Methane Concentrations and Biogeochemistry in Lake Sediments from Stordalen Mire in Sub-Arctic Sweden Madison Halloran¹ , Joel DeStasio², Lance Erickson³ , Joel E. Johnson4, Ruth K.Varner², Jacob B. Setera4, Martin Wik5, Florencia Meana-Prado4, Patrick Crill5 ¹ Department of Environmental Studies, Carleton College, Northfield, MN ² Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH ³Department of Geology, Gustavus Adolphus College, St Peter, MN 4 Department of Earth Sciences, University of New Hampshire, Durham, NH 5 Department of Geological Sciences, Stockholm University, Stockholm, Sweden Site Map Introduction Mellan Harrsjön Inre Harrsjön Villasjön • The burial of organic carbon in natural lake sediments globally is estimated in the range of 30 to 70 Tg C/a 1.This organic carbon can be mobilized into the atmosphere through the movement of gases, particularly methane (CH4)2. • Although freshwater lakes cover a large area in northern few studies have quantified their contribution of greenhouse gas emissions to the atmospheric carbon budget. 0 0 0 0 5 5 5 5 5 10 10 10 10 15 15 15 15 20 20 20 20 25 25 25 25 30 30 30 30 35 35 35 35 40 40 40 40 45 45 45 45 45 50 50 50 50 50 55 55 55 55 60 60 60 60 65 65 65 65 70 70 70 80 75 75 75 85 VM1 VM2 VM3 VM4 VM5 VM6 VP1 VP2 VP3 VP4 VP5 VP6 55 60 75 0 10 20 Depth (cm) Inre Harrsjön Villasjön 30 40 50 0.0 0.2 TOC TS 2 3 4 CO2 and CH4 production rates CH4 sediment concentrations Dissolved Inorganic Carbon (DIC) Figure 4a. The AMS soil coring kit, which was adapted using only one piece of the stainless barrel, duct taped to a plastic core liner 4a. Figure 4b. Lance and Joel coring on Villasjön 4b. 4c. Figure 4c. Taking a sediment sample to analyze for methane concentration from holes drilled into a plastic core liner 2.0 2.5 3.0 10 15 Core Site: VM1 0 20 40 60 80 100 40 0 120 25 50 75 100 0 5 5 5 5 5 10 10 10 10 10 15 15 15 15 15 20 20 20 25 25 25 30 30 30 30 30 35 35 35 35 35 40 40 40 40 40 45 45 45 45 45 50 50 50 50 50 55 55 55 55 55 60 60 60 60 60 65 65 65 65 65 70 70 70 15 20 25 0.0 30 0.2 0.4 0.6 Inre Deep Site (ID1) 20 Inre Shallow Site (IS1) 25 10 Weight % 40 0 50 100 150 200 250 300 350 6 8 3 4 5 Upper layer: organic rich sediment Inre Deep Site del13C Inre Shallow Site del13C Inre Deep Site DIC Inre Shallow Site DIC -6 -4 -2 0 2 4 6 8 10 12 13 del C Methane DIC (mM) 0 0 5 5 5 Mellan Deep Site (MD1) Mellan Shallow Site (MS1) 10 10 10 10 10 15 15 15 15 15 20 20 20 20 20 25 25 25 25 25 30 30 30 30 30 35 35 35 35 35 40 40 40 40 40 45 45 45 45 45 50 50 50 50 50 55 55 55 55 55 60 60 60 60 60 65 65 65 65 65 70 70 70 70 70 75 75 75 75 75 2 75 0 0 1 ug CH4 g-1ds Grain Size 0 Mellan Deep Site (MD1) Mellan Shallow Site (MS1) 5 5 30 4 25 Median Grain Size (microns) TS 0 20 2 20 Inre Deep Site (ID1) Inre75 Shallow Site (IS1) 0.8 0 DIC (mM) 0 0 10 -2 del C 0 5 -4 13 Methane Grain Size 75 -6 ug CH4 g-1ds Median Grain Size (microns) 70 Inre Deep Site (ID1) Inre Shallow Site (IS1) 75 VR1 del13C VR2 del13C VR1 DIC VR2 DIC 225 250 0 TOC Depth (cm) 0.8 35 0 70 Mellan Harrsjön 1 0.6 Weight % Weight % CHNS and grain size 0.4 Weight % 75 • split core • take 1 cm3 sample every 5 cm down the core • bulk TOC, TC, TN, TS, and CaCO3 (by difference) using a CHNS Elemental Analyzer • Grain size fractions using a laser particle size analyzer • 2 cm3 sample “plug” of sediment taken every 5 cm of length • Duplicates from three depths in the core stored at +5⁰C and +20⁰C • 10 mL samples of headspace collected daily for 5 days • 5 mL sample run on GC • 1 mL sample (with duplicates) run on IRGA • 2 cm3 sample plug taken every 5 cm of length • GC • Rhizons used to extract 10mL of porewater, then added to 0.2mL 30% phosphoric acid (H3PO4) in vials flushed with N2 gas • Samples degassed CO2 • 1.0 mL sample of vial headspace run on IRGA 1.5 30 70 Method 1.0 25 0 Core Analysis DIC (mM) 0.5 0 65 Figure 1. Map of shallow and deep coring sites in Inre Harrsjön (IS1 and ID1) and Mellan Harrsjön (MS1 and MD1) as well as coring transects in Villasjön (VM1-6, VP1-6). Site IS1 is approximate, all other locations were plotted using GPS waypoints. Images courtesy of Google Earth, 2013. Methane 20 peatlands3, • In July of 2013 we took 48 cores at 16 sites throughout three lakes in the Stordalen Mire, Abisko, Sweden to characterize the sedimentology and geochemistry of the lake sediments in order to understand the production, distribution,and flux of CO2 and CH4 from these lakes. These sites differed in water depth and ebullition (bubbling) rates. Concentrations of dissolved inorganic carbon (DIC), dissolved CH4 and potential production rates of CO2 and CH4 were determined, and are linked to bulk TOC, TC, TN, TS, and CaCO3, as well as grain size fractions. Core Stratigraphy Grain Size TS TOC Depth (cm) • Lake sediments are an important global carbon sink, storing carbon from both allochthonous and autochthonous inputs1. Results 1 2 3 4 5 Middle layer: transition of mixed organic and lithogenic materials Deep layer: grey lithogenic clay with less organic carbon Mellan Deep Site del13C Mellan Shallow Site del13C Mellan Deep Site DIC Mellan Shallow Site DIC 80 0 50 100 150 Weight % 200 250 -0.1 300 0.0 0.1 0.2 Weight % 0.3 0 0.4 25 50 75 100 200 225 250 Median Grain Size (microns) 275 10 20 30 40 50 ug CH4 g-1ds 60 70 80 -4 -2 0 2 4 6 8 10 12 14 16 del13C Summary and Future Work • Maximum TOC, TS, and CH4 is in the upper 40 cm of the lake sediments. Methane is diffusing away from this maximum zone. • Core sites with known high lake surface methane fluxes from bubble trap measurements also show high methane concentrations in the sediment, high DIC concentrations in the pore fluids, and δ 13C signatures of DIC ranging from 0 to 10, consistent with methanogenesis. • Future work, including 14C dating, microbial community profiling, and δ13C signatures of CH4 will yield more insight into the biogeochemical mechanisms that regulate sediment methane distributions. References: 1. Downing et al., 2008; 2. Gorham, Eville. "Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming." Ecological Applications 1.2 (1991): 182-95. Print; 3. Gore, A.J.P., editor. 1983. Ecosystems of the world. Mires: swamp, bog, fen and moor. 4A, General studies, and 4B, Regional studies. Elsevier, Amsterdam, The Netherlands.
© Copyright 2026 Paperzz