchingcanbesolved inpolynomial time
2. YetanyLPcapturingitisofexponentialsize
=>Separatesthepowerof Pfrompolynomial sizeLPs
Withinformation theory: ruling outtheexistenceofFPTAS-typeLPformulations
Theorem. [Braun,P.14]Forsome๐œ€ > 0 anyLPapproximatingtheMatching
ล’
Polytope withinafactor1 + 3 isofexponential size.
14
Recentresultsfor
SDPextendedformulations
15
WhyareSDPEFssomuchhardertounderstand?
โ€ฆbecausetheyaresomuchstronger:
1. [Braun,Fiorini, P.,Steurer12]:โˆƒ (bounded) spectrahedron
1. indimension ๐‘›u ,i.e.,smallSDP-EF
2. anyLPthatapproximatesitwithinafactorof๐‘›sโ€˜ล’ isof size21(3)
2. [Chain,Lee,Raghavendra,Steurer13]:SeparationviaMaxCut
1. TheGoemans-Williams SDPgivesanapproximationof0.87
2. Nopolynomial-size LPcandobetterthan0.5
3. [Yannakakis 91]:Stablesetpolytope overperfectgraphs
1. BasicSDPgivesperfectEFof theproblem
2. Nopolynomial sizeLPisknown; bestknown ๐‘›หœ(โ„ขลกโ€บ 3)
16
KnownSDPEFlowerbounds
RecentSDPEFlowerbounds:
1. [Brïet,Dadush, P.13]:Viacounting argument
1. Thereexist0/1polytopes thatdonotadmitpoly-sizeSDPEFs
2. However, argumentisonly existentialinnature
2. [Lee,Raghavendra,Steurer14]:Bounds via(quantum) learning
1. ReuseLasserregapinstancesandlowerbounds
2. ShowthatahypotheticalsmallSDPEFcanbeusedtolearnagood small
LasserrebasedSDPEF->contradiction
3. [Braun,Brown-Cohen, Huq, P.,Raghavendra,Roy,Weitz,Zink 15]:Y.forSDPs
1. Matchinghasno smallsymmetricSDPs
2. Among allsymmetricSDPsof size๐‘‚(๐‘›w ) forTSP๐‘˜-levelLasserrearebest
4. Noother direct/explicitlowerbounding techniquesareknown
17
Reductionsfor
forextendedformulations
(reusewhatyouknow)
18
ReductionsbetweenProblems
Incomplexitytheory.Howtoshowthataproblem ๐‘ƒ isNP-hard(toapproximate)?
P
Q
Reductionf
Your
Problem
Polynomial-time
computablemap
NP-hard
Problem
Intuition. ๐‘“ embeds instancesof๐‘„ into๐‘ƒ.Nowif๐‘ƒ wouldbeeasy,thentogether
with๐‘“,theproblem ๐‘„ would beeasy.Contradiction tohardnessof๐‘„.
Note. Reduction canbealsoused inreversetoestablishupper bounds onthe
complexityof๐‘„ if๐‘ƒ isknown tobeeasy.
19
ReductionsforEFs
NowforEFs.Howtoshowthataproblem ๐‘ƒ doesnotadmitsmallLPs?
P
Q
Reductionf
Your
Problem
Computationally unbounded
(wecareonlyfor#ineqs)
BUTother restrictionsโ€ฆ
LP-hard
Problem
Intuition. ๐‘“ embeds instancesof๐‘„ into๐‘ƒ.However,somehow thishastopreservethe
structureofbeing anLPorSDPโ€ฆ
Note. Reduction canbealsoused inreverseagain.Thiscanleadtointerestingresults.
20
ReductionsforLPsandSDPs
Affinereductions. ๐‘ƒs = ๐‘†s , ๐นs , ๐œ…s, ๐œs reducesto๐‘ƒu = ๐‘†u ,๐นu , ๐œ…u ,๐œu viatwomaps
1. Rewritefeasiblesolutions:
โˆ—: ๐‘†s โ†’ ๐‘†u with ๐‘ s โ†ฆ ๐‘ sโˆ— โˆˆ ๐‘†u
2. Rewriteobjectivefunctions:
โˆ—: ๐นs โ†’ ๐นu with๐‘“s โ†ฆ ๐‘“sโˆ— โˆˆ ๐นu
Sothatthefollowing holds:
๐œ…s ๐‘“s โˆ’ ๐‘“s ๐‘ s = [๐œ…u ๐‘“sโˆ— โˆ’ ๐‘“sโˆ— ๐‘ sโˆ— ] โ‹… ๐‘€s (๐‘“s , ๐‘ s ) + ๐‘€u (๐‘“s , ๐‘ s)
max๐‘“sโˆ— โ‰ค ๐œu ๐‘“sโˆ—
(completeness)
ifmax๐‘“s โ‰ค ๐œs ๐‘“s
(soundness)
Important. โˆ— mapssolutions andfunctions independently ofeachother.
๐‘€s , ๐‘€u โˆˆ ๐‘…โ€ฆz×T capturelow-ranknon-affine partoffunction
Theorem. [Braun,P.,Roy15]If๐‘ƒs reducesto๐‘ƒu ,then(essentially)
fc ๐‘ƒs โ‰ค ๐‘Ÿ๐‘Ž๐‘›๐‘˜pq/F§q ๐‘€s โ‹… fc(๐‘ƒu ) + ๐‘Ÿ๐‘Ž๐‘›๐‘˜pq/F§q (๐‘€u )
Enablescertainformsofgap-amplification.
21
Reductions:afewexamples(LP)
[BPZ15]
MaxCut
1
+๐œ€
2
[BPZ15]
[BPR15]
UniqueGames
๐œ”(1)
[BPR15]
Max3Sat*โ€™
7
+๐œ€
8
StableSet
๐œ”(1)
Max2Sat*โ€™
3
+๐œ€
4
VertexCover*
2โˆ’๐œ€
SparsestCut*
btw(supply)
2โˆ’๐œ€
q-VertexCover*
qโˆ’ ๐œ€
1/QF-CSP
๐œ”(1)
[BPR15]
Matching
๐œ€
1+
๐‘›
[BPR15]
Matching(deg โ‰ค 3)
ล’
1 + 3t
Sparsestcut
btw(demand)
๐œ”(1)
Bal.separator
btw(demand) ๐œ”(1)
Bal.separator
btw(supply)
2โˆ’๐œ€
*Optimal
โ€˜Havebeenalsoobtaineddirectly
22
Reductions:afewexamples(SDP)
SparsestCut
btw(demand)
๐‘‚(1)
Max-3-XOR/0
2โˆ’๐œ€
MaxCut
15
+๐œ€
16
SparsestCut
btw(supply)
16/15 โˆ’ ๐œ€
VertexCover
7
โˆ’๐œ€
6
SparsestCut
๐‘‚(1)
[Sch08]+[LRS14]
Lasserre
reduction
Max-k-CSP
1/๐‘ž w
(ฮฉ(๐‘›) rounds)
[BCV+12]
Independent Set
๐‘› (sโ€˜®)
(ฮฉ(๐‘› ®)rounds)
=>Lasserre is suboptimalfor
IndependentSet
OpenProblems
1. (general) SDPformulation complexityofthematchingproblem
2. Lowerbounding techniques forSDPEFs
3. LP-hardnessofapproximation forcomplexproblems suche.g.,TSP
4. Extensioncomplexityoveralternativecones:
1. Hyperbolic programming (inP)
2. Copositive programming (NPhard)
5. Understanding thedifferencebetweenhierarchiesandgeneralEFs
24
Thankyou!
25