Volatile gas analysis released from simulated faults during frictional

JAMSTEC-R IFREE Special Issue, November 2009
― Report ―
Volatile gas analysis released from simulated faults during frictional melting:
experimental technique and preliminary results
Keiko Sato1*, Takehiro Hirose2, Hajimu Tamura1,2a, Hidenori Kumagai1, Kazuo Mizoguchi3
)ULFWLRQDOPHOWLQJH[SHULPHQWVZHUHSHUIRUPHGRQ¿QHJUDLQKRPRJHQHRXVJDEEURLGZLWKKLJKWHPSHUDWXUHVLQGXFHGE\
IULFWLRQDOKHDWLQJXVLQJDKLJKYHORFLW\DSSDUDWXV:HH[DPLQHGZKHWKHUUDSLGIDXOWPRYHPHQWFDQHTXLOLEUDWHIDXOWURFNJDV
ZLWKDWPRVSKHULFFRPSRQHQWVE\PHDVXULQJYRODWLOHJDVDQGQREOHJDVLVRWRSHVIURPDJDEEURLGVDPSOHXVLQJDTXDGUXSROHPDVV
spectrometer to detect released gas from the simulated fault rock.
7KHDQWLFLSDWHGUDSLGHTXLOLEUDWLRQRIYRODWLOHVGXULQJWKHIULFWLRQDOPHOWLQJRIURFNVLPSOLHVWKDWWKHQREOHJDVDQGYRODWLOH
ZHUHUHOHDVHGDQGPL[HGZLWKWKHDWPRVSKHUHGXULQJWKLVH[SHULPHQW*DVHVUHOHDVHGIURPWKHVDPSOHZHUHFROOHFWHGLQDVPDOO
DOXPLQXPWXEHLQQLWURJHQDWPRVSKHUHEHIRUHDQGDIWHUWKHIULFWLRQDOPHOWLQJH[SHULPHQW7KHJDVFRPSULVHGFDUERQGLR[LGH
ZDWHUYDSRUK\GURJHQKHOLXPDQGRWKHUQREOHJDVHV7KH+H$UUDWLRDQG+2 concentration are higher than the pre-analysis of N2
DWPRVSKHUH7KLVUHOHDVHRIYRODWLOHVLVFRQVLVWHQWZLWKWKHSVHXGRWDFK\O\WHOLNHSRVWH[SHULPHQWDOWH[WXUHRIVSHFLPHQ,WLVDOVR
consistent with the co-seismic geochemical anomaly observed along a natural fault system.
KeywordsVLPXODWHGIDXOWYRODWLOHJDVDQDO\VLVQREOHJDVTXDGUXSROHPDVVVSHFWURPHWU\
5HFHLYHG)HEUXDU\$FFHSWHG-XO\
,QVWLWXWHIRU5HVHDUFKRQ(DUWK(YROXWLRQ-DSDQ$JHQF\IRU0DULQH(DUWK6FLHQFHDQG7HFKQRORJ\
.RFKL,QVWLWXWHIRU&RUH6DPSOH5HVHDUFK-DSDQ$JHQF\IRU0DULQH(DUWK6FLHQFHDQG7HFKQRORJ\
(DUWKTXDNH5HVHDUFK'HSDUWPHQW1,('
3UHVHQW$I¿OLDWLRQ
D(DUWKTXDNHDQG7VXQDPLUHVHDUFKSURMHFWIRU'LVDVWHU3UHYHQWLRQ-DSDQ$JHQF\IRU0DULQH(DUWK6FLHQFHDQG7HFKQRORJ\
&RUUHVSRQGLQJDXWKRU
Keiko Sato
,QVWLWXWHIRU5HVHDUFKRQ(DUWK(YROXWLRQ-DSDQ$JHQF\IRU0DULQH(DUWK6FLHQFHDQG7HFKQRORJ\
1DWVXVKLPDFKR<RNRVXND-DSDQ
+81-46-867-9759
[email protected]
&RS\ULJKWE\-DSDQ$JHQF\IRU0DULQH(DUWK6FLHQFHDQG7HFKQRORJ\
51
*DVUHOHDVHIURPVLPXODWHGIDXOWV
1. Introduction
H[SHULPHQWVWRUHSURGXFHPHOWLQJDQGIUDFWXULQJSURFHVVHV
'XULQJDQHDUWKTXDNHDIULFWLRQDOVOLSDORQJDIDXOW
that are widely observed near faults (e.g., Shimamoto and
can produce fault-related rocks of several types, which are
Lin, 1994; Spray, 1987, 1988; Tsutsumi and Shimamoto,
IDXOWJRXJHIDXOWEUHFFLDDQGSVHXGRWDFK\O\WH$GGLWLRQDOO\
1997a, 1997b; Lin and Shimamoto, 1998; Tsutsumi, 1999;
it can often be found that rocks and minerals are fractured
Hirose and Shimamoto, 2003, 2005).
and sometimes melted by rapid fault movements.
Here, we analyzed ambient volatile compositions
Volatiles, including noble gases, are believed to be
EHIRUHDQGDIWHUWKHIULFWLRQDOH[SHULPHQWWRHYDOXDWHKLJK
UHOHDVHGGXULQJIDXOWLQJHJ:DNLWDHWDO:DNLWD
concentration and/or lower concentration for released gas
et al. (1980) measured hydrogen concentrations in soil
FRPSRQHQW DQDO\VLV LQ D IULFWLRQDO PHOWLQJ H[SHULPHQWDO
gas at more than 20 sites on and near the Yamazaki Fault
atmosphere.
LQVRXWKZHVWHUQ-DSDQ6RLOJDVHVVDPSOHGDORQJWKHIDXOW
FRQWDLQHG XS WR YRO RI K\GURJHQ 'LVWDQW IURP WKH
2. Frictional melting experiment
fault, the soil gases contained only about 0.5 ppm, which
'HWDLOV RI D IULFWLRQDO PHOWLQJ H[SHULPHQW WR
LV DOPRVW HTXDO WR WKH DWPRVSKHULF FRQFHQWUDWLRQ 7KH\
investigate fault metamorphism have been reported
inferred that fault movements had produced the hydrogen.
(Hirose and Shimamoto, 2003; 2005; Sato et al., 2009).
2WKHUHDUWKTXDNHUHODWHGJHRFKHPLFDODQRPDOLHVKDYHEHHQ
Here we briefly describe the protocols of the released gas
UHSRUWHG 6XJLVDNL DQG 6XJLXUD SUHHDUWKTXDNH
PHDVXUHPHQW7KH H[SHULPHQWDO VSHFLPHQV ZHUH SUHSDUHG
LQFUHDVHVRI+H$U12$UDQG&+4$URFFXUUHGLQEXEEOH
from a fine grain homogeneous high alkaline tholeiitic
JDVHVDWPLQHUDOVSULQJVDERXW±PRQWKVEHIRUHDQLQODQG
gabbroid (classified as monzodiorite by Otomo and
HDUWKTXDNH RI PDJQLWXGH LQ FHQWUDO -DSDQ$PRQJ
Shimamoto, 1994) from Zimbabwe; its modal composition
these volatiles indicating an anomalous increase near the
ZDV SODJLRFODVH FOLQRS\UR[HQH IDXOWQREOHJDVHV+HDQG$UGRQRWERQGWRDQ\PLQHUDO
RUWKRS\UR[HQHRSDTXHPLQHUDOVDQGPLQRU
under normal conditions in silicate rocks. Therefore, their
DPRXQWVRIELRWLWHTXDUW]DQGVSKHQH
signatures are notably modified by thermal and/or kinetic
$SDLURIKROORZHGF\OLQGULFDOFKXQNVZLWKRXWHUGLDPHWHU
disturbances (e.g. Noble gas., 2002).
of 25 mm and inner diameter of 15 mm was prepared from
If such gas releases are common phenomena related
WKLVJDEEURLG7KHH[SHULPHQWZDVSHUIRUPHGXQGHUDGU\
to fault movements, closed systems for some elements,
QLWURJHQDWPRVSKHUHDW.\RWR8QLYHUVLW\7KHFKXQNVZHUH
which are necessary for radiometric dating, might be broken
pressed together and forced to slide over one another using
so that some elements might move from a natural fault (e.g.,
a high-velocity friction apparatus in the semi-closed acrylic
7DNDJL DQG 6KLEDWD 0DJORXJKOLQ HW DO 'L
FRYHU 7KH SK\VLFDO FRQGLWLRQV ZHUH WKH IROORZLQJ VOLS
9LQFHQ]RHWDO$FWXDOO\UHMXYHQDWLRQRI.$UDQG
YHORFLW\PVQRUPDOVWUHVV03D7DEOH+LURVH
$U$U DJHV ZDV REVHUYHG ZKHQ WKH UHOHDVHG QREOH JDVHV
and Shimamoto, 2003;2005).
UHDFKHTXLOLEULXPZLWKDWPRVSKHULFJDVHVGXULQJIULFWLRQDO
8QGHUWKHVHFRQGLWLRQVWKHVOLGLQJVXUIDFHUHDFKHG
melting and fracturing of a simulated fault (Sato et al.,
luminous temperature 5 s after initiation of the slip. Then
2009). Sato et al. (2009) performed high-velocity friction
visible melting appeared after ca. 20 s and melt was splashed
7DEOH2SHUDWLRQDOFRQGLWLRQVRIWKHKLJKYHORFLW\VOLSH[SHULPHQWV
7RWDOVKRUWHQLQJUHSUHVHQWVUHPRYHGOHQJWKIURPWKHLQLWLDOGXULQJWKHH[SHULPHQWDVDUHVXOWRIWKHJHQHUDWLRQRIPROWHQPDWHULDOZKLFKZDVTXHQFKHG
WRIRUPJODVVRUFODVWVPHWDPRUSKLFURFNIUDJPHQWV7KHWHPSHUDWXUHUHIHUHQFHZDVJLYHQE\DQRWKHUUXQWRHVWLPDWHWKHPD[LPXPWHPSHUDWXUH
7KHH[SHULPHQWZDVVWRSSHGDIWHUWKHVHFRQGSHDNLQWKHIULFWLRQDOFRHI¿FLHQW+LURVHDQG6KLPDPRWR
52
JAMSTEC-R IFREE Special Issue, November 2009, 51 í58
K. Sato et al.,
away from the sliding surfaces (see Fig. 1), the sliding
including glass, bubbles, and some metamorphic clasts were
surfaces were separated completely from the molten layer
observed. On both sides of the glassy zone, fractured zones
VHHURFNWH[WXUHV6DWRHWDO7KHWHPSHUDWXUHRQWKH
LQFOXGLQJ FODVWV PL[HG ZLWK VRPH JODVV ZHUH DOVR IRXQG
VOLGLQJVXUIDFHZDVPHDVXUHGLWORFDOO\UHDFKHGFDƒ&
6RPHYHLQVKDSHGLQMHFWLRQVLQWKH±PPZLGHVKHDU]RQH
as measured using an emissivity pyrometer.
from the sliding surface were also visible. The fractured area
On the retrieved specimen, 1-mm-thick glassy zones
associated with the sliding surface (non-metamorphic area)
)LJD3KRWRJUDSKDQGEVFKHPDWLFGLDJUDPRIVDPSOHFKDPEHUVKRZLQJDVVHPEO\IRUKLJKYHORFLW\H[SHULPHQWVLQ.\RWR8QLYHUVLW\HJ+LURVH
DQG6KLPDPRWRQRZPRYHGWRWKH.RFKL&RUH&HQWHU7KHER[RIDPELHQWLV¿OOHGXSD12DWPRVSKHUHEHIRUHH[SHULPHQW7KH
UHOHDVHGJDVLVFROOHFWHGLQ$OWXEHVWRGHWHFWWKHUHOHDVHGFRPSRQHQW
JAMSTEC-R IFREE Special Issue, November 2009, 51 í58
53
*DVUHOHDVHIURPVLPXODWHGIDXOWV
included fractured rock in the shear zone, which was between
-$067(& 7DPXUD HW DO 9RODWLOHV VXUURXQGLQJ
3-mm and 5-mm distant from the sliding surface.
WKHDSSDUDWXVLQ.\RWR8QLYHUVLW\ZHUHFROOHFWHGWRFKHFN
:H DWWHPSWHG WR GHWHFW WKH YRODWLOHV UHOHDVHG IURP
whether any volatiles were released by frictional heating
the specimen using an O2 concentration analyzer during the
under the closed nitrogen atmosphere. The gases were
melting (Figs. 1a and 1b). The ambient gases in the semi-
collected to use an injector in sealed 3-mm-diameter
closed acrylic cover of the apparatus were sampled into
aluminum tubes. The tubes were set in a vacuum crushing
PPGLDPHWHUDOXPLQXPWXEHVWRTXDQWLI\FDUERQGLR[LGH
apparatus together with a metal hammer. Their sealing
hydrogen, and noble gases (mainly argon and helium). Three
was maintained under atmospheric pressure until analysis.
DOLTXRWV ZHUH VDPSOHG LQ VHDOHG DOXPLQXP WXEHV EHIRUH
$IWHUSXPSLQJDQGEDNLQJWKH¿UVWWXEHZDVFUXVKHGXQGHU
during, and after the run.
8+9 -7 3D7KH JDV LQ WKH WXEH ZDV DQDO\]HG XVLQJ
D TXDGUXSROH PDVV VSHFWURPHWHU 5*$ FKDQQHOV
3. Analytical procedures and collecting gas
$SSHQGL[ 6WDQIRUG 5HVHDUFK 6\VWHPV ,QF LQ WKH
7ZR RI WKUHH DOLTXRWV RI YRODWLOHV UHWULHYHG LQWR
IROORZLQJPDQQHUXVLQJVWDQGDUGJDVDQDO\VLV$SSHQGL[
aluminum tubes were analyzed using modified vacuum
3ULRUWRSXUL¿FDWLRQKDOIRIWKHJDVZDVDQDO\]HGWRFKHFN
crusher installed gas analysis systems at Yokosuka-HQ,
active species that possibly vaporized from rock specimens
(H2, C, N, H2O, N2, and CO2). The other half was purified
using a getter pump and analyzed to check noble gas
Table 2 Major element composition of high alkaline tholeiitic gabbroid
FODVVL¿HGPRQ]RGLRULWHE\2WRPRDQG6KLPDPRWRIURP
Zimbabwe and this starting material were analyzed using XRF.
The analytical procedure followed that reported by Tani et al.
(2005).
compositions (4He, 36$U 38$UDQG 40$U$VHFRQGWXEHZDV
FUXVKHGDJDLQLQD8+9FUXVKHUWRFKHFNUHSURGXFLELOLW\RI
the noble gas measurement. The released noble gases and
some active species that had not been fully removed by this
SXULILFDWLRQ ZHUH DQDO\]HG LQ WKLV VHTXHQFH +' 1H+2H),
4
He, 22Ne, 36$U 40$U&22, 84Kr, 86Kr,
129
Xe, and
132
Xe. For
blank correction of the laboratory atmosphere, another tube
was crushed again and active species and noble gases were
analyzed.
4. Results and discussion
The bulk composition of gabbroid presented in Table
ZDVPHDVXUHGXVLQJ;UD\ÀXRUHVFHQFH5L[5LJDNX
&RUS-DSDQ7DEOHDDQG7DEOHESUHVHQWFRPSRVLWLRQVRI
gases released during frictional melting under the nitrogen
atmosphere.
The ambient gases collected during the N2 atmosphere
H[SHULPHQW VKRZHG LQFUHDVHG + 2, 4He, C, N,
40
36
$U 38$U
$U DQG &22 )LJ 7KH +H$U UDWLR ZDV KLJKHU WKDQ
that in the pre-analysis atmosphere (Table 3a), which is
apparently consistent with pre-seismic geochemical anomaly
(e.g., Sugisaki and Sugiura, 1986). Here, H2 showed higher
partial pressure than H2O did, possibly as a result of the
decomposition of released H2O vapor and/or atmospheric
H2O. This H22GHFRPSRVLWLRQRFFXUUHGDWƒ&RUEHORZ
DOWKRXJKWKHUPRG\QDPLFGHFRPSRVLWLRQRFFXUVDWƒ&
or higher temperatures (Komiyama, 1996). The rather
Fig.2. The N2 normalized relative abundance pattern of the released
XQSXUL¿HGYRODWLOHV
54
JAMSTEC-R IFREE Special Issue, November 2009, 51 í58
low temperature decomposition might have resulted from
FDWDO\VLVRIR[LGHPLQHUDOVXQGHUDUHGXFWLYHHQYLURQPHQW
K. Sato et al.,
as in the dry-N2DPELHQFH0RVWZDWHUYDSRULVH[SHFWHGWR
5. Conclusions
KDYHFRPHIURPWKHH[SHULPHQWDOVSHFLPHQXQGHUWKHGU\12
:HGHWHFWHGUHOHDVHGJDVIURPDJDEEURLGVSHFLPHQ
atmosphere, which is not inconsistent with results of field
that had been subjected to frictional heat by high-velocity
REVHUYDWLRQVE\:DNLWDHWDO7KRVHUHVXOWVVKRZHG
sliding.
increased H2 in soil gas on a natural fault system. Tanikawa
*DVHVFROOHFWHGLQD12 atmosphere after the friction
HWDODOVRUHSRUWHGEDVHGRQH[SHULPHQWDOUHVXOWVWKDW
H[SHULPHQWLQFOXGHG&22, H2O vapor, and He, all possibly
the reductive condition occurred during the fault movement.
released from the sample specimen. Furthermore, H2, 4He,
The collected volatile composition might merely
UHÀHFWDFKHPLFDOUHDFWLRQDQGDEVRUSWLRQLQWKHVHFRQGDU\
JHQHUDWHG PDWHULDO VXFK DV JODVV DQGRU FODVWV$FWXDOO\
Table 3a
$PELHQWJDVFRPSRVLWLRQVEHIRUHUHPRYDORIWKHDFWLYHVSHFLHV
2H 2 O would be decomposed 2H 2 and O 2 at a high
temperature of friction melting if this were the case. Then
O 2 reacts more easily with other chemical components,
although CO2 is not active for O2$Q LQFUHDVH RI PRQR
atomic N with mass number 14 might also result from such
GHFRPSRVLWLRQ7KLVSURFHVVPLJKWDOVRH[SUHVVDGHFUHDVHRI
H227KHUHIRUHRXUGDWDH[SUHVVWKDWYRODWLOHVDUHUHOHDVHG
IURPWKHH[SHULPHQWDOVSHFLPHQDQGDUHSDUWO\GHFRPSRVHG
by frictional heating.
)RUQREOHJDVDQDO\VLVUHOHDVHGJDVHVZHUHSXUL¿HG
and most CO2 and H2 were removed. Most noble gases (4He,
22
Ne, 36$U 40$U 84Kr, 86Kr,
129
Xe, and
132
Xe) had increased
VHYHUDO WLPHV DIWHU WKH H[SHULPHQW XQGHU QRUPDOL]DWLRQ WR
the 36$UUHOHDVHGGXULQJWKHH[SHULPHQW7DEOHE)LJ
Therefore, we infer that 4He,
and
129
22
Ne,
40
$U 84Kr,
86
Kr,
132
%RWKEHIRUHDQGDIWHUWKHH[SHULPHQWRIWKH+95UXQJDVHVLQD
closed container for the apparatus under N2 atmosphere were sampled.
7KHGDWDUHSRUWHGDUHWKRVHREWDLQHGEHIRUHSXUL¿FDWLRQE\7L=UJHWWHU
to collect active species. *, Reference values of each gas of atmospheric
FRQFHQWUDWLRQ*HRFKHPLVWU\
Xe,
Xe are released as well as CO2 by frictional heating.
Table 3b
$PELHQWJDVFRPSRVLWLRQVDIWHUUHPRYDORIWKHDFWLYHVSHFLHV
+RZHYHU+'1H+2+VHHPVWRGLIIHULWVFRQFHQWUDWLRQZDV
ORZHUDIWHUWKHH[SHULPHQWWKDQEHIRUHWKHH[SHULPHQW
Fig.3. The 36$UQRUPDOL]HGJDVDEXQGDQFHVZKHQWKHDFWLYHVSHFLHV
ZDVSXUL¿HGZLWK7L=UJHWWHU7KH+'1H+2H) is lower after the
H[SHULPHQW
The reported data are those after purification using a Ti-Zr getter to
collect noble gas. *, the reference values of each gas of atmospheric
FRQFHQWUDWLRQ*HRFKHPLVWU\
JAMSTEC-R IFREE Special Issue, November 2009, 51 í58
55
*DVUHOHDVHIURPVLPXODWHGIDXOWV
C, N, H2O, 36$U 38$U 40$U&22, 84Kr, 86Kr,
132
Xe and
129
Xe
LQFUHDVHG GXULQJ WKH H[SHULPHQW DQG PLJKW KDYH EHHQ
released. More H2 than H2O gas is released, probably because
pseudotachylytes, J. Asian Earth Sci., 16, 533- 545 (in
-DSDQHVHZLWK(QJOLVKDEVWUDFW
0DJORXJKOLQ - ) & + +DOO %$ 3OXLMP of the high-temperature decomposition of released and/or
40
atmospheric H22&RQVHTXHQWO\WKHLQFUHDVHRI+H$UUDWLR
YDFXXP HQFDSVXODWLRQ 1RUWK &DVFDGH 0RXQWDLQV
LVH[SUHVVHGDVDFRVHLVPLFJHRFKHPLFDODQRPDO\ZKLFKLV
:DVKLQJWRQ86Geology, 29, 51-54.
observed near natural faults.
$U39$U JHRFKURQRPHWU\ RI SVHXGRWDFK\O\WHV E\
1REOH*DVHV±LQJHRFKHPLVWU\DQGFRVPRFKHPLVWU\±,Q
3RUFHOOL ' &- %DOOHQWLQH 5:LHOHU DQG (GV
Acknowledgements
06$Reviews in Mineralogy &Geochemistry,
:HH[SUHVVRXUGHHSJUDWLWXGHWR3URI6KLPDPRWR
47, 844pp.
'UV 6 7VXERL . 6X]XNL< 7DWVXPL DQG WKH ,)5((
Otomo, Y. and T. Shimamoto (1994), Significance
and KCC research staff for providing the opportunities to
of thermal fracturing in the generation of fault
SHUIRUPWKHVHDQDO\VHV:HHVSHFLDOO\WKDQN'UV7+DQ\X
JRXJH GXULQJ UDSLG IDXOW PRWLRQ$Q H[SHULPHQWDO
H. Kawabata for their discussions of an earlier version of
verification, Structural Geology (J. Tect. Res. Gro.
GDWDIURPDQDO\VHV.\RWR8QLYHUVLW\DQG.RFKL&RUH&HQWHU
Japan), 39 LQ -DSDQHVH ZLWK (QJOLVK
DOORZHGXVWRXVHWKHLUHTXLSPHQW:HDOVRDSSUHFLDWH'U:
abstract).
7DQLNDZDDQDQRQ\PRXVUHYLHZHU'U12JDZDDQGRXU
Sato, K., H. Kumagai, T. Hirose, H. Tamura, K. Mizoguchi
Editor for their constructive comments related to an earlier
DQG 7 6KLPDPRWR ([SHULPHQWDO VWXG\
YHUVLRQ RI WKLV SDSHU:H DOVR WKDQN 'U$ 1LFKROV DQG
IRU QREOH JDV UHOHDVH DQG H[FKDQJH XQGHU KLJK
Mr. Brad Fast, who helped with the English improvement.
speed frictional melting, Chemical GeologyG[GRL
7KLVVWXG\ZDVVXSSRUWHGE\D*UDQWLQ$LGIRU6FLHQWLILF
org/10.1016/j.chemgeo.2008.12.017.
5HVHDUFK .$.(1+, 1R WR .6 DQG E\ D
6KLPDPRWR7 DQG$ /LQ ,V IULFWLRQDO PHOWLQJ
*UDQWLQ$LGIRU6FLHQWL¿F5HVHDUFKRQ,QQRYDWLYH$UHDV1R
HTXLOLEULXP PHOWLQJ RU QRQHTXLOLEULXP PHOWLQJ"
20109004) to H.K.
Structural Geology (J. Tect. Res. Gro. Japan), 39,
LQ-DSDQHVHZLWK(QJOLVKDEVWUDFW
6SUD\-*$UWL¿FLDOJHQHUDWLRQRISVHXGRWDFK\O\WH
References
'L9LQFHQ]R * 6 5RFFKLE ) 5RVVHWWLF DQG ) 6WRUWL
(2004),
40
39
$U $U GDWLQJ RI SVHXGRWDFK\O\WHV WKH
HIIHFWRIFODVWKRVWHGH[WUDQHRXVDUJRQLQ&HQR]RLF
IDXOWJHQHUDWHGIULFWLRQPHOWVIURPWKH:HVW$QWDUFWLF
Rift System, Earth Planet. Sci. Lett., 223, 349-364.
*HRFKHPLVWU\ChikyukagakuLQ-DSDQHVH,Q0DWVXR6
Eds., .RGDQVKD6FLHQWL¿F&R., (1989), 266pp.
XVLQJ IULFWLRQDO ZHOGLQJ DSSDUDWXV VLPXODWLRQ RI
melting on a fault plane, J. Structural Geology, 9, 4960.
6SUD\ -* *HQHUDWLRQ DQG FU\VWDOOL]DWLRQ RI DQ
DPSKLEROLWHVKHDUPHOWDQLQYHVWLJDWLRQXVLQJUDGLDO
friction welding apparatus, Contrib. Mineral. Petrol.,
99, 464-475.
Hirose, T. and T. Shimamoto (2003), Fractal dimension
6XJLVDNL5DQG76XJLXUD*DVDQRPDOLHVDWWKUHH
of molten surfaces as a possible parameter to infer
mineral springs and a fumarole before an inland
the slip-weakening distance of faults from natural
HDUWKTXDNH&HQWUDO-DSDQJ. Geophys. Res. 91( B12),
pseudotachylytes, J. Struct. Geol., 25, 1569-1574.
12296-12304.
+LURVH7DQG76KLPDPRWR*URZWKRIPROWHQ]RQH
7DNDJL + DQG . 6KLEDWD .$U GDWLQJ RI IDXOW
as a mechanism of slip weakening of simulated faults
JRXJH H[DPSOHV DORQJ WKH 0HGLDQ7HFWRQLF /LQH
in gabbro during frictional melting, J. Geophysical
Research, 110%GRL-%
Memoir., Geol. Soc. Japan, 40, 31-38.
Tamura, H., H. Kumagai, K. Sato, and K. Suzuki (2009),
.RPL\DPD + $ SULPHU RI 7KHUPRG\DQDPLFV
0RELOH1REOHJDV$QDO\VLV$7ULDOWRPHDVXUHQREOH
(Nyu-mon Netsuriki-gakuLQ-DSDQHVHBaifukan Co.
gas elemental abundance out of laboratory, JAMSTEC
197pp.
REPORT.
/LQ$ DQG 7 6KLPDPRWR 6HOHFWLYH PHOWLQJ
Tani, K., H. Kawabata, Q. Chang, K. Sato and Y. Tatsumi
SURFHVVHVDVLQIHUUHGIURPH[SHULPHQWDOO\JHQHUDWHG
(2005), Quantitative analyses of silicate rock
56
JAMSTEC-R IFREE Special Issue, November 2009, 51 í58
K. Sato et al.,
major and trace elements by X-ray fluorescence
VSHFWURPHWHU(YDOXDWLRQRIDQDO\WLFDOSUHFLVLRQDQG
sample preparation, IFREE REPORT FOR 20032004, 2, 1-8.
7DQLNDZD:70LVKLPD7+LURQR:6RKDQG65
Song (2008), High magnetic susceptibility produced
by thermal decomposition of core samples from the
Chelungpu fault in Taiwan, Earth Planet. Sci. Lett.,
272, 372-381.
7VXWVXPL $ 6L]H GLVWULEXWLRQ RI FODVWV LQ
H[SHULPHQWDOO\ SURGXFHG SVHXGRWDFK\O\WHV J.
Structural Geol., 21, 305-312.
7VXWVXPL$ DQG 7 6KLPDPRWR D 7HPSHUDWXUH
measurements along simulated faults during
seismogenic fault motion, Proceedings of the 30th
IGC, Beijing, 15, 223-232.
7VXWVXPL$ DQG7 6KLPDPRWR E +LJKYHORFLW\
frictional properties of gabbro, Geophys. Res. Lett.
24, 699-702.
:DNLWD+<1DNDPXUD,.LWD1)XMLLDQG.1RWVX
(1980), Hydrogen Release; New indicator of fault
activity, Science, 210, 188-190.
$SSHQGL[
'DWDDUHFDOLEUDWHGDVVWDQGDUGJDVE\YROXPHDQGFRPSRQHQWV
$SSHQGL[
)XQGDPHQWDOVSHFL¿FDWLRQGDWDRITXDGUDSROHPDVVVSHFWURPHWU\
5*$656,QF
JAMSTEC-R IFREE Special Issue, November 2009, 51 í58
57