11. Radiation What is radiation? Radiation sources Antenna: radio waves, microwaves Atoms, molecules: light, infrared light, UV, X-rays Nuclei: Gamma rays We shall consider: Point-like source at rest with time-dependent charge distribution Accelerated point charge Point-like source r d r d radiation zone long wavelength limit d Multipole expansion V (r , t ) 1 40 (r ' , t r ) r r' d ' 0 J (r ' , t r ) A (r , t ) d ' 4 r r' r r' retarded time : tr t c 1 Q rˆ p(t0 ) rˆ p (t0 ) V (r , t ) 2 40 r r rc r retarded time : t0 t c 0 p (t0 ) A (r , t ) 4 r 1 rˆ p (t0 ) Vrad (r, t ) 40 rc 0 p (t0 ) A rad (r, t ) 4 r Radiation fields Dipole fields B rad Erad B rad Erad No em monopole fields 0 (t0 )] [rˆ p 4rc 0 (t0 ))] [rˆ (rˆ p 4r ˆ 0 p(t0 ) sin( ) 4rc ˆ 0 p(t0 ) sin( ) 4r Acoustic monopole fields do exist. Radiated power d P 0 4 p02 2 sin 2 d 32 c d sin dd 0 4 p02 P 12 2c Why is the sky blue? Oscillating dipole p qz (t )zˆ qd cos(t )zˆ Larmor formula 0 q 2 a 2 P 6c a - accelerati on Holds in general if v c. Radiation from a moving point charge r 2 2 E(r, t ) [( c v )u r (u a)] 3 40 ( r u) q (tr ) u crˆ v a w (tr ) r r w(tr ) v w q rˆ (u a) Erad (r, t ) 40 r ( rˆ u)3 S rad 1 0 2 (E rad B rad ) 0 Erad cr̂ B(r, t ) rad 1 rˆ E(r, t ) c instantano usly : v 0 0 q a 16 2c 2 S rad 2 2 sin rˆ r S da Total radiated power P sphere Larmor formula 0 q 2 a 2 P 6c Holds also for velocities small as compared to c. Arbitrary velocity Power radiated by the charge dP rˆ u 2 2 c 0 Erad rˆ d c rˆ (u a) dP q d 16 2 0 ( rˆ u)5 2 2 2 0q 2 v a 1 P a , 6c c 1 (v / c)2 2 6 Lienard’s formula Bremsstrahlung v and a are parallel dP 0q2a 2 sin 2 d 16 2c (1 cos )5 0q2a 2 6 1 v P , , 2 6c c 1 First commercial X-ray tube 1896 Wilhelm Conrad Roentgen discovered X-rays 1895 Nobelprice 1901 1896 1960 Synchrotron radiation dP 0q2a 2 [(1 cos )2 (1 2 ) sin 2 cos2 ] d 16 2c (1 cos )5 0q2a 2 4 1 v P , , 2 6c c 1 BESSY synchrotron X-ray source in Berlin
© Copyright 2026 Paperzz