Table S1. Enzyme kinetic parameters used in the model. In case values for parameters were assumed, a flux control coefficient was determined by increasing and decreasing the value by 20%. EC Paremeters Reference 1.2.1.9 1.2.1.12 2.7.2.3cyt KmNADP+=0.017 mM (Iglesias and Losada, 1988) KmGAP=0.75 mM (Iglesias and Losada, 1988) KiPGA_GAP=0.75 mM (Iglesias and Losada, 1988) KiNADH_NADP+=0.0073 mM (Iglesias and Losada, 1988) Vmax=108 μmol m-2 s-1 (Rosenberg and Arnon, 1955), Estimated Flux control coefficient=0 KmGAP=0.4 mM (Speranza and Gozzer, 1978) KmNAD+=0.25 mM (Speranza and Gozzer, 1978) Ke=0.156 (Speranza and Gozzer, 1978) Vmax=0.3 μmol m-2 s-1 Assumed Flux control coefficient=0 KmADP=0.27 mM (Kuntz and Krietsch, 1982) KmATP=0.3 mM (Kuntz and Krietsch, 1982) KmPGA=1.1 mM (Kuntz and Krietsch, 1982) Ke =3.1*10-4 (Kuntz and Krietsch, 1982) (Laisk and Edwards, 2000), Estimated Vmax=48.0 μmol m-2 s-1 5.4.2.1 and 4.2.1.11 Flux control coefficient=0 KmPGA=0.1 mM (Laisk and Edwards, 2000) KmPEP=0.5 mM (Laisk and Edwards, 2000) Ke=0.4302 (Laisk and Edwards, 2000) (Laisk and Edwards, 2000), Estimated Vmax=30.0 μmol m-2 s-1 2.7.1.40 4.1.1.31 2.6.1.1 1.1.1.41 Flux control coefficient=0 KmADP=0.037 mM (Hu and Plaxton, 1996) KmPEP=0.033 mM (Hu and Plaxton, 1996) Ke=6452 (Hu and Plaxton, 1996) Vmax=0.6 μmol m-2 s-1 (Kowallik and Ruyters, 1976), Estimated Flux control coefficient=0 KmPEP=0.2 mM (Tripodi et al., 2005) Vmax=30.0 μmol m-2 s-1 (Gehlen et al., 1996) KmGLU=13.2 mM (Yagi et al., 1993) KmOAA=0.048 mM (Yagi et al., 1993) KmASP=3.7 mM (Yagi et al., 1993) KmKG=0.105 mM (Yagi et al., 1993) Vmax=60.0 μmol m-2 s-1 (Griffith and Vance, 1989), Estimated Flux control coefficient=0 KmICIT=0.12 mM (Igamberdiev and Gardeström, 2003) KmNAD+=0.2 mM (Igamberdiev and Gardeström, 2003) KiNADPH_NAD+=0.26 mM (Igamberdiev and Gardeström, 2003) KiNADH_NAD+=0.18 mM (Igamberdiev and Gardeström, 2003) Vmax=30.0 μmol m s Estimated Flux control coefficient=0 KmICIT=0.031 mM (Pickworth Glusker, 1971) KmCIT=0.4 mM (Pickworth Glusker, 1971) Vmax=30.0 μmol m s (Brouquisse et al., 1987) KmAceCoA=0.031 mM (Iredale, 1979) KmOAA=0.016 mM (Iredale, 1979) KiATP_AceCoA=5.0 mM (Iredale, 1979) Vmax=60.0 μmol m-2 s-1 Assumed Flux control coefficient=0 KmCO2=0.008 mM (Makino et al., 1985) KmO2=0.37 mM (Makino et al., 1985) KmRuBP=0.020 mM (Farquhar, 1979) KiPGA=0.84 mM (Badger and Lorimer, 1981) KiFBP=0.04 mM (Badger and Lorimer, 1981) KiSBP=0.075 mM (Badger and Lorimer, 1981) KiPi=0.9 mM (Badger and Lorimer, 1981) KiNADPH=0.07 mM (Badger and Lorimer, 1981) -2 -1 4.2.1.3 -2 -1 2.3.3.1 4.1.1.39 m-2 s-1 2.7.2.3chl VCmax=87.4 μmol VOmax=29.7 μmol m-2 s-1 (Kanai and Edwards, 1999; Caemmerer, 2000) KmGPA=0.24 mM (Larsson-Raźnikiewicz, 1967; Köpke-Secundo et al., 1990) KmATP=0.39 mM (Larsson-Raźnikiewicz, 1967; Köpke-Secundo et al., 1990) KmADP=0.23 mM (Lee 1982) Ke=7.6 * 10-4 (Dietz and Heber, 1984; Laisk et al., 1989) (Laisk and Edwards, 2000), Estimated Vmax=600 μmol m-2 s-1 1.2.1.13 Flux control coefficient=0 KmBPGA=0.004 mM (Trost et al., 1993) KmNADPH=0.1 mM (Zhu et al., 2007) (Laisk and Edwards, 2000), Estimated Vmax=121 μmol 5.3.1.1 m-2 s-1 Flux control coefficient=0 Ke=0.05 (Bassham and Krause, 1969) KmGAP=0.68 mM (Kurzok and Feierabend, 1984) KmDHAP=2.5 mM (Laisk and Edwards, 2000) Vmax=3000 μmol m-2 s-1 Assumed Flux control coefficient=0 4.1.2.13FBP 3.1.3.11 2.2.1.1F6P 4.1.2.13SBP 3.1.3.37 2.2.1.1S7P KmGAP=0.3 mM (Iwaki et al., 1991) KmDHAP=0.4 mM (Iwaki et al., 1991) KmFBP=0.02 mM (Brooks and Criddle, 1966; Schnarrenberger et al., 1986) Ke=7.1 (Bassham and Krause, 1969) Vmax=58.5 μmol m-2 s-1 (Wang et al, 2014) KmFBP=0.033 mM (Charles and Halliwell, 1981) KiF6P=0.7 mM (Heldt 1983) KiPi=12 mM (Charles and Halliwell, 1981) Ke=6.7*105 Bassham and Krause (1969), Laisk et al. (1989) Vmax=21.0 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 KmF6P=0.1 mM (Wang et al., 2014) KmE4P=0.1 mM (Wang et al., 2014) KmXu5P=0.1 mM (Laisk et al., 1989) KmGAP=0.1 mM (Sprenger et al., 1995) Ke=0.08 (Datta and Racker, 1961) Vmax=93.0 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 KmSBP=0.02 mM (Brooks and Criddle, 1966) KmDHAP=0.4 mM (Iwaki et al., 1991) KmE4P=0.2 mM (Zhu et al., 2007) Ke=1.07 (Bassham and Krause, 1969; Laisk et al., 1989) Vmax=36.6 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 KmSBP=0.05 mM (Woodrow and Walker, 1983; Cadet and Meunier, 1988) KiPi=12 mM (Woodrow and Walker, 1983) Ke=6.7*105 (Bassham and Krause, 1969; Laisk et al., 1989) Vmax=29.2 μmol m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmGAP=0.072 mM (Laisk et al., 1989; Albe, 1991) KmRi5P=1.5 mM (Laisk et al., 1989; Albe, 1991) KmS7P=0.46 mM (Laisk et al., 1989; Albe, 1991) KmXu5P=0.1 mM (Laisk et al., 1989; Albe, 1991) Ke=1.176 (Bassham and Krause, 1969; Laisk et al., 1989) 2.7.1.19 3.6.3.14 5.3.1.9chl 5.4.2.2 Vmax=93.0 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 KiADP=2.5 mM (Gardemann et al., 1983) KiADP=0.4 mM (Gardemann et al., 1983) KiPGA=2.0 mM (Gardemann et al., 1983) KiPi=4.0 mM (Gardemann et al., 1983) KiRuBP=0.7 mM (Gardemann et al., 1983) KmATP=0.625 mM (Slabas and Walker, 1976) KmRu5P=0.05 mM (Gardemann et al., 1983; Omnaas et al., 1985) Ke=6846 (Bassham and Krause, 1969; Laisk et al., 1989) Vmax=1170.0 μmol m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmADP=0.014 mM (Davenport and McCarty, 1986) KmPi=0.3 mM (Aflalo and Shavit, 1983) KmATP=0.3 mM (Laisk et al., 1989) Ke=5.7 (Bassham and Krause, 1969; Laisk et al., 1989) Vmax=180 μmol m-2 s-1 (Wang et al., 2014), with modification1 Flux control coefficient=0 Ke=2.3 (Bassham and Krause 1969) Vmax=49.4 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 Ke=0.058 (Colowick and Sutherland, 1942) Vmax=300 μmol 2.7.7.27 m-2 s-1 KmG1P=0.031 mM (Copeland and Preiss, 1981) KmATP=0.045 mM (Copeland and Preiss, 1981) KaPGA=0.2252 mM (Wang et al., 2014) KiPi_ATP=0.97 mM (Copeland and Preiss, 1981) KmPPi=0.033 mM (Amir and Cherry, 1972) KmADPG=0.24 mM (Sowokinos, 1981) KiADP_ATP=2.0 mM (Ghosh and Preiss, 1966) -4 3.6.1.1 KiPPi_ATP=3.8*10 mM (Amir and Preiss, 1982) Ke=1.1 (Espada, 1962) Vmax=30 μmol m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmPPi=0.154 mM (Van et al., 2005) Ke=1.57*10-4 (Flodgaard and Fleron, 1974) Vmax=3000 μmol 2.4.1.21 3.1.3.18 (Zhu et al., 2007; Wang et al., 2014) m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmADPG=0.077 mM (Hawker et al., 1974) Vmax=30 μmol m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmPGCA=0.026 mM (Christeller and Tolbert, 1978) 2.7.1.31 1.1.3.15 2.6.1.45 KiPi=2.55 mM (Christeller and Tolbert, 1978) KiGCA=94 mM (Christeller and Tolbert, 1978) Vmax=1572 μmol m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmATP=0.21 mM (Kleczkowski et al., 1985) KmGCEA=0.25 mM (Kleczkowski et al., 1985) KiPGA=0.36 mM (Kleczkowski et al., 1986) Ke=300 (Kleczkowski et al., 1985) Vmax=300 μmol m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmGCA=0.1 mM (Tolbert, 1981) Vmax=44 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 Ke=0.24 (Zhu et al., 2007) KmGOA=0.15 mM (Nakamura and Tolbert, 1983) KmSER=2.7 mM (Nakamura and Tolbert, 1983) KiGLY=33 mM (Nakamura and Tolbert, 1983) Vmax=100 μmol 1.1.1.29 2.6.1.4 GLy_Ser (Kleczkowski and Edwards, 1989) KmHPR=0.09 mM (Kleczkowski and Edwards, 1989) Ke=2.5*10-5 (Zhu et al., 2007) Vmax=300 μmol m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) Ke=607 (Cooper and Meister, 1972) Vmax=82.4 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 KmGOA=0.15 mM (Nakamura and Tolbert 1983) KmGLU=1.7 mM (Nakamura and Tolbert 1983) KiGLY=2.0 mM (Zhu et al., 2007) KmGLY=6.0 mM (Douce et al., 2001) KiSER=4.0 mM (Douce et al., 2001) m-2 s-1 4.1.2.13Cyt (Zhu et al., 2007; Wang et al., 2014) KmGCA=0.2 mM (Howitz and McCarty, 1985) KiGCEA=0.22 mM (Howitz and McCarty, 1985) Vmax=300 μmol Tgcea (Zhu et al., 2007; Wang et al., 2014) KiHPR=12 mM Vmax=75 μmol Tgca m-2 s-1 m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmGCEA=0.39 mM (Howitz and McCarty, 1985) KiGCA=0.28 mM (Howitz and McCarty, 1985) Vmax=250 μmol m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmFBP=0.02 mM (Brooks and Criddle, 1966; Schnarrenberger et al., 1986) KmGAP=0.3 mM (Iwaki et al., 1991) KmDHAP=0.45 mM (Iwaki et al., 1991) Ke=12 (Zhu et al., 2007) Vmax=21 μmol m s (Zhu et al., 2007; Wang et al., 2014) KmG1P=0.055 mM (Sowokinos et al., 1993) KmUTP=0.1 mM (Nakano et al., 1989) KmUDPG=0.12 mM (Nakano et al., 1989) KmPPi=0.11 mM (Nakano et al., 1989) Ke=0.31 (Nakano et al., 1989) Vmax=33.5 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 KmF6P=0.8 mM (Lunn and ap Rees, 1990) KmUDPG=1.3 mM (Lunn and ap Rees, 1990) KiUDP=0.7 mM (Harbron et al., 1981) KiFBP=0.8 mM (Harbron et al., 1981) KiSUCP=0.4 mM (Harbron et al., 1981) KiPi=1.75 mM (Amir and Preiss, 1982) KiSucrose=50 mM (Salerno and Pontis, 1978) Ke=10 (Lunn and ap Rees, 1990) Vmax=46.6 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 KmSUCP=0.105 mM (Echeverria et al., 1997) KiSUC=80 mM (Whitaker, 1984) Ke=780 (Lunn and ap Rees, 1990) Vmax=27.8 μmol m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmF26BP=0.032 mM (Macdonald et al., 1989) KiF6P=0.1 mM (Villadsen and Nielsen, 2001) KiPi=0.5 mM (Villadsen and Nielsen, 2001) -2 -1 2.7.7.9 2.4.1.14 3.1.3.24 3.1.3.46 Vmax=21 μmol 2.7.1.105 (Zhu et al., 2007; Wang et al., 2014) KiADP=0.16 mM (Kretschmer and Hofmann, 1984) KiDHAP=0.7 mM (Markham and Kruger, 2002) KmF6P=1.4 mM (Markham and Kruger, 2002) KmATP=1.32 mM (Markham and Kruger, 2002) KmF26BP=0.021 mM (Defrutos and Baanante, 1994) Ke=590 (Cornish-Bowden 1997) Vmax=33 μmol 2.7.1.90 m-2 s-1 m-2 s-1 (Zhu et al., 2007; Wang et al., 2014) KmF6P=0.3 mM (Mahajan and Singh, 1989) KmPPi=0.025 mM (Mahajan and Singh, 1989) KmFBP=0.139 mM (Mahajan and Singh, 1989) 5.3.1.9Cyt KmPi=0.129 mM (Mahajan and Singh, 1989) KiPi_F6P=0.78 mM (Mahajan and Singh, 1989) KiPi_PPi=1.2 mM (Mahajan and Singh, 1989) Vmax=30 μmol m-2 s-1 (Zhu et al., 2007), with modification1 Flux control coefficient=0 Ke=2.3 (Bassham and Krause, 1969) KmF6P=0.58 mM (Backhausen et al., 1997) KmG6P=8.0 mM (Backhausen et al., 1997) Vmax=30 μmol 1.4.7.1 6.3.1.2 1.4.1.3 1.1.99.14 m-2 s-1 KmGLN=0.53 mM (Hirasawa and Tamura, 1984) KmKG=0.062 mM (Hirasawa and Tamura, 1984) KmFDXH=0.002 mM (Hirasawa et al., 1986) Vmax=3 μmol m-2 s-1 Assumed Flux control coefficient=0 Ke=3000 (Ericson, 1985) KmATP=1.8 mM (Ericson, 1985) KmGLU=6.7 mM (Ericson, 1985) KmNH3=0.4 mM (Pushkin et al., 1985) Vmax=45 μmol m-2 s-1 Assumed Flux control coefficient=0.00 Ke=71429.0 (Moyano et al., 1992) KmNADPH=1.75*10-4 mM (Moyano et al., 1992) KmKG=0.59 mM (Moyano et al., 1992) KmNH3=0.0424 mM (Engel and Dalziel, 1969) Vmax=2.4 μmol m-2 s-1 Assumed Flux control coefficient=0 KmGCA=0.04 mM (Lord, 1972) Vmax=15 μmol m-2 s-1 4.1.1.47 KmGOA=0.9 mM Vmax=30 μmol m-2 s-1 1.1.1.60 (Zhu et al., 2007; Wang et al., 2014) Estimated to make sure 50% of the photorespiratory went through the bypass (Kaplun et al., 2008) Assumed Flux control coefficient=0 (Kebeish bypass and Carvalho bypass) Ke=1.6 * 10-5 (Gotto and Kornberg, 1961) KmGCEA=0.278 mM (Njau et al., 2000) KmNAD+=0.028 mM (Njau et al., 2000) kmTS=0.05 mM (Kohn, 1968) KmNADH=0.02 mM (Kohn, 1968) Vmax=300 μmol m-2 s-1 2.3.3.9 KmGOA=2 mM (Bowden and Lord, 1978) KmAceCoA=0.01 mM (Bowden and Lord, 1978) KiGCA=0.15 mM (Bowden and Lord, 1978) Vmax=43.5 μmol m-2 s-1 1.1.1.40 Assumed Flux control coefficient=0 (Kebeish bypass) Assumed Flux control coefficient=0.33 (Maier bypass) Ke=0.051 (Harary et al., 1953) kmMAL=0.23 mM (Wheeler et al., 2005) KmNADP+=0.0102 mM (Wheeler et al., 2005) KmPYR=26.3 mM (Wheeler et al., 2005) Vmax=30 μmol m-2 s-1 Assumed Flux control coefficient=0 (Maier bypass) KmPYR=0.09 mM (Rapp et al., 1987) KmCOA=0.003 mM (Rapp et al., 1987) KmNAD+=0.051 mM (Rapp et al., 1987) KiAceCoA=0.02 mM (Rapp et al., 1987) KiNADH=0.015 mM (Rapp et al., 1987) Vmax=300 μmol m-2 s-1 Assumed Flux control coefficient=0.01 (Maier bypass) Vmax=43.5 μmol m-2 s-1 (Ashiuchi and Misono, 1999) Ke=0.4 (De Windt and Van Der Drift, 1980) KmHPR=12.5 mM (Ashiuchi and Misono, 1999) KmTS=15 mM Assumed Flux control coefficient=0 (Carvalho bypass) 5.1.3.1 Ke=0.67 (Bassham and Krause 1969) 5.3.1.6 Ke=0.4 (Bassham and Krause 1969) GDC KmGLY=6.0 mM (Zhu et al., 2007) KISER=4.0 mM (Zhu et al., 2007) Vmax=75μmol m-2 s-1 (Zhu et al., 2007) KmGLU=1.2 mM (Flügge et al., 1988) KIKG =0.7 mM (Flügge et al., 1988) 1.2.4.1 5.3.1.22 Tglu Tkg 2.7.4.6 SucSink Tpga Tgap KIMAL=1.2 mM (Flügge et al., 1988) Vmax=12.6 μmol m-2 s-1 (Flügge et al., 1988) KmKG=0.3 mM (Yu and Woo, 1992) KIMAL=3.1 mM (Flügge et al., 1988) KIGLU=2.2 mM (Flügge et al., 1988) Vmax=58.2 μmol m-2 s-1 (Yu and Woo, 1992) KmATP =0.89 mM (Nomura et al., 1991) KmUDP =0.091 mM (Nomura et al., 1991) Ke= 1.04 (Lynn and Guynn, 1978) Vmax=183 (Zhu et al., 2007) KmSUC=1.5 mM (Riesmeier et al., 1992) Vmax=0.21μmol m-2 s-1 (Zhu et al., 2007) KIGAP=0.3 mM (Gross et al., 1990) KmPi =0.28 mM (Gross et al., 1990) KIDHAP=0.3 mM (Gross et al., 1990) KI2PGA =3.9 mM (Gross et al., 1990) KIPGA =0.32 mM (Gross et al., 1990) KIPEP=4.7 mM (Gross et al., 1990) KmGAP=0.075 mM (Fliege et al., 1978; Zhu et al., 2007) kmPGA=0.25 mM (Fliege et al., 1978; Zhu et al., 2007) Vmax=42.6 μmol m-2 s-1 (Zhu et al., 2007) KmPi =0.28 mM (Gross et al., 1990) KIGAP =0.3 mM (Gross et al., 1990) KIPEP =4.7 mM (Gross et al., 1990) KIPGA =3.9 mM (Gross et al., 1990) KIPGA =0.32 mM (Gross et al., 1990) KIDHAP =0.3 mM (Gross et al., 1990) KmGAP =0.075 mM (Fliege et al., 1978; Zhu et al., 2007) Tdhap 1 KmPGA =0.25 mM (Fliege et al., 1978; Zhu et al., 2007) KmDHAP =0.077 mM (Fliege et al., 1978; Zhu et al., 2007) Vmax=42.6 μmol m-2 s-1 (Zhu et al., 2007) KmPi =0.28 mM (Gross et al., 1990) KIGAP =0.3 mM (Gross et al., 1990) KIPEP =4.7 mM (Gross et al., 1990) KIPGA =3.9 mM (Gross et al., 1990) KIPGA =0.32 mM (Gross et al., 1990) KIDHAP =0.3 mM (Gross et al., 1990) KmGAP =0.075 mM (Fliege et al., 1978; Zhu et al., 2007) KmPGA =0.25 mM (Fliege et al., 1978; Zhu et al., 2007) KmDHAP =0.077 mM (Fliege et al., 1978; Zhu et al., 2007) Vmax=162.6 μmol m-2 s-1 (Zhu et al., 2007) Zhu et al. (2007) assumed a relatively high Rubisco capacity per unit area. To tailor our model closer to the Arabidopsis plants in which the bypasses were implemented, we reduced the V cmax of Rubisco per unit area to a value more likely for Arabidopsis. Other enzyme activities from Zhu et al. were scaled with the same factor. Table S2. Initial values of metabolite concentrations used in the model. Metabolite Concentration Compartment Reference name (mM) CO2 0.004 Chloroplast Assumed PGA 6.188 Chloroplast (Zhu et al., 2007) DPGA 0.005 Chloroplast (Zhu et al., 2007) RuBP 2.0 Chloroplast (Bassham and Krause, 1969; Dietz and Heber, 1984; Woodrow and Mott, 1993) ATP 1.49 Chloroplast (Zhu et al., 2007) ATP 1.35 Chloroplast (Zhu et al., 2007) PGCA 1.29 Chloroplast (Zhu et al., 2007) GCA 5.22 Chloroplast (Zhu et al., 2007) GCEA 1.68 Chloroplast (Zhu et al., 2007) PPi 0 Chloroplast Assumed ADPG 0 Chloroplast Assumed GAP 0.15 Chloroplast (Zhu et al., 2007) Pi 0.35 Chloroplast (Zhu et al., 2007) DHAP 6 Chloroplast (Zhu et al., 2007) GOA 0 Chloroplast Assumed TS 0 Chloroplast Assumed Ri5P 0.415 Chloroplast (Zhu et al., 2007) Xu5P 0.05 Chloroplast (Zhu et al., 2007) Ru5P 0.07 Chloroplast (Zhu et al., 2007) O2 0.2646 Chloroplast (Zhu et al., 2007) NH3 0.2 Chloroplast Assumed Malate 3.0 Chloroplast (Heineke et al., 1991) FDXH 0.1 Chloroplast Assumed FDX 0.1 Chloroplast Assumed KG 0.16 Chloroplast (Heineke et al., 1991) GLU 25.2 Chloroplast (Heineke et al., 1991) GLN 20 Chloroplast (Winter et al., 1994) NAD+ 1 Chloroplast Assumed NADH 1 Chloroplast Assumed NADPH 0.21 Chloroplast (Woodrow and Mott, 1993; Zhu et al., 2007) NADP+ 0.79 Chloroplast (Woodrow and Mott, 1993; Zhu et al., 2007) SBP 0.3 Chloroplast (Bassham and Krause, 1969; Woodrow and Mott, 1993; Zhu et al., 2007) S7P 0.4 Chloroplast (Bassham and Krause, 1969; Woodrow and Mott, 1993; Zhu et al., 2007) FBP 0.03 Chloroplast (Leegood, 1985; Zhu et al., 2007) E4P 0.2 Chloroplast (Bassham and Krause, 1969; Woodrow and Mott, 1993) Starch 0 Chloroplast Assumed F6P 0.1 Chloroplast (Zhu et al., 2007) G6P 0.25 Chloroplast (Zhu et al., 2007) G1P 0.015 Chloroplast (Zhu et al., 2007) AceCOA 0.035 Chloroplast Assumed CoA 0.002 Chloroplast Assumed GCA 0.0185 Peroxisome (Zhu et al., 2007) GOA 0.0073 Peroxisome (Zhu et al., 2007) O2 0.265 Peroxisome Assumed GLY 1.32 Peroxisome Assumed GLU 24 Peroxisome (Heineke et al., 1991; Hu and Plaxton, 1996) KG 0.4 Peroxisome (Heineke et al., 1991; Hu and Plaxton, 1996) HPR 0.0022 Peroxisome (Zhu et al., 2007) GCEA 0.667 Peroxisome (Zhu et al., 2007) NADH 0.47 Peroxisome Assumed NAD+ 0.4 Peroxisome Assumed TS 0 Peroxisome Assumed DHAP 9.15 Cytosol (Zhu et al., 2007) Pi 5 Cytosol (Zhu et al., 2007) GAP 0.42 Cytosol (Zhu et al., 2007) PGA 0.067 Cytosol (Zhu et al., 2007) FBP 1.4 Cytosol (Leegood, 1985) F6P 0.24 Cytosol (Zhu et al., 2007) G6P 0.068 Cytosol (Zhu et al., 2007) G1P 1 Cytosol (Zhu et al., 2007) UDPG 0.62 Cytosol (Zhu et al., 2007) UTP 0.75 Cytosol (Zhu et al., 2007) SUCP 0 Cytosol Assumed SUC 0 Cytosol Assumed UDP 0.13 Cytosol (Zhu et al., 2007) F26BP 0.037 Cytosol (Zhu et al., 2007) ATP 0.35 Cytosol (Zhu et al., 2007) ADP 0.65 Cytosol (Zhu et al., 2007) PPi 0 Cytosol Assumed 2PGA 0 Cytosol Assumed PEP 0 Cytosol Assumed PYR 0 Cytosol Assumed NAD+ 0.6 Cytosol (Heineke et al., 1991) NADH 0.06 Cytosol (Heineke et al., 1991) DPGA 0 Cytosol Assumed CO2 0.009 Cytosol Assumed OAA 0.098 Cytosol (Heineke et al., 1991) Malate 1 Cytosol (Hu and Plaxton, 1996) ASP 0 Cytosol Assumed NADP+ 0 Cytosol Assumed NADPH 0 Cytosol Assumed CoA 1 Mitochondria Assumed AceCOA 1 Mitochondria Assumed NAD+ 0.4 Mitochondria Assumed NADH 0.47 Mitochondria Assumed CIT 0 Mitochondria Assumed ICIT 0 Mitochondria Assumed KG 0 Mitochondria Assumed SER 0.14 Mitochondria Assumed CO2 0 Mitochondria Assumed Table S3. Additional parameters used in the model. Parameter Value Reference partial pressue of CO2 concentration in the intercellular airspace 27 Pa We assumed an ambient CO2 partial pressure of 38.5 Pa and that the ratio between intercellular and ambient partial pressures was 0.7 (Wong et al., 1985) Light intensity 1000 μmol m-2 s-1 Saturating light O2 concentration 21 kPa Current ambient conditions CO2 conductance between cytosol and chloroplast stroma 10-4 2.5 * m s-1 Estimated, based on (Uehlein et al., 2008; Evans et al., 2009) CO2 conductance between cytosol and mitochondria 0.005 m s-1 Assumed CO2 conductance between cytosol and intercellular space 0.001 m s-1 Estimated, based on (Evans et al., 2009) Cytosol volume per unit of chlorophyll 24 μl (mg Chl)-1 (Winter et al., 1994) Mitochondria volume per unit of chlorophyll 3.7 μl (mg Chl)-1 (Winter et al., 1994) Chl)-1 (Winter et al., 1994) Chloroplast volume per unit of chlorophyll 66 μl (mg Mesophyll surface area per unit of leaf area m2 Mitochondria surface area per unit of leaf area 15 m-2 9.48 m2 m-2 (Slaton and Smith, 2002) (Slaton and Smith, 2002) Table S4. Predicted photosynthesis of wild type plants under ambient conditions. Ci=27 Par, PAR=1000 μmol m-2 s-1. Photosynthetic rate (μmol m-2 s-1) Photorespiration rate (μmol m-2 s-1) Wild Type 12.52 4.8 Table S5. The effects of glyoxylate carboligase (GCL) and hydroxypyruvate isomerase (HYI) enzyme parameters on the photosynthetic rate and on the proportion of the photorespiratory fluxes through the Carvalho-bypass under low light conditions (Ci=27 Pa and PAR=200 μmol m-2 s-1). A (μmol m-2 s-1) Proportion of the photorespiratory fluxes through Carvalho-bypass flux (μmol m-2 s-1) With default parameters 4.96 0.01 % Vgcl × 1000 4.99 (+0.6%) 7.63% Kmgcl:GOA × 0.1 4.96 1.05% Kmgcl:GOA × 0.001 5.10 (+2.8%) 31.5% Vhyi × 100 4.96 0.01 % Vhyi × 1000 4.96 0.01 % Kmhyi:HPR × 0.1 4.96 0.01 % Kmhyi:HPR × 0.01 4.96 0.01 % Kmhyi:HPR × 0.001 4.96 0.01 % Table S6. The photosynthetic rate predicted for several scenarios where the energy cost for ammonia refixation was completely abolished and/or all photorespiratory CO2 release was relocated into chloroplasts. Results are calculated for different light intensities and CO2 partial pressures. Ci (Pa) High light Low light (PAR = 1000 μmol m-2 s-1) (PAR = 200 μmol m-2 s-1) Only WT reduced ATP cost Only relocating CO2 release WT Only reduced ATP cost Only relocating CO2 release 10 2.03 2.03 (+0%) 4.46 (+119.7%) 1.70 1.90 (+11.8%) 2.20 (+29.4%) 27 12.52 12.52 (+0%) 14.43 (+15.3%) 4.96 5.19 (+4.6%) 5.06 (+2.0%) 50 21.10 21.0 (+0%) 21.41 (+1.5%) 6.89 7.16 (+3.9%) 6.90 (+0.1%) Table S7. Effect of variation in the maximal enzyme activity (Vmax) on the photosynthetic rates of wild type and Kebeish-bypass plants under ambient conditions (Ci=27 Pa, PAR=1000 μmol m-2 s-1). With the default Vmax values, the predicted photosynthetic rate of wild type was 12.52 μmol m-2 s-1, and that of plants with a Kebeishbypass was 13.53 μmol m-2 s-1. The Vmax of enzymes that were not listed had no significant effect on the photosynthetic rate. Photosynthetic rate (μmol m-2 s-1) Enzyme ID With 110% of the default Vmax With 90% of the default Vmax Wild Type Bypass Wild Type Bypass 4.1.1.39O2 12.11 13.08 12.97 13.93 4.1.1.39CO2 13.15 14.16 11.80 12.77 1.1.99.14 12.52 13.58 12.52 13.47 3.1.3.37 12.56 13.63 12.31 13.07 2.7.2.3Chl 12.52 13.53 12.52 13.53 Reference Aflalo C, Shavit N (1983) Steady-state kinetics of photophosphorylation: Limited access of nucleotides to the active site on the ATP synthetase. FEBS Lett 154: 175–179 Albe KR (1991) Partial purification and kinetic characterization of transaldolase fromDictyostelium discoideum. Exp Mycol 15: 255–262 Amir J, Cherry JH (1972) Purification and properties of adenosine diphosphoglucose pyrophosphorylase from sweet corn. Plant Physiol 49: 893–7 Amir J, Preiss J (1982) Kinetic characterization of spinach leaf sucrose-phosphate synthase. Plant Physiol 69: 1027–30 Ashiuchi M, Misono H (1999) Biochemical evidence that Escherichia coli hyi (orf b0508, gip) gene encodes hydroxypyruvate isomerase. Biochim Biophys Acta 1435: 153–9 Backhausen JE, Jöstingmeyer P, Scheibe R (1997) Competitive inhibition of spinach leaf phosphoglucose isomerase isoenzymes by erythrose 4-phosphate. Plant Sci 130: 121–131 Badger MR, Lorimer GH (1981) Interaction of sugar phosphates with the catalytic site of ribulose1,5-bisphosphate carboxylase. Biochemistry 20: 2219–25 Bassham JA, Krause GH (1969) Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim Biophys Acta - Bioenerg 189: 207–221 Bowden L, Lord JM (1978) Purification and Comparative Properties of Microsomal and Glyoxysomal Malate Synthase from Castor Bean Endosperm. Plant Physiol 61 : 259–265 Brooks K, Criddle RS (1966) Enzymes of the carbon cycle of photosynthesis. Arch Biochem Biophys 117: 650–659 Brouquisse R, Nishimura M, Gaillard J, Douce R (1987) Characterization of a cytosolic aconitase in higher plant cells. Plant Physiol 84: 1402–7 Cadet F, Meunier JC (1988) pH and kinetic studies of chloroplast sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea). Biochem J 253: 249–54 Caemmerer S Von (2000) Biochemical Models of Leaf Photosynthesis. 29–71 Charles SA, Halliwell B (1981) Light activation of fructose bisphosphatase in photosynthetically competent pea chloroplasts. Biochem J 200: 357–63 Christeller JT, Tolbert NE (1978) Phosphoglycolate phosphatase. Purification and properties. J Biol Chem 253: 1780–5 Colowick SP, Sutherland EW (1942) Polysaccharide synthesis from glucose by means of purified enzymes. J Biol Chem 144: 423–437 Cooper J, Meister A (1972) Isolation and properties of highly purified glutamine transaminase. Biochemistry 11: 661–71 Copeland L, Preiss J (1981) Purification of Spinach Leaf ADPglucose Pyrophosphorylase. PLANT Physiol 68: 996–1001 Datta AG, Racker E (1961) Mechanism of action of transketolase. I. Properties of the crystalline yeast enzyme. J Biol Chem 236: 617–23 Davenport JW, McCarty RE (1986) Relationships between rates of steady-state ATP synthesis and the magnitude of the proton-activity gradient across thylakoid membranes. Biochim Biophys Acta - Bioenerg 851: 136–145 Defrutos PG, Baanante I V (1994) 6-Phosphofructo 2-Kinase/Fructose 2,6-Bisphosphatase in Liver of the Teleost Sparus aurata. Arch Biochem Biophys 308: 461–468 Dietz K-J, Heber U (1984) Rate-limiting factors in leaf photosynthesis. I. Carbon fluxes in the calvin cycle. Biochim Biophys Acta - Bioenerg 767: 432–443 Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6: 167–76 Echeverria E, Salvucci ME, Gonzalez P, Paris G, Salerno G (1997) Physical and Kinetic Evidence for an Association between Sucrose-Phosphate Synthase and Sucrose-Phosphate Phosphatase. Plant Physiol 115: 223–227 Engel PC, Dalziel K (1969) Kinetic studies of glutamate dehydrogenase with glutamate and norvaline as substrates. Coenzyme activation and negative homotropic interactions in allosteric enzymes. Biochem J 115: 621–31 Ericson MC (1985) Purification and properties of glutamine synthetase from spinach leaves. Plant Physiol 79: 923–7 Espada J (1962) Enzymic Synthesis of Adenosine Diphosphate Glucose from Glucose 1-Phosphate and Adenosine Triphosphate. J Biol Chem 237: 3577–3581 Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60: 2235–48 Farquhar GD (1979) Models describing the kinetics of ribulose biphosphate carboxylase-oxygenase. Arch Biochem Biophys 193: 456–468 Fliege R, Flügge UI, Werdan K, Heldt HW (1978) Specific transport of inorganic phosphate, 3phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta 502: 232–47 Flodgaard H, Fleron P (1974) Thermodynamic Parameters for the Hydrolysis of Inorganic Pyrophosphate at pH 7.4 as a Function of [Mg2+], [K+], and Ionic Strength Determined from Equilibrium Studies of the Reaction. J Biol Chem 249: 3465–3474 Flügge IU, Woo KC, Heldt HW (1988) Characteristics of 2-oxoglutarate and glutamate transport in spinach chloroplasts. Planta 174: 534–541 Gardemann A, Stitt M, Heldt HW (1983) Control of CO2 fixation. Regulation of spinach ribulose-5phosphate kinase by stromal metabolite levels. Biochim Biophys Acta - Bioenerg 722: 51–60 Gehlen J, Panstruga R, Smets H, Merkelbach S, Kleines M, Porsch P, Fladung M, Becker I, Rademacher T, Häusler RE, et al (1996) Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plant Mol Biol 32: 831–48 Ghosh HP, Preiss J (1966) Adenosine Diphosphate Glucose Pyrophosphorylase.A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem 241: 4491–4504 Gotto AM, Kornberg HL (1961) The metabolism of C2 compounds in micro-organisms. 7. Preparation and properties of crystalline tartronic semialdehyde reductase. Biochem J 81: 273–84 Griffith SM, Vance CP (1989) Aspartate Aminotransferase in Alfalfa Root Nodules : I. Purification and Partial Characterization. PLANT Physiol 90: 1622–1629 Gross A, Brückner G, Heldt HW, Flügge UI (1990) Comparison of the kinetic properties, inhibition and labelling of the phosphate translocators from maize and spinach mesophyll chloroplasts. Planta 180: 262–71 Harary I, Korey S, Ochoa S (1953) Biosynthesis of dicarboxylic acids by carbon dioxide fixation. VII. Equilibrium of malic enzyme reaction. J Biol Chem 203: 595–604 Harbron S, Foyer C, Walker D (1981) The purification and properties of sucrose-phosphate synthetase from spinach leaves: the involvement of this enzyme and fructose bisphosphatase in the regulation of sucrose biosynthesis. Arch Biochem Biophys 212: 237–46 Hawker JS, Ozbun JL, Ozaki H, Greenberg E, Preiss J (1974) Interaction of spinach leaf adenosine diphosphate glucose alpha-1,4-glucan alpha-4-glucosyl transferase and alpha-1,4-glucan, alpha1,4-glucan-6-glycosyl transferase in synthesis of branched alpha-glucan. Arch Biochem Biophys 160: 530–51 Heineke D, Riens B, Grosse H, Hoferichter P, Peter U, Flügge UI, Heldt HW (1991) Redox Transfer across the Inner Chloroplast Envelope Membrane. Plant Physiol 95: 1131–7 Hirasawa M, Boyer JM, Gray KA, Davis DJ, Knaff DB (1986) The interaction of ferredoxin with chloroplast ferredoxin-linked enzymes. Biochim Biophys Acta - Bioenerg 851: 23–28 Hirasawa M, Tamura G (1984) Flavin and Iron-Sulfur Containing Ferredoxin-Linked Glutamate Synthase from Spinach Leaves. J Biochem 95: 983–994 Howitz KT, McCarty RE (1985) Substrate specificity of the pea chloroplast glycolate transporter. Biochemistry 24: 3645–3650 Hu Z, Plaxton WC (1996) Purification and characterization of cytosolic pyruvate kinase from leaves of the castor oil plant. Arch Biochem Biophys 333: 298–307 Igamberdiev AU, Gardeström P (2003) Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochim Biophys Acta 1606: 117–25 Iglesias AA, Losada M (1988) Purification and kinetic and structural properties of spinach leaf NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys 260: 830–40 Iredale SE (1979) Properties of citrate synthase from Pisum sativum mitochondria. Phytochemistry 18: 1057 Iwaki T, Wadano A, Yokota A, Himeno M (1991) Aldolase--An Important Enzyme in Controlling the Ribulose 1,5-bisphosphate Regeneration Rate in Photosynthesis. Plant Cell Physiol 32: 1083– 1091 Kanai R, Edwards G (1999) The Biochemistry of C4 Photosynthesis. In R Sage, R Monson, eds, C4 Plant Biol., Academic P. Toronto, pp 173–211 Kaplun A, Binshtein E, Vyazmensky M, Steinmetz A, Barak Z, Chipman DM, Tittmann K, Shaanan B (2008) Glyoxylate carboligase lacks the canonical active site glutamate of thiaminedependent enzymes. Nat Chem Biol 4: 113–8 Kleczkowski LA, Edwards GE (1989) Identification of hydroxypyruvate and glyoxylate reductases in maize leaves. Plant Physiol 91: 278–86 Kleczkowski LA, Randall DD, Blevins DG (1986) Purification and characterization of a novel NADPH(NADH)-dependent glyoxylate reductase from spinach leaves. Comparison of immunological properties of leaf glyoxylate reductase and hydroxypyruvate reductase. Biochem J 239: 653–9 Kleczkowski LA, Randall DD, Zahler WL (1985) The substrate specificity, kinetics, and mechanism of glycerate-3-kinase from spinach leaves. Arch Biochem Biophys 236: 185–94 Kohn LD (1968) Tartaric Acid Metabolism: VIII. CRYSTALLINE TARTRONIC SEMIALDEHYDE REDUCTASE . J Biol Chem 243 : 4426–4433 Köpke-Secundo E, Molnar I, Schnarrenberger C (1990) Isolation and characterization of the cytosolic and chloroplastic 3-phosphoglycerate kinase from spinach leaves. Plant Physiol 93: 40–7 Kowallik W, Ruyters G (1976) [Enhancement of pyruvate kinase activity by blue light or glucose in a chlorophyll-free Chlorella-mutant]. Planta 128: 11–4 Kretschmer M, Hofmann E (1984) Inhibition of rat liver phosphofructokinase-2 by phosphoenolpyruvate and ADP. Biochem Biophys Res Commun 124: 793–6 Kuntz GW, Krietsch WK (1982) Phosphoglycerate kinase from spinach, blue-green algae, and yeast. Methods Enzymol 90 Pt E: 110–4 Kurzok H-G, Feierabend J (1984) Comparison of a cytosolic and a chloroplast triosephosphate isomerase isoenzyme from rye leaves: I. Purification and catalytic properties. Biochim Biophys Acta - Protein Struct Mol Enzymol 788: 214–221 Laisk A, Edwards GE (2000) A mathematical model of C4 photosynthesis: The mechanism of concentrating CO2 in NADP-malic enzyme type species. Photosynth Res 66: 199–224 Laisk A, Eichelmann H, Oja V, Eatherall A, Walker DA (1989) A mathematical model of the carbon metabolism in photosynthesis. Difficulties in explaining oscillations by Fructose 2,6-Bisphosphate regulation. Proc R Soc London B Biol Sci 237: 389–415 Larsson-Raźnikiewicz M (1967) Kinetic studies on the reaction catalyzed by phosphoglycerate kinase. Biochim Biophys Acta - Enzymol 132: 33–40 Leegood R (1985) The intercellular compartmentation of metabolites in leaves of Zea mays L. Planta 164: 163–171 Lord JM (1972) Glycolate oxidoreductase in Escherichia coli. Biochim Biophys Acta - Bioenerg 267: 227–237 Lunn JE, ap Rees T (1990) Apparent equilibrium constant and mass-action ratio for sucrosephosphate synthase in seeds of Pisum sativum. Biochem J 267: 739–43 Lynn R, Guynn RW (1978) Equilibrium constants under physiological conditions for the reactions of succinyl coenzyme A synthetase and the hydrolysis of succinyl coenzyme A to coenzyme A and succinate. J Biol Chem 253: 2546–2553 Macdonald FD, Chou Q, Buchanan BB, Stitt M (1989) Purification and characterization of fructose2,6-bisphosphatase, a substrate-specific cytosolic enzyme from leaves. J Biol Chem 264: 5540–4 Mahajan R, Singh R (1989) Properties of Pyrophosphate:Fructose-6-Phosphate Phosphotransferase from Endosperm of Developing Wheat (Triticum aestivum L.) Grains. Plant Physiol 91: 421–6 Makino a, Mae T, Ohira K (1985) Enzymic Properties of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Purified from Rice Leaves. Plant Physiol 79: 57–61 Markham JE, Kruger NJ (2002) Kinetic properties of bifunctional 6-phosphofructo-2kinase/fructose-2,6-bisphosphatase from spinach leaves. Eur J Biochem 269: 1267–77 Moyano E, Cárdenas J, Muñoz-Blanco J (1992) Purification and properties of three NAD(P)+ isozymes of L-glutamate dehydrogenase of Chlamydomonas reinhardtii. Biochim Biophys Acta 1119: 63–8 Nakamura Y, Tolbert NE (1983) Serine: glyoxylate, alanine:glyoxylate, and glutamate:glyoxylate aminotransferase reactions in peroxisomes from spinach leaves. J Biol Chem 258: 7631–8 Nakano K, Omura Y, Tagaya M, Fukui T (1989) UDP-glucose pyrophosphorylase from potato tuber: purification and characterization. J Biochem 106: 528–32 Njau RK, Herndon CA, Hawes JW (2000) Novel beta -hydroxyacid dehydrogenases in Escherichia coli and Haemophilus influenzae. J Biol Chem 275: 38780–6 Nomura T, Fukui T, Ichikawa A (1991) Purification and characterization of nucleoside diphosphate kinase from spinach leaves. Biochim Biophys Acta - Protein Struct Mol Enzymol 1077: 47–55 Omnaas J, Porter MA, Hartman FC (1985) Evidence for a reactive cysteine at the nucleotide binding site of spinach ribulose-5-phosphate kinase. Arch Biochem Biophys 236: 646–53 Pickworth Glusker J (1971) Aconitase. In PD Boyer, ed, Enzym., 3rd Ed. pp 413–439 Pushkin A V., Antoniuk LP, Solovieva NA, Shubin V V., Evstigneeva ZG, Kretovich WL, Cherednikova T V., Tsuprun VL, Zograf ON, Kiselev NA (1985) Glutamine synthetases of pea leaf and seed cytosol. Structure and properties. Biochim Biophys Acta - Protein Struct Mol Enzymol 828: 336–350 Rapp BJ, Miernyk JA, Randal DD (1987) Pyruvate Dehydrogenase Complexes from Ricinus communis Endosperm. J Plant Physiol 127: 293–306 Riesmeier JW, Willmitzer L, Frommer WB (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11: 4705–13 Rosenberg LL, Arnon DI (1955) The preparation and properties of a new glyceraldehyde-3-phosphate dehydrogenase from photosynthetic tissues. J Biol Chem 217: 361–372 Salerno GL, Pontis HG (1978) Studies on sucrose phosphate synthetase: The inhibitory action of sucrose. FEBS Lett 86: 263–267 Schnarrenberger C, Kruger I, Krüger I (1986) Distinction between Cytosol and Chloroplast Fructose- Bisphosphate Aldolases from Pea , Wheat , and Corn Leaves. Plant Physiol 80: 301–304 Slabas AR, Walker DA (1976) Inhibition of spinach phosphoribulokinase by DL-glyceraldehyde. Biochem J 153: 613–9 Slaton MR, Smith WK (2002) Mesophyll Architecture and Cell Exposure to Intercellular Air Space in Alpine, Desert, and Forest Species. Int J Plant Sci 163: 937–948 Sowokinos JR (1981) Pyrophosphorylases in Solanum tuberosum: II. catalytic properties and regulation of adp-glucose and udp-glucose pyrophosphorylase activities in potatoes. Plant Physiol 68: 924–9 Sowokinos JR, Spychalla JP, Desborough SL (1993) Pyrophosphorylases in Solanum tuberosum (IV. Purification, Tissue Localization, and Physicochemical Properties of UDP-Glucose Pyrophosphorylase). Plant Physiol 101: 1073–1080 Speranza ML, Gozzer C (1978) Purification and properties of NAD+-dependent glyceraldehyde-3phosphate dehydrogenase from spinach leaves. Biochim Biophys Acta 522: 32–42 Sprenger GA, Schörken U, Sprenger G, Sahm H (1995) Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains. Eur J Biochem 230: 525–32 Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50: 133–57 Tripodi KE, Turner WL, Gennidakis S, Plaxton WC (2005) In vivo regulatory phosphorylation of novel phosphoenolpyruvate carboxylase isoforms in endosperm of developing castor oil seeds. Plant Physiol 139: 969–78 Trost P, Scagliarini S, Valenti V, Pupillo P (1993) Activation of spinach chloroplast glyceraldehyde 3phosphate dehydrogenase: effect of glycerate 1,3-bisphosphate. Planta 190: 320–326 Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20: 648–57 Van RC, Pan YJ, Hsu SH, Huang YT, Hsiao YY, Pan RL (2005) Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1709: 84–94 Villadsen D, Nielsen TH (2001) N-terminal truncation affects the kinetics and structure of fructose-6phosphate 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochem J 359: 591–7 Wang Y, Long SP, Zhu X-G (2014) Elements Required for an Efficient NADP-ME Type C4 Photosynthesis. Plant Physiol 164: 2231–46 Wheeler MCG, Tronconi MA, Drincovich MF, Andreo CS, Flügge U-I, Maurino VG (2005) A Comprehensive Analysis of the NADP-Malic Enzyme Gene Family of Arabidopsis. Plant Physiol 139 : 39–51 Whitaker DP (1984) Purification and properties of sucrose-6-phosphatase from Pisum sativum shoots. Phytochemistry 23: 2429–2430 De Windt FE, Van Der Drift C (1980) Purification and some properties of hydroxypyruvate isomerase of Bacillus fastidiosus. Biochim Biophys Acta - Enzymol 613: 556–562 Winter H, Robinson DG, Heldt HW (1994) Subcellular volumes and metabolite concentrations in spinach leaves. Planta 193: 530–535 Wong SC, Cowan IR, Farquhar GD (1985) Leaf Conductance in Relation to Rate of CO(2) Assimilation: I. Influence of Nitrogen Nutrition, Phosphorus Nutrition, Photon Flux Density, and Ambient Partial Pressure of CO(2) during Ontogeny. Plant Physiol 78: 821–5 Woodrow I, Mott K (1993) Modelling C3 photosynthesis: A sensitivity analysis of the photosynthetic carbon-reduction cycle. Planta 191: 421–432 Woodrow IE, Walker DA (1983) Regulation of stromal sedoheptulose-1,7-bisphosphatase activity and its role in controlling the reductive pentose phosphate pathway of photosynthesis. Biochim Biophys Acta - Bioenerg 722: 508–516 Yagi T, Sako M, Moriuti S, Shounaka M, Masaki K, Yamamoto S (1993) Purification and characterization of aspartate aminotransferase isoenzymes from rice bran. Biosci Biotechnol Biochem 57: 2074–2080 Yu JW, Woo KC (1992) Ammonia Assimilation and Metabolite Transport in Isolated Chloroplasts. I. Kinetic Measurement of 2-Oxoglutarate and Malate Uptake Via the 2-Oxoglutarate Translocator in Oat and Spinach Chloroplasts. Funct Plant Biol 19: 653–658 Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145: 513–26
© Copyright 2025 Paperzz