26.11.96 , " " 1 fen gn=1 .R V .1 1 n = 1; 2; ::: hf; en i = 2n f 2 V .V [' 25] kf k () .kf + e10 k () . -------------------------------------------: kf k = 2 P1 n=1 jhf; en ij = 2 14 P1 1 1 2 = = = 31 : ( ) n n n=1 4 n=1 2 1? 1 4 kf k = p13 , ()1 P1 . (. ) ()1 kf + e10 k = hf + e10 ; f + e10i = hf; f i + hf; e10 i + he10 ; f i + he10 ; e10 i: 2 kf k + 2hf; e10 i + 1 = + 2 2 kf + e10k = 2 '' 1 2 1 3 10 R + 1 = + 2?9: 4 3 q kf k = . P1 n=1 n 10 = (1 + ( . . 10 ) 1 2 2 n 6= 10 4 3 V + 2?9 n = ? ) 1 2 2n : kf k 6= P1 n=1 jhf; en ij . .1 ) : (. .2 kf k 6= jhf; en ij . .3 . , , -------------------------------------------. . 1 X [' 25] .2 1 x9 ex3 e?inxdx ein=2 () n=?1 2 ? 1 1 Z X 9 x3 ?inx in () x e e dx e n=?1 2 ? Z -------------------------------------------- f f (x) = x . f (x) 1 X n=?1 ( ) f cneinx = 9 ex3 '' f : [?; ] ! C : ()2 1 X 1 Z t9 et3 e?inxdt einx n=?1 2 ? x = 2 . (P 1) )3 (P 1) () . f( ) = . 2 ? 9 2 e( 2 f0 . x= . (P 1) f ((?)+0)+f (?0) = f (?)+f () = 9 (e3 ?e?3 ) 2 2 2 ()2 : : x ! ?x , . x . , fi( 2 ) h R P 9 t3 ?inx dt einx 1 x9 ex3 = 1 n=?1 2 ? t e e . f (? ) 2 ' : x 2 (?; ) . . -------------------------------------------- .3 a0 + P1 (an cos nx + bn sin nx) () n=1 2 [' 35] x 2 [0; ] u(x) = x x 2 [?; 0) u(x) = 0 " u : [?; ] ! C [?; ] F f () P1 P A 0 F (x) 2 + n=1(An cos nx + Bn sin nx) f (x) a20 + 1 n=1 (an cos nx + bn sin nx) .x 2 [?; ] F (x) = f (?x) . .n bn an n Bn An . , ,() () () x 2 [?; ] w(x) = x v(x) = jxj " w v . -------------------------------------------- R R xdx = x22 j0 = 2 a0 = ? u(x)dx = 0 n2N ? R R R sin nx 1 1 x sin nx 1 = x cos nxdx = j an =? ? u(x) cos nxdx 0 ? 0 0 n n dx 1 cos nx 1 n = 0 ?R 0 + n2 j0 = n2 ((R?1) ? 1) : ? R bn =1 ? u(x) sin nxdx = 1 0 x sin nxdx = 1 ? x cosn nx j0 + 0 cosnnx dx n+1 n n = 1 ? (?n1) + 0 + sinn2nx j0 = ? (?n1) = (?1)n : 1 . 1 , (. () : 1 . ) . () n=0 n2N An = ? F (x) cos nxdx = ? f (?x) cos nxdx: tR= ?x R ? R ? 1 1 1 An = f (t) cos(?nt) (?1)dt = ? f (t) cos ntdt = ? f (t) cos ntdt = an: 1 R 1 R , R R R ? , = ? f (?x) sin nxdx = f (t) sin(?nt) (?1)dt = BnR = ? F (x) sin nxdx R ? 1 1 f (t) sin ntdt = ? ? f (t) sin ntdt = ?bn . 1 1 x 1 ?x ----------------------------- ' ) 1 X a 0 f (x) 2 + (an cos nx + bn sin nx) n=1 (P 2) 1 X a 0 f (?x) 2 + (an cos n(?x) + bn sin n(?x)) (P 3) n=1 " ( . [?; ] x . f F (x) = f (?x) F (x) A20 + P1 n=1 (An cos nx + Bn sin nx) Bn = ?bn An = an " ) bn an . '' . (P 2) , (P 2) (P 2) ( ) Z Z 1 1 an = f (x) cos nxdx bn = f (x) sin nxdx: ? (P 2) x . ?x (P 4) ? (P 3) ???f (?x) a20 + (P 4) 1 X (an cos nx ? bn sin nx) ??? (P 5) n=1 . ( ) . [?; ] . . . F (P 5) . Bn = ?bn: An = an '' , F f . ----------------------------- () w(x) = u(x) ? u(?x) v(x) = u(x) + u(?x) Bn = ?bn An = an u b n an x 2 [?; ] u(?x) P1 (a0 +A0 ) v(x) 2 + n=1((an + An) cos nx + (bn + Bn) sin nx) , . ( ) a0 + P1 2an cos nx = + P1 2((?1)2n?1) cos nx n=1 n=1 n 2 2 a0?A0 ) + P1 ((a ? A ) cos nx + (b ? B ) sin nx) n n n n=1 n 2 v(x) 2 w(x) ( . P1 w(x) n=1 2bn sin nx = . P1 ? n=1 2 n sin nx ( 1)n --------------------- . , " " [?; ] . . "" x ) . x 2 [?; 0) (!!!!!!!! , 2 [0; ] x n , --------------------- -------------------------------------------[' 15] ? .4 [?; ] (3 ) v(x) = jxj () . ? [?; ] (3 ) w(x) = x () . -------------------------------------------- Dirichlet . : . '4 . . : f : [?; ] ! C : [?; ] f (1) f (?) = f () (2) 0 x 2 [?; ] f (x) (3) f 0 (x?) := limh!0;h>0 f 0 (x ? h) f 0 (x+) := limh!0;h>0 f 0 (x + h) ,f 0 2 E (4) x 2 [?; ] f 0 (x+) = f 0 (x?) (f - ) x 2 [?; ] . [?; ] f . (4) .(3) (2) ,(1) f 0 (x+) = f 0 (x?) 0 6= x 2 [?; ] , (. v . , . '' f f (x) = v(x) = jxj f 0 (0+) = 1 f 0 (0?) = ?1 x ?1 x 1 , x= f . . ) '' () f (2) ' v '' w ) ()4 ( . :" " . (2) , " , : ." ' w W (x) = w(x) = W (x) x 2 R , , , w W W (? ) = W ( ) = 0 x 2 (?; ) x .x 2 R W (x + 2 ) = w(x) , [?; ] " w . W " ,W " . W (." ) . ."
© Copyright 2025 Paperzz