Bölüm 3 6.1 The Simple Linear Regression Model 6.2 Regression Output--A SAS Model: MODEL1 Dependent Variable: Y T-1 ̂ y y ̂ 2 SSE K-1 T-K SSR/(K-1) Analysis of Variance SSR Source DF Sum of Squares Model Error C Total 1 38 39 25221.22299 54311.33145 79532.55444 Root MSE Dep Mean C.V. 37.80536 130.31300 29.01120 Mean Square 25221.22299 1429.24556 F Value Prob>F 17.647 0.0002 SST R-square Adj R-sq 0.3171 0.2991 R2 adjusted R2 Parameter Estimates ̂ Variable DF Parameter Estimate Standard Error T for H0: Parameter=0 Prob > |T| INTERCEP X 1 1 40.767556 0.128289 22.13865442 0.03053925 1.841 4.201 0.0734 0.0002 Explaining Variation in yt ê y ŷ b1 b2 x Toplam Sapma y y ŷ y Açıklanamayan yˆ y 6.3 Açıklanabilen Explaining Variation in yt 6.4 degerine ait sapmanın açıklanması ^ yt = b1 + b2xt + et Açıklanan Degişken ^y = b + b x t 1 2 t Açıklanamayan Sapma ^e = y ^y = y b b x t t t t 1 2 t Explaining Variation in yt ^ ^ yt = yt + et using y as baseline ^ ^ yt y = y t y + e t T T (yty) = t=1 2 t=1 6.5 Karesini alıp toplarsak T 2 2 ^ ^ (y y) + e t SST = SSR + SSE BKT= AKT+KKT t=1 t cross product term drops out Total Variation in yt SST = total sum of squares BKT=bütün kareler toplamı SST,yt degerinin sapmasını yani y Etrafında dagılımı ölçer T SST = (yt y) t=1 2 6.6 6.7 Explained Variation in yt SSR = regression sum of squares AKT=Açıklanan Kareler Toplamı ^y = b + b x t 1 2 t ^ Fitted yt values: SSR tahmin edilen Etrafındaki dagılımını ölçer T SSR ^yt nin = (yt y) ^ t=1 2 y (Yt) Açıklanamayan Sapmaya dair 6.8 SSE = error sum of squares (Açıklanamayan hata) KKT=Açıklanamayan Kalıntı Kareler Toplamı ^ ^ et = ytyt = yt b1 b2xt SSE gerçek degerler ile yt Tahmin yt^ degerleri Arasındaki farklılıgı ölçer T SSE T = (yt yt) = t=1 ^ 2 t=1 ^e 2 t Analysis of Variance Table Table 6.1 Analysis of Variance Table Source of Sum of Mean Variation DF Squares Square Explained 1 SSR SSR/1 Unexplained T-2 SSE SSE/(T-2) ^ 2] [= Total T-1 SST 6.9 Coefficient of Determination yt degerinden sapmanın standard ölçümü: 2 0< R <1 2 R = SSR SST 6.10 Coefficient of Determination SST = SSR + SSE SST ile bölersek SST SST = SSR SSE + SST SST 1 = 2 R = SSR SST SSR + SSE SST SST = 1 SSE SST 6.11 Coefficient of Determination 6.12 sadece descriptive (tanımlayıcı Ölçüm yapar Kalite ölçüm birimi degildir measure.Yani regresyonun Ölçüm kalitesini göstermez 2 R maximizing R2 yani en yüksek Deger tek başına buna bakmak dogru degıldir 6.13 Regression Output--B Excel SUMMARY OUTPUT ̂ Regression Statistics Multiple R 0.563132517 R Square 0.317118231 Adjusted R Square 0.299147658 Standard Error 37.80536423 Observations 40 ANOVA Intercept X Variable 1 SSR=AKT T df Regression Residual Total R2 SSE=KKT SS MS F Sig. F 1 25221.22 25221.22 17.6465 0.00015495 38 54311.33 1429.246 varyansı 39 79532.55 SST=BKT Coefficients St. Error t Stat P-value Lower 95% Upper 95% 40.76755647 22.13865 1.841465 0.07337 -4.0498079 85.584921 0.128288601 0.030539 4.200777 0.00015 0.06646511 0.1901121 b2 Se(b2) For hypothesis testing Interval Estimate Regression Computer Output 6.14 Typical computer output of regression estimates: Table 6.2 Computer Generated Least Squares Results (1) (2) (3) (4) (5) Parameter Standard t-stat Variable Estimate Error p-value INTERCEPT 40.7676 22.1387 1.841 0.0734 X 0.1283 0.0305 4.201 0.0002 Regression Computer Output b1 = 40.7676 b2 = 0.1283 se(b1) = ^ 1) = 490.12 var(b se(b2) = ^ 2) = 0.0009326 = 0.0305 var(b t = t = b1 se(b1) b2 se(b2) = = = 22.1287 40.7676 22.1287 = 1.84 0.1283 0.0305 = 4.20 6.15 Regression Computer Output 6.16 Sources of variation in the dependent variable: Table 6.3 Analysis of Variance Table Sum of Mean Source DF Squares Square AKT=Explained 1 25221.2229 25221.2229 KKT=Unexplained 38 54311.3314 1429.2455 BKT=Total 39 79532.5544 R-square: 0.3171 Regression Computer Output SST = (yty) = 79532 2 ^ SSR = (yty) = 25221 2 ^ SSE = e = 54311 2 t SSE /(T-2) = ^2 2 R = SSR SST = 1 = 1429.2455 SSE = 0.317 SST 6.17 6.18 2 R = SSR SST = 1 SSE = 0.317 SST Yorumu? Y degerinin ortalamasının etrafındaki farklılık regresyon modeli ile yüzde 31.7% oranında açıklana bilmiştir Yada bir diger ifade ile modelimiz Y degeri üzerinde yüzde 31.7 oranında açıklayıcı gücü vardır. 6.19 Reporting Regression Results yt = 40.7676 + 0.1283xt (s.e.) (22.1387) (0.0305) yt = 40.7676 + 0.1283xt (t) (1.84) (4.20) Reporting Regression Results 6.20 2 R = 0.317 This R2 value may seem low but it is typical in studies involving cross-sectional data analyzed at the individual or micro level. A considerably higher R2 value would be expected in studies involving time-series data analyzed at an aggregate or macro level. Functional Forms 6.21 The term linear in a simple regression model does not mean a linear relationship between variables, but a model in which the parameters enter the model in a linear way. Linear vs. Nonlinear 6.22 Linear Statistical Models: yt = 1 + 2xt + et yt = 1 + 2 ln(xt) + et ln(yt) = 1 + 2xt + et yt = 1 + 2x2t + et Nonlinear Statistical Models: yt = 1 + 3 2xt + et 3 yt yt = 1 + 2xt + exp(3xt) + et = 1 + 2xt + et Linear vs. Nonlinear y 6.23 nonlinear relationship between food expenditure and income food expenditure 0 income x Useful Functional Forms Look at each form and its slope and elasticity 1. 2. 3. 4. 5. 6. Linear Reciprocal Log-Log Log-Linear Linear-Log Log-Inverse 6.24 Useful Functional Forms 6.25 Linear yt = 1 + 2xt + et slope: 2 xt elasticity: 2 y t 6.26 Useful Functional Forms Reciprocal yt = 1 + 2 xt + et 1 slope: 1 2 2 xt elasticity: 1 2 x y t t y Reciprocal Models 6.27 y 1 2 1 / x 2 0 2 0 x Useful Functional Forms Log-Log (Constant Elasticity Model) ln(yt)= 1 + 2ln(xt) + et yt slope: 2 x t elasticity: 2 6.28 6.29 Log-Log Models y ln y 1 2 lnx 2 1 ln y 1 2 lnx 0 2 1 x y 6.30 Log-Log Models 2 1 ln y 1 2 lnx 2 1 1 2 0 x Useful Functional Forms Log-Linear ln(yt)= 1 + 2xt + et slope: 2 yt elasticity: 2xt 6.31 y 6.32 Log-Linear Models ln y 1 2 x 2 0 2 0 x Useful Functional Forms 6.33 Linear-Log yt= 1 + 2ln(xt) + et slope: 1 _ 2 xt 1_ elasticity: 2 y t y 6.34 Linear-Log Models y 1 2 ln x 2 0 2 0 x Useful Functional Forms Log-Inverse ln(yt) = 1 - 2 x + et 1 t yt slope: 2 2 xt 1 elasticity: 2 x t 6.35 y 6.36 Log-Inverse Model ln y 1 2 1 / x 2 0 x What Functional Form? 1. 2. 3. 4. E (et) = 0 2 var (et) = cov(ei, ej) = 0 2 et ~ N(0, ) 6.37 Economic Models 1. 2. 3. 4. Demand Models Supply Models Production Functions Cost Functions 6.38 Economic Models 6.39 Demand Models * quality demanded (yd) and price (x) * constant elasticity ln(yt )= 1 + 2ln(x)t + et d Economic Models 6.40 Supply Models s (y ) * quality supplied and price (x) * constant elasticity ln(yt )= 1 + 2ln(xt) + et s Economic Models 6.41 Production Functions * output (y) and input (x) * constant elasticity Cobb-Douglas Production Function: ln(yt)= 1 + 2ln(xt) + et 6.42 Economic Models Cost Functions * total cost (y) and output (x) yt = 1 + 2 2x t + et Economic Models 6.43 Cost Functions * average cost (x/y) and output (x) (yt/xt) = 1/xt + 2xt + et/xt
© Copyright 2026 Paperzz