Acid-Base Disorders Bradley J. Phillips, MD Burn-Trauma-ICU Adults & Pediatrics Definition Normal pH = 7.35 - 7.45 Acidosis Primary respiratory = PCO2 > 44 Primary metabolic = HCO3 < 22 Severe acidemia pH < 7.2 Alkalosis Primary respiratory = PCO2 < 36 Primary metabolic = HCO3 > 26 Severe alkalosis pH > 7.6 Acid-Base Homeostasis Acid Metabolism (70 mmol/day) sulphuric acid 25 mmol (aminoacid catabolism) organic acids 40 mmol (non-metabolized) phosphoric acid and others Extracellular space contains 350 mmol HCO3 Renal tubules proximal reabsorbs 3800 mmol/d (85%) thick ascending limb reabsorbs 450 mmol (10%) collecting duct generates new HCO3 (NH4/PO4) Metabolic Disorders Characteristics Change in HCO3 pH and pCO2 change same direction Respiratory Disorders Characteristics Change in PCO2 pH and PCO2 change in different directions Acute and chronic Compensation Correct pH to normal NO overcompensation exception: exogenous mechanism Primary metabolic - respiratory change (PCO2) Primary respiratory - metabolic change (HCO3) Physiologic Effects Acidosis Decreased myocardial contractility Decreased diaphragmatic contractility Reduced threshold for ventricular fibrillation Complex and variable derangements in vascular smooth muscle (sympathetic vs. catecholamines) Increased cerebral blood flow Variable effects upon serum electrolytes Alterations in drug mechanisms Shifts O2 dissociation curve to right O2 Disassociation Curve decrease temperature 2,3-DPG PCO2 increase in pH increase temperature 2,3-DPG PCO2 decrease in pH Physiologic Effects Alkalosis Arrhythmogenic Promotes coronary artery spasm Variable effect upon myocardial contractility and vascular tone Lowers seizure threshold Transient reduction in cerebral blood flow Lowers ionized calcium ( .03-.09 /0.1 pH) Suppresses respiratory function Shift O2 dissociation curve to left Changes in Acid-Base Disorders Disorder Primary Comp. Expected Acidosis Metabolic HCO3 PCO2 PCO2 =1.5x HCO3(8 +/- 2) Respiratory Acute Chronic PCO2 HCO3 pH=.008(PCO2 -40) pH=.003(PCO2 -40) Metabolic HCO3 PCO2 PCO2 =7x HCO3+(20+/-1.5) Respiratory Acute Chronic PCO2 HCO3 pH=.008(40- PCO2) pH=.003(40- PCO2) Alkalosis Acid-Base Disturbances Metabolic Acidosis Net retention of H+ Physiological adaptation buffering (bone/skeletal muscle) increased ventilation increased reabsorption/generation HCO3 Metabolic Acidosis Obtain ABG (rule out primary hyperventilation) Determine Anion Gap (nl = 12) differentiates between loss of HCO3 and accumulation of unmeasured acid anions AG = serum Na - serum Cl - serum HCO3 AG affected by hypoalbuminemia Metabolic Acidosis Normal AG (Cl-) (HHARDUP) High AG (MUD-PILES) Hypoaldosteronism Methanol Hyperosmolar Uremia nonketotic coma Acetazolamide RTA Diarrhea Utererosigmoidostomy ileostomy Pancreatic fistula DKA Poisons Iron, INH Lactic acidosis Ethanol, Ethylene glycol Salicylate, Starvation Organic Acids Endogenous Ketoacidosis b-hydroxybutyrate acetoacetate Lactic acidosis Severe renal insufficiency phenolic aromatic acids furanoic acid dicarboxylic acid Ingested salicylate ethyleneglycol metabolites glycolate glycoxalate oxalate methanol formate Hyperchloremic Acidosis Net retention HCl or loss of HCO3 in proportionate excess of chloride normal quotient HCO3/Cl > 0.25 Loss of HCO3 renal vs non-renal of urine NH4+ NH4+ excretion < 1 mmol/kg (kidney primary) measurement Evaluation of Hyperchloremic Acidosis Gluck SL. Lancet 352, Aug, 1998. RTA Distal RTA (type 1) - impaired H+ secretion (urine pH > 5.5) Gluck SL. Lancet 352, Aug, 1998. Proximal RTA (type 2) - impaired proximal HCO3 reabsorption Defective ammoniagenesis (type4) - defective NH4+ production Treatment: Metabolic Acidosis Correct Underlying Disorder!!!!! ? Sodium Bicarbonate adminstration? HCO3 required = .4 x wt (kg) x (25 - measured HCO3) Risk of Sodium Bicarbonate Hypernatremia/hyperosmolality (1000 mmol/L) Extracellular-fluid overload “overshoot” alkalosis Worsening acidosis buffering protons by bicarbonate = CO2 raises the partial pressure of CO2 in fluids paradoxical worsening intra/extracellular acidosis limited ventilatory reserve, advance circulatory failure or undergoing CPR Alternative Alkalinizing Agents Carbicarb Equal sodium bicarbonate and sodium carbonate Carbonate stronger base, preference for buffering hydrogen ions Generates bicarbonate rather than CO2 and even consumes CO2 when reacting with carbonic acid Results: increases blood and intracellular pH with little increase in CO2 Risks: Hypervolemia and hypertonicity Alternative Alkalinizing Agents THAM 0.3 Nitromethamine Sodium free, buffers metabolic and respiratory acids Limits CO2 generation Increases extra- and intracellular pH Not documents more efficacious than bicarbonate Side effects: hyperkalemia, hypoglycemia, ventilatory depression, hepatic necrosis in neonates Metabolic Alkalosis increase in alkali addition to ECF gastric losses oral or parenteral sources mineralocorticoid stimulate H secretion increased Na delivery increased Na absorption “contraction alkalosis” impairment in renal HCO3 excretion K deficiency stimulates HCO3 exit decreased Cl delivery impairs HCO3 exit raised CO2 hormonal angiotensin II norepinephrine Metabolic alkalosis requires both to occur. Metabolic Alkalosis Chloride-responsive Urine (Cl) < 10-20 Contraction alkalosis Chloride-unresponsive Urine (Cl) > 10-20 Diuretics Diuretics Vomiting Villous Aldosteronism adenoma Gastric losses Alkali intake (antacids) Treatment of Metabolic Alkalosis Treat underlying disorder!! Correct hypovolemia with NS Correct hypokalemia Acetazolamide inhibit carbonic anhydrase decreased promixal tubular HCO3 by 80% IV dose 250 mg x1( pH corrects with 24 hrs) Treatment of Metabolic Alkalosis If chloride deficit replace volume deficit = .4 x wt (kg) x (100 - measured Cl) If chloride-unresponsive K replacement or mineralcorticoid antagonist (Aldactone) If volume overload and unresponsive acetazolamide consider CAVH with Cl infusion Prolonged gastric suctioning Use histamine-2 antagonist Respiratory Acid-Base Disorders Blood pCO2 tightly regulated alternations alveolar ventilation central control (chemoreceptors CO2, pO2, pH) Acidosis or alkalosis primary increase/decrease in CO2 production may coexist with other acid-base disorders Respiratory Acidosis Inadequate ventilation Acute pH changes .008 for every 1 mmHg change Chronic pH changes .003 for every 1 mmHg change Respiratory Acidosis Airway obstruction Status asthmaticus, severe asthma, COPD Severe alveolar defects (edema, pneumonia, ARDS) CNS depression (drugs, brainstem damage) Neuromuscular impairment Ventilatory restriction (PTX, flail chest, burns) Respiratory Acidosis Increase in pCO2 increase in HCO3 intracellular buffering cellular loss of HCO3 to ECF adaptive renal HCO3 reabsorption (late) Clinical manifestations anxiety encephalopathy SOB myoclonus delirium seizures Respiratory Acidosis Treatment Supplemental oxygen Aggressive pulmonary toilet Treatment of pneumonia Bronchodilators Removal of obstruction Mechanical ventilation Respiratory Alkalosis Hyperventilation Acute pH changes .008 for every 1 mmHg change Chronic pH changes .017 for every 1 mmHg change Respiratory Alkalosis Metabolic encephalopathy Hepatic failure Anxiety Early sepsis Pulmonary embolism Hypoxia CHF Severe head injury CVA Mechanical overventilation Salicylate overdose Pregnancy Respiratory Alkalosis Decrease in pCO2 HCO3 cellular decrease in uptake HCO3 Induces cellular uptake of K and phosphate Increases binding of ionized Ca to albumin Manifestations arrhythmias facial/peripherial muscle cramps syncope seizures paraesthesias Respiratory Alkalosis Treatment Calm patient Carbon dioxide rebreathing Treat underlying disorder Administer sedative Mechanical ventilation Case Study #1 87 m found unresponsive in hospital bed Hospital History POD 1 bladder cystoscopy-TURP Overnight hydrated D5 1/2 NS at 75 cc/hr PMH: HTN, kidney stones, prostate CA, CAD Case Study #1 Transferred to ICU Vitals Temp 37.2 BP 80/42 P 116, RR 24, O2 sat 84% PE Lungs crackles Responsive to pain only, otherwise non-focal Case Study #1 WBC Hct PLT NA K Cl CO2 BUN Cr Glucose Alb Ca Mg Osm Case Study #1 WBC Hct PLT NA K Cl CO2 BUN Cr Glucose Alb Ca Mg Osm Admission POD1 9.95 28.5 183 137 3.3 105 28 23 1.4 250 3.65 17.7 81 117 3.7 86 16 24 2.1 105 2.2 6.4 0.7 288 Case Study #1 Admission POD1 WBC Hct PLT NA K Cl CO2 BUN Cr Glucose Alb Ca Mg Osm 9.95 28.5 183 137 3.3 105 28 23 1.4 250 3.65 17.7 81 117 3.7 86 16 24 2.1 105 2.2 6.4 0.7 288 PT/PTT ABG CXR EKG CPK Anything else ? Case Study #1 Admission POD1 WBC Hct PLT NA K Cl CO2 BUN Cr Glucose Alb Ca Mg Osm 9.95 28.5 183 137 3.3 105 28 23 1.4 250 3.65 17.7 81 117 3.7 86 16 24 2.1 105 2.2 6.4 0.7 288 PT 1.3 / PTT 44 ABG 7.26/83/29 CXR: pulm edema EKG: NS ST-T changes CPK: wnl Anything else… ? Case Study #1 Admission POD1 WBC Hct PLT NA K Cl CO2 BUN Cr Glucose Alb Ca Mg Osm 9.95 28.5 183 137 3.3 105 28 23 1.4 250 3.65 17.7 81 117 3.7 86 16 24 2.1 105 2.2 6.4 0.7 288 PT 1.3/PTT 44 ABG 7.26/83/29 CXR: pulm edema EKG: NS ST-T changes CPK: wnl Anion gap… S Osmolarity… NA - CO2 - Cl = 15 2 Na + Glu/18 + BUN/2.8 = 248 Case Study #1 ICU Day 1 Intubated Vasopressors PA catheter CI 2.1 L/min/m2 Wedge 18 mmHg CVP 16 SVR 2100 CT brain negative EEG metabolic encephalopathy Diagnosis: Glycine Toxicity TURP/continuous bladder irrigation Solution 1.5% glycine hypotonic (200 mOsm/L) Usually continuous aspirated during procedure absorption through venules in bladder wall absorption through ruptured prostate capsule Remains extracellular osmotically active dilutional hyponatremia/elevated osmolal gap Diagnosis: Glycine Toxicity Metabolic fate transported intracellular breakdown creatinine, CO2, H2O, NH4, glucose hippurate, glyoxylate, formate, oxalate Constellation of labs hyponatremia and elevated osmolal gap increased serum NH4 (metabolism to ammonia) hypocalcemia (binding oxalates) anemia and thrombocytopenia (hemolysis/dilution) Diagnosis: Glycine Toxicity Clinical presentation nausea and emesis hypotension mental status changes thrombocytopenia SOB (edema, worse with CHF) Therapy Fluid and electrolyte management Diagnosis: Glycine Toxicity Outcome sepsis could not be ruled out started on antibiotics dialysis could not be performed due to pt’s wishes cystogram negative for perforation blood cx: e coli developed ARDS, ATN, SB ischemia POD 13 death
© Copyright 2026 Paperzz