AnintroductiontoExtendedFormulationscapturingtheexpressivepowerofLPsandSDPs SebastianPokutta GeorgiaInstituteofTechnology SchoolofIndustrialandSystemsEngineering(ISyE) AlgorithmsandRandomnessCenter(ARC) OptimizationWithoutBorders DedicatedtoYuriNesterovโs 60th Birthday LesHouches,2/2016 IntroductionandMotivation Projections candrasticallyincreasethecomplexityofadescription. Canweinvert theprocesstofind smallformulations forcomplicatedproblems? 2 IntroductionandMotivation Thisphenomenon iswellknown(but notunderstood): 1. Quantifier elimination 2. ThequestofPvs.NPisexactlyofthistype:๐ โ ๐ณ โ โ๐: ๐ ๐, ๐ = ๐, 3. Fourier-Motzkin elimination leadstoexponential blow-up Extendedformulations =quantifierelimination backwards Naturalquestions. 1. Maybeany 0/1polytope haspoly-sizeextendedformulations? 2. โ problems inP,howeverdonotadmitsmallformulations? 3. โ problems thatadmitgood approximations viasmallSDPsbutnotLPs? 3 IntroductionandMotivation Howitallstartedโฆ In86/87,Swartclaimedhecouldprove๐ท = ๐ต๐ท How? Bygiving a(purported) poly-sizelinearprogramfortheTSPproblem. Theorem. [Yannakakis 88/91]EverysymmetricLPfortheTSPhassize21(3) . Swartโs LPwassymmetricandofsize๐๐๐๐ฆ(๐) =>itwaswrong. 4 IntroductionandMotivation However,thatwasnottheendbutthebeginning. 1. [Kaibel,Pashkovich, Theis 10]symmetrycanmakeahuge difference. 2. [Yannakakis 11](20yearsafterhisinitialproof): 3. Hugeinterestinfinallyruling outallLPsof polynomial sizeforTSP. 4. [Fiorini, Massar,P.,Tiwary,deWolf12]TheTSPpolytope hasnosmallLPs. Thenotion ofLP-complexity(#inequalities) isindependent ofPvs.NP. =>verystrongindicationsfor Pvs.NP 5 ProblemsandLPs Disclaimer.SimilarforSDPs,howeverforsimplicity confinetoLPs. 6 ApproximationProblems Anapproximationproblem๐ท (maxorminproblem): ๐:setoffeasiblesolutions ๐น:setofconsidered objectivefunctions (for simplicity:nonnegative) ๐ :completenessguarantee,๐ (๐) โ โ foreach๐ โ ๐น ๐:soundness guarantee,๐(๐) โ โ foreach๐ โ ๐น Goal.Whenever ๐ โ ๐น withmax ๐ ๐ โค ๐ ๐ EโF Find:approximatesolution withval โค ๐ (๐) (maxproblem) Example (exactmin VertexCover):Givenagraph๐บ ๐:allvertexcoversofgraph๐บ (i.e.,subsetsofnodes coveringalledges) ๐น: allnonnegative weightvectorsonvertices ๐ , ๐:define ๐ ๐ = ๐(๐) โ min ๐(๐ ) EโF 7 LPscapturingApproximationProblems Modelof[Chan, Lee,Raghavendra,Steurer13]and[Braun,P.,Zink14] AnLPformulationofanapproximationproblem๐ท = ๐บ, ๐ญ, ๐ฟ, ๐ isanLP๐ด๐ฅ โค ๐ with๐ฅ โ โT andrealizations,where๐นU = {๐ โ ๐น โฃ max ๐ ๐ โค ๐ ๐ } a)Feasiblesolutions: forevery๐ โ ๐ wehavex Y โ โT with ๐ด๐ฅ E โค ๐ forall๐ โ ๐, (relaxation๐๐๐๐ฃ(๐ฅ E โฃ ๐ โ ๐)) b)Objectivefunctions: forevery๐ โ ๐นU wehaveanaffine ๐ค ] : โT โ โ with ๐ค] ๐ฅE = ๐ ๐ forall๐ โ ๐, (linearization thatisexacton๐) c)Achieving (ฮบ, ฯ)-approximation: forevery๐ โ ๐นU ๐a = max ๐ค ] ๐ฅ ๐ด๐ฅ โค ๐ โค ๐ (๐) 8 FormulationComplexity Approximation Problem ๐บ, ๐ญ, ๐ฟ, ๐ Slackmatrixof problem ๐U (๐, ๐ ) = ๐ (๐) โ ๐(๐ ) LPfactorization ๐U = ๐ โ ๐ + ๐ โ ๐ (restr.NMF) Factorizationtheorem. Let ๐ = ๐, ๐น, ๐ , ๐ beaproblem and๐ slackmatrixof๐ ๐๐ ๐ = ๐๐๐๐pq (๐U ) Formulationcomplexity. โข โข โข โข โข Independent ofPvs.NP Independent ofaspecific polyhedralrepresentation DonotliftgivenrepresentationbutconstructtheoptimalLPfromfactorization Infact:LPistrivial.Construct optimalencodingfromfactorization Restrictednotionofnonnegativematrixfactorizationtosupport approximations OptimalLP. ๐ฅโฅ0 withencodings feasiblesolutions: ๐ฅ E โ ๐E objectivefunctions: ๐ค ] (๐ฅ) โ ๐ (๐) โ ๐ ๐ โ ๐] โ ๐ฅ 9 OptimalLPs non-optimal forallf optimal forsomef ๐ฅ โฅ0 ๐ค ]t (๐ฅ) = ๐ (๐u ) โ ๐ ๐u โ ๐]t ๐ฅ ๐๐๐๐ฃ{๐ฅE โฃ ๐ โ ๐} ๐ค ]r (๐ฅ) = ๐ (๐s ) โ ๐ ๐s โ ๐]r ๐ฅ 10 Lowerboundingtechniques 11 Asimplelowerboundingtechnique Therectanglecoveringbound. Consider hypothetical ๐ = ๐๐ (nonnegative rank-๐ factorization) = โwxs,โฆ,z ๐ w ๐w (sum of๐ nonneg. rank-1 matrices) Takesupport supp ๐ = โwxs,โฆ,z supp ๐ w ๐w = โwxs,โฆ,z supp ๐ w ×supp(๐w ) (union of๐ rectangles) Rectanglecoveringnumber. rc ๐ = min ๐ โ๐-sizecoverofsupp(๐)} โ rk โฆ ๐ โฅ rc(๐) 12 Thecorrelationpolytopeโ anexample [Razborov 92]establishedinthecontextofnondeterministic communication: Theorem. ๐๐ UDISJโน = 2ล3 Thisimplies[Fiorini, Massar,P.,Tiwary,deWolf12] 2ล3 = ๐๐ UDISJโน โค ๐๐โฆ UDISJโน โค ๐๐โฆ ๐3 โค fc(COR ๐ ) Hardnessofapproximation via 1. Communication complexity[Braun,Fiorini, P.,Steurer12]and 2. Information Theory[Braverman,Moitra13]and[Braun,P.13]. Theorem. AnyLPapproximatingCOR(๐) within afactor๐sโล isofsize2โ(s)ล3 . 13 Thematchingproblemโ amuchmorecomplicatedcase ViaageneralizationofRazborovโs technique: Theorem. [Rothvoss14]AnyLPformulation ofthematchingpolytope isof exponentialsize. Thisisveryspecialandimportant: 1. Matchingcanbesolved inpolynomial time 2. YetanyLPcapturingitisofexponentialsize =>Separatesthepowerof Pfrompolynomial sizeLPs Withinformation theory: ruling outtheexistenceofFPTAS-typeLPformulations Theorem. [Braun,P.14]Forsome๐ > 0 anyLPapproximatingtheMatching ล Polytope withinafactor1 + 3 isofexponential size. 14 Recentresultsfor SDPextendedformulations 15 WhyareSDPEFssomuchhardertounderstand? โฆbecausetheyaresomuchstronger: 1. [Braun,Fiorini, P.,Steurer12]:โ (bounded) spectrahedron 1. indimension ๐u ,i.e.,smallSDP-EF 2. anyLPthatapproximatesitwithinafactorof๐sโล isof size21(3) 2. [Chain,Lee,Raghavendra,Steurer13]:SeparationviaMaxCut 1. TheGoemans-Williams SDPgivesanapproximationof0.87 2. Nopolynomial-size LPcandobetterthan0.5 3. [Yannakakis 91]:Stablesetpolytope overperfectgraphs 1. BasicSDPgivesperfectEFof theproblem 2. Nopolynomial sizeLPisknown; bestknown ๐ห(โขลกโบ 3) 16 KnownSDPEFlowerbounds RecentSDPEFlowerbounds: 1. [Brïet,Dadush, P.13]:Viacounting argument 1. Thereexist0/1polytopes thatdonotadmitpoly-sizeSDPEFs 2. However, argumentisonly existentialinnature 2. [Lee,Raghavendra,Steurer14]:Bounds via(quantum) learning 1. ReuseLasserregapinstancesandlowerbounds 2. ShowthatahypotheticalsmallSDPEFcanbeusedtolearnagood small LasserrebasedSDPEF->contradiction 3. [Braun,Brown-Cohen, Huq, P.,Raghavendra,Roy,Weitz,Zink 15]:Y.forSDPs 1. Matchinghasno smallsymmetricSDPs 2. Among allsymmetricSDPsof size๐(๐w ) forTSP๐-levelLasserrearebest 4. Noother direct/explicitlowerbounding techniquesareknown 17 Reductionsfor forextendedformulations (reusewhatyouknow) 18 ReductionsbetweenProblems Incomplexitytheory.Howtoshowthataproblem ๐ isNP-hard(toapproximate)? P Q Reductionf Your Problem Polynomial-time computablemap NP-hard Problem Intuition. ๐ embeds instancesof๐ into๐.Nowif๐ wouldbeeasy,thentogether with๐,theproblem ๐ would beeasy.Contradiction tohardnessof๐. Note. Reduction canbealsoused inreversetoestablishupper bounds onthe complexityof๐ if๐ isknown tobeeasy. 19 ReductionsforEFs NowforEFs.Howtoshowthataproblem ๐ doesnotadmitsmallLPs? P Q Reductionf Your Problem Computationally unbounded (wecareonlyfor#ineqs) BUTother restrictionsโฆ LP-hard Problem Intuition. ๐ embeds instancesof๐ into๐.However,somehow thishastopreservethe structureofbeing anLPorSDPโฆ Note. Reduction canbealsoused inreverseagain.Thiscanleadtointerestingresults. 20 ReductionsforLPsandSDPs Affinereductions. ๐s = ๐s , ๐นs , ๐ s, ๐s reducesto๐u = ๐u ,๐นu , ๐ u ,๐u viatwomaps 1. Rewritefeasiblesolutions: โ: ๐s โ ๐u with ๐ s โฆ ๐ sโ โ ๐u 2. Rewriteobjectivefunctions: โ: ๐นs โ ๐นu with๐s โฆ ๐sโ โ ๐นu Sothatthefollowing holds: ๐ s ๐s โ ๐s ๐ s = [๐ u ๐sโ โ ๐sโ ๐ sโ ] โ ๐s (๐s , ๐ s ) + ๐u (๐s , ๐ s) max๐sโ โค ๐u ๐sโ (completeness) ifmax๐s โค ๐s ๐s (soundness) Important. โ mapssolutions andfunctions independently ofeachother. ๐s , ๐u โ ๐ โฆz×T capturelow-ranknon-affine partoffunction Theorem. [Braun,P.,Roy15]If๐s reducesto๐u ,then(essentially) fc ๐s โค ๐๐๐๐pq/F§q ๐s โ fc(๐u ) + ๐๐๐๐pq/F§q (๐u ) Enablescertainformsofgap-amplification. 21 Reductions:afewexamples(LP) [BPZ15] MaxCut 1 +๐ 2 [BPZ15] [BPR15] UniqueGames ๐(1) [BPR15] Max3Sat*โ 7 +๐ 8 StableSet ๐(1) Max2Sat*โ 3 +๐ 4 VertexCover* 2โ๐ SparsestCut* btw(supply) 2โ๐ q-VertexCover* qโ ๐ 1/QF-CSP ๐(1) [BPR15] Matching ๐ 1+ ๐ [BPR15] Matching(deg โค 3) ล 1 + 3t Sparsestcut btw(demand) ๐(1) Bal.separator btw(demand) ๐(1) Bal.separator btw(supply) 2โ๐ *Optimal โHavebeenalsoobtaineddirectly 22 Reductions:afewexamples(SDP) SparsestCut btw(demand) ๐(1) Max-3-XOR/0 2โ๐ MaxCut 15 +๐ 16 SparsestCut btw(supply) 16/15 โ ๐ VertexCover 7 โ๐ 6 SparsestCut ๐(1) [Sch08]+[LRS14] Lasserre reduction Max-k-CSP 1/๐ w (ฮฉ(๐) rounds) [BCV+12] Independent Set ๐ (sโ®) (ฮฉ(๐ ®)rounds) =>Lasserre is suboptimalfor IndependentSet OpenProblems 1. (general) SDPformulation complexityofthematchingproblem 2. Lowerbounding techniques forSDPEFs 3. LP-hardnessofapproximation forcomplexproblems suche.g.,TSP 4. Extensioncomplexityoveralternativecones: 1. Hyperbolic programming (inP) 2. Copositive programming (NPhard) 5. Understanding thedifferencebetweenhierarchiesandgeneralEFs 24 Thankyou! 25
© Copyright 2025 Paperzz