Computer Science
Department
Technion-Israel Institute of Technology
Planar Curve Evolution
Ron Kimmel
www.cs.technion.ac.il/~ron
Geometric Image Processing Lab
Planar Curves
C(p)={x(p),y(p)},
C(0.1)
p [0,1]
C(0.2)
C(0.7)
C(0)
y
C(0.4)
C(0.95)
C(0.8)
C(0.9)
x
C p =tangent
Arc-length and Curvature
p
s(p)= | C p |dp
0
| Cs | 1,
Css N
Css N
1
C
Cp
Cs
|
C
|
p
Invariant arclength should be
1. Re-parameterization invariant
Geometric measure
w F C , C p , C pp ,...dp F C , Cr , Crr ,...dr
2. Invariant under the group of transformations
Transform
Euclidean arclength
Length is preserved, thus
dp
ds dx dy
dx 2 dy 2 dp
dp
2
2
Cs 1,
dx dp2 dy dp2 C p dp
s C p dp
ds
dy
dx
1
1
Total Length L C p dp C p , C p
0
0
1
L
2
dp ds
0
Curvature flow Ct n
Euclidean geometric heat equation
Ct Css
where Css n
Euclidean
transform
flow
Curvature flow Ct n
Takes any simple curve into a circular
point
in finite time proportional to the area
inside
the curve
Embedding is preserved (embedded
curves
keep their order along the evolution).
First becomes
convex
Given any simple
planar curve
Grayson
Vanish at a
Circular
point
Gage-Hamilton
Important property
Tangential components do not affect the
geometry of an evolving curve
Ct V Ct V , n n
V
V,n n
Reminder: Equi-affine arclength
re-parameterization
invariance
Area is preserved, thus Cv , Cvv 1
v C p , C pp dp
1
3
v Cs , Css ds ds
1
Cv Area 1
Cvv
1
3
dv 3 ds
1
3
Affine heat equation
Special (equi-)affine heat flow Ct n
1
1
Ct Cvv , n n where Cvv , n 3
Affine
transform
flow
3
Given any simple
planar curve
Sapiro
First becomes
convex
Vanish at an
elliptical
point
Constant flow
Offset curves
Level sets of distance map
Equal-height contours of
the distance transform
Envelope of all disks of
equal radius centered
along the curve
(Huygens principle)
Ct n
Constant flow
Ct n
Offset curves
Change in topology
Cusp
Area inside C
Area is defined via
A 12 C , C p dp
C
Cp
So far we defined
Constant flow
Curvature flow
Equi-affine flow
Ct n
Ct n
1
Ct 3 n
We would like to explore evolution properties
of measures like curvature, length, and area
1
L Cp ,Cp
0
1
2
dp
A 12 C , C p dp
For
Ct Vn
1
2
L C p , C p dp
C p , C p C p dp ... Vds
t
t
t
0
L
A 12 C , C p dp C , C p dp C , C p dp ... Vds
t
t
t
t
0
C p , C pp
2
...
V
V
3
ss
2
t
t C , C
p
p
L
Length
L
Lt Vds
0
Area
Curvature
L
At Vds
0
t Vss 2V
Constant flow ( V 1)
Length
Area
L
L
0
0
Lt Vds ds 2
L
L
0
0
At Vds ds L
Curvature t Vss 2V 2
The curve vanishes at
Riccati eq.
Singularity (`shock’) at
t
L (0)
2
( p, t ) 1t( p( ,p0,)0)
t ( p,0)
Curvature flow (V )
Length
Area
L
L
0
0
Lt Vds 2 ds
L
L
0
0
At Vds ds 2
Curvature t Vss 2V ss 3
The curve vanishes at
t
A( 0 )
2
Equi-Affine flow (V )
1
L
Length
L
Lt Vds 3 ds
4
0
Area
0
L
L
At Vds 3 ds
1
0
Curvature
0
t Vss V ss s
2
1
3
2
3
2
9
5
3
2
7
3
3
Geodesic active contours
Ct g ( x, y) g ( x, y), n n
Goldenberg, Kimmel, Rivlin, Rudzsky,
IEEE T-IP 2001
Tracking in color movies
Ct g ( x, y, ) g ( x, y, ), n n
Goldenberg, Kimmel, Rivlin, Rudzsky,
IEEE T-IP 2001
From curve to surface evolution
It’s a bit more than invariant measures…
Surface
A surface, S : R 2 M n
For example, in 3D
n2
S (u, v) x(u, v), y(u, v), z(u, v)
Normal
Su Sv
N
Su Sv
Area element dA Su Sv dudv
Total area
A Su S v dudv
N
Sv
Su
Surface evolution
V,N N
Tangential velocity has
no influence on the geometry
S
S
V
V,N N
t
t
Mean curvature flow,
area minimizing
S
HN
t
V
Segmentation in 3D
St g ( x, y, z ) H g ( x, y, z ), n n
Change in topology
Caselles,Kimmel, Sapiro, Sbert, IEEE T-PAMI 97
Conclusions
Constant flow, geometric heat equations
Euclidean
Equi-affine
Other data dependent flows
Surface evolution
www.cs.technion.ac.il/~ron
© Copyright 2026 Paperzz