Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
ISSN:1991-8178
Australian Journal of Basic and Applied Sciences
Journal home page: www.ajbasweb.com
On Subclass of Harmonic Univalent Function Defined by Ruscheweyh Derivative
1
Abdul Rhman S. Juma, 2Hassn H Ebrahim and 3Shamil I Ahmed
1
Department of Mathematics, Alanbar University. Ramadi-Iraq
Department of Mathematics, Tikrit University. TikritβIraq
2
ARTICLE INFO
Article history:
Received 12 November 2014
Received in revised form 26 December
2014
Accepted 29 January 2015
Available online 10 February 2015
ABSTRACT
In the present paper, we introduce a new subclass of harmonic function in the unit disc
U by the Ruscheweyh derivative. Also, we obtain coefficient condition, convolution
condition, convexcombinations, extreme point,Ξ΄-neighborhood, integral operator.
Keywords:
Univalent functions, harmonic,
Ruscheweyh derivative, distortion theorem, starlike functions, convex
functions,Ξ΄-ne© 2015 AENSI Publisher All rights reserved.
ighborhood ,integraloperat-or,extreme
point
To Cite This Article: Abdul Rhman S. Juma, Hassn H Ebrahim and Shamil I Ahmed, On Subclass of Harmonic Univalent Function
Defined by Ruscheweyh Derivative. Aust. J. Basic & Appl. Sci., 9(5): 307-314, 2015
INTRODUCTION
functions. Furthermore we refer to Duren (Duren,
2004), ponnusamy (Ponnusamy, 2007) and references there in for basic results on the subject.
Denoted by π΄π»π , the class of function π = π +
π that are harmonic, univalent and sense-preser-ving
in the unit disk π = {π: π < 1} whith
normalization π 0 = π 0 = ππ§ 0 β 1 = 0.Then
for π = π + π οπ΄π»π , we may express the analytic
functions π πππ π as
π π§ = π§ + βπ=2 ππ π§ π , π π =
π§ + βπ=1 ππ π§ π , π1 < 1.
(1)
Observe that π΄π»π reduces to , the class of
normalized univalent functions, if the co- analytic
part of π is zero. Also, denoted by π΄π»π β the subclass
of π΄π»π , consisting of function π that map π onto a
starlike domain.
For π = π + π given by (1) and π· π π π§ is the
Ruscheweyh derivative of π and defined by
A continuous function π = π’ + ππ£ is a complex
valued harmonic function in a complex domain C if
both π’ andπ£ are real harmonic in πΆ . In any simply
connected domain π· β πΆ, we can writeπ = π + π,
where π and π are analytic in D. We call π the
analytic part and π the co-analytic part of π . A
necessary and sufficient condition for π to be
locally univalent and sense βpreserving in π· is
that πβ²(π§) > πβ²(π§) in π·, see (Clunie, 1984). In
1984, Clunie and Sheil-Small (Clunie, 1984)
investigated the class π΄π»π and studied some
sufficient bounds.Since then the-re have been several
paper published related toπ΄π»π and its subclasses. In
fact by introducing new subclasses Sheil-small
(Sheil-Small, 1990), Silverman (Silverman, 1998),
Silverman and Silvia (Silverman, 1999), Jahangir
(Jahangiri, 1999) and Ahuja (Ahuja, 2005) presented
a systematic and unified study of harmonic univalent
β
π + 1 π + 2 β¦ . . (π + π β 1)
π·π π π§ =
π΅π π ππ π§ π , π > β1 , π΅π π =
(π β 1)!
π=1
alsoπ· π π π§ = π· π π π§ + π· π π(π§)
(2)
Recently Rosy et al. (Rosy, 2001) defined the subclass πΊπ β π΄π»π consisting of a harmonic univalent
function π(π§) satisfying the condition
Corresponding Author: Abdul Rhman S. Juma, Department of Mathematics, Alanbar University. Ramadi-Iraq
E-mail: [email protected]
308
π
π
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
π§πβ²(π§)
β π ππΌ
π(π§)
1 + π ππΌ
β₯ πΎ , 0 β€ πΎ < 1, πΌ β π
.
They proved that if π = π + π is given by (1) and if
2π+1+πΎ
ππ +
ππ β€ 2 , 0 β€ Ξ³ < 1,
2πβ1βπΎ
β
π=1
1βπΎ
1βπΎ
(3)
thenπ is in πΊπ πΎ .
This condition is proved to be also necessary by Rosy ef al. if π πππ π are of the form
π π§ = π§ β βπ=2 ππ π§ π , π(π§) = β βπ=1 ππ π§ π
(4)
Motivated by this aforementioned work, new we introduce the class πΊπ (π, πΌ. π) as the subclass of functions of
the form (1) satisfy the following condition
π
π
π· π +π (π§)
1 + ππ ππΌ
π· π π(π§)
β ππ ππΌ
β₯ πΎ , 0 β€ πΎ < 1, πΌ β π
π β₯ 0, π β β,
(5)
whereπ· π π(π§) is defied by (2)
Let πΊπ (π, πΌ, π) denoted that the subclass of πΊπ (π, πΌ, π) which consists of harmonic function ππ = π + ππ
such that π πππ π are the form
π π§ = π§ β βπ=2 ππ π§ π , ππ π§ = β1 π βπ=1 ππ π§ π .
(6)
In this paper, we will give sufficient condition for function π = π + π ,where π πππ π are given by (1) ,to
be in the class πΊπ (π, πΌ, π) it is shown that is coefficient condition is also necessary for function in the class
πΊπ (π, πΌ, π) .Also we obtain distortion theorem and characterize the extreme point and convolution conditions for
functions inπΊπ (π, πΌ, π) .
Closure theorems and application of neighborhood also obtain.
Coefficient Inequality:
We being with a sufficient condition for in πΊπ π, πΌ, π .
Theorem 2.1: Let π = π + π be given by (2.1). If
β
(7)
π=1 π 1 + π β (πΌ + π ππ + π 1 + π + (πΌ + π ππ π΅πΎ π β€ 2 1 β πΌ ,
π + 1 π + 2 β¦.. π + π β 1
whereπ1 = 1, π β β0 , π΅π π =
, π β₯ 0 πππ 0 β€ πΌ < 1, π‘πππ πππ sense β
πβ1 !
Preserving harmonic in π and π ο πΊπ (π, πΌ, π).
Proof: If π1 β π2 , then
π π§1 β π(π§2 )
π π§1 β π(π§2 )
β₯ 1β
π π§1 β π(π§2 )
π π§1 β π(π§2 )
ο₯
ο₯
ππ (π§1π β π§2π )
k ο½1
=1β
ο₯
π§1 β π§2 +
ο₯
ππ (π§1π β π§2π )
k ο½2
ο₯
ο₯
β₯ 1β
π ππ
k ο½1
(8)
ο₯
1β
ο₯
π ππ
k ο½1
ο₯
ο₯
π 1+π +(πΌ+π π΅πΎ π π π
k ο½1
1βπΌ
β₯ 1β
ο₯
ο₯
1β
[ π 1+π +(πΌ +π ] π΅πΎ π π π
k ο½2
1βπΌ
β₯0,
which proves univalence. Not that π is sense preserving in π.This is because
309
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
β
πβ²(π§) β₯ 1 β
β
π=2
β₯1β
β₯1β
πβ1
π ππ π§
π=2
β
π=1
β
β₯1β
π=1
π 1 + π β πΌ + π π΅π (π) ππ |
1βπΌ
π 1+π + πΌ +π π΅π π π π |
1βπΌ
(9)
π 1 + π + πΌ + π π΅π π ππ | π
1βπΌ
β
πβ1
β₯
πβ1
π ππ π§
π=2
β₯ πβ² π§ .
Using the fact thatπ
π π€ > πΌ if and only if 1 β πΌ + π€ β₯ 1 + πΌ β π€ it suffice to show that
1 β πΌ + 1 + ππ ππ
π· π +1 π π§
β ππ ππ β
π·π π π§
1 + πΌ β 1 + ππ ππ
π· π +1 π π§
π·π π π§
β ππ ππ β₯ 0 .
(10)
π
Substituting the value of π· π(π§) in (10) yields, by(7),
1 β πΌ β ππ ππ π· π π π§ + (1 + ππ ππ )π· π+1 π(π§) β β 1 + πΌ + ππ ππ π· π π π§ + 1 + ππ ππ π· π +1 π π§
β
=
π 1 + ππ ππ + (1 β πΌ β ππ ππ ) π΅π (π) × ππ π§ π
2βπΌ π§+
π=2
β
π
π 1 + ππ ππ β (1 β πΌ β ππ ππ ) π΅π (π) ππ π§ π
β (β1)
π=1
β
π 1 + ππ ππ + (1 + πΌ + ππ ππ ) π΅π (π) ππ π§ π
β βπΌπ§ +
π=2
β
β (β1)π
π 1 + ππ ππ + (1 + πΌ + ππ ππ ) π΅π (π) ππ π§ π
π=1
β
β₯2 1βπΌ π§ 1β
π 1+π β
πΌ + π π΅π π ππ π§
1βπΌ
π=2
β
β₯2 1βπΌ π§ 1β
π 1+π β
π=2
πΌ+π
1βπΌ
π΅π π ππ
β
π
β
π 1+π
+ (πΌ + π ) π΅π (π) ππ π§
1βπΌ
π 1+π
+ πΌ+π
1βπΌ
π=1
β
β
π=1
π΅π π ππ
This last expression is non-negative by (8) ,and so the proof is complete.β
The harmonic function
1βπΌ
1βπΌ
π π§ = π§ + βπ=2
π₯π π§ π + βπ=1
π¦π π§ π
π 1+π β πΌ +π π΅π π
β
π€ππππ π β β0 , 0 β€ π β€ 1πππ
π 1+π + πΌ +π π΅π π
β
π₯π +
π=2
π
.
(11)
π¦π = 1 , shows that the coefficient bound given
π=1
by (7) is sharp. The functions of the form (11) are in πΊπ π, πΌ, π because
π 1+π β(πΌ +π )
β
π=1
1βπΌ
ππ +
π 1+π +(πΌ+π)
1βπΌ
ππ π΅π (π)
(12)
β
= 1+
β
π₯π +
π=2
π¦π = 2.
π=1
In the following theorem, it is shown that the condition (7) is also necessary for functions ππ = π + ππ ,
where π πππ ππ πππ ππ π‘ππ ππππ 6 .
Theorem 2.2: Let ππ = π + ππ be given by (7).Then ππ β πΊπ (π, πΌ, π) if and only if
β
(13)
π=1 π 1 + π β (πΌ + π ππ + π 1 + π + (πΌ + π ππ π΅πΎ π β€ 2 1 β πΌ
π + 1 π +2 β¦.. π + π β1
π€ππππ π1 = 1, π β β0 , π΅π π =
, π β₯ 0 πππ 0 β€ πΌ < 1.
πβ1 !
Proof: Since πΊπ (π, πΌ, π) β πΊπ π, πΌ, π we only need to prove the "only if" part of Theorem (2.2). To this
end, for functions ππ of the form (6) , we notice that the condition (5) is equation to
π
π
βΉ
1 + ππ ππΌ
π· π +π π§
β (ππ ππΌ + πΌ β₯ 0
π·π π π§
310
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
1 + ππ ππ π· π +1 π π§ β (ππ ππ + πΌ)π· π π(π§)
β₯0
π· π π(π§)
π
π
βΉ
ο₯
1 + ππ
ππ
ο₯
ο₯
(π§ β
ο₯
π
ππ΅π π ππ π§ +
k ο½2
π
π
ο₯
π΅π π ππ π§ π + β1
ο₯
2π
k ο½2
k ο½1
ο₯
ο₯
ππ΅π π ππ π§ π + (β1)2π+1
k ο½2
β
ο₯
ο₯
π ππ π΅π (π)π§ π
k ο½1
ο₯
π§β
π ππ π΅π π π§ π
ππ π΅π π π§π
ο₯
ππ ππ + πΌ (π§ β
2π+1
ο₯
ο₯
π§β
β1
k ο½1
β₯0
ο₯
π΅π (π) ππ π§ π + (β1)2π
k ο½2
ο₯
ππ π΅π (π)π§π
k ο½1
βΉ
ο₯
ο₯
1βπΌ β
π 1 + ππ ππ β ππ ππ + πΌ π΅π π ππ π§ π β1
k ο½2
π
π
ο₯
ο₯
1β
π΅π π ππ π§ π β1 +
k ο½2
ο₯
π§
β1
π§
2π
ο₯
π΅π π ππ π§πβ1
k ο½1
ο₯
π§
β1 2π
π§
β
ο₯
π 1+ π π ππ + π π ππ +πΌ π΅π π π π π§ πβ1
k ο½2
ο₯
1β
β₯0
ο₯
ο₯
π§
π΅π π π π π§ π β1 + β1 2π
π§
k ο½2
ο₯
(14)
π΅π π π π π§ πβ1
k ο½1
The above condition (14) must hold for all values of z on the positive real axes, where, 0 β€ π§ = πΎ <
1, π€π must have
ο₯
1βπΌ β
ο₯
(π β πΌ)π΅π (π) ππ πΎ πβ1
k ο½2
π
π
ο₯
ο₯
ο₯
1β
π΅π π ππ πΎ πβ1 + (β1)2π
k ο½2
ο₯
π΅π (π) ππ πΎ πβ1
k ο½1
ο₯
β1
2π
ο₯
ο₯
π + πΌ π΅π π ππ πΎ πβ1 β ππ ππ
k ο½2
β
ο₯
π β 1 π΅π π ππ πΎ πβ1
k ο½2
ο₯
1β
ο₯
β
ο₯
π΅π π ππ πΎ πβ1 + β1
k ο½2
2π
ο₯
π΅π π ππ πΎ πβ1
k ο½1
ο₯
2π
β1
ππ ππ
ο₯
π + 1 π΅π π ππ πΎ πβ1
k ο½2
β
ο₯
1β
β₯ 0.
ο₯
ο₯
π΅π π ππ πΎ πβ1 + β1
2π
k ο½2
ο₯
π΅π π ππ πΎ πβ1
k ο½1
Since Re βπ ππ β₯ β π ππ = β1, the above inequality reduce to
ο₯
1βπΌ β
ο₯
π 1 + π β π + πΌ π΅π (π) ππ πΎ πβ1
k ο½2
β
ο₯
1β
ο₯
k ο½2
ο₯
π΅π π ππ πΎ πβ1 +
ο₯
k ο½1
π΅π (π) ππ πΎ πβ1
311
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
ο₯
ο₯
π 1+ π + π +πΌ π΅π π π π πΎ π β1
k ο½2
β
ο₯
1β
β₯ 0.
ο₯
ο₯
π΅π π π π πΎ π β1 +
k ο½2
ο₯
(15)
π΅π π π π πΎ πβ1
k ο½1
If the condition (13) does not hold, then the numerator in (15) is negative for ο§ sufficiently close to
1.Hence there exists a π§0 = π¦0 in (0, 1) for which the quotient in (15) is negative. This contrad- icts the
condition for π β πΊπ (π, πΌ, π) and so proof is complete.
3.Distortion Bounds:
In this section, we will obtain distortion bounds for function in πΊπ (π, πΌ, π) .
Theorem 3.1: Let ππ β πΊπ (π, πΌ, π) .Then for π§ = πΎ < 1, we have
1βπΌ
1 + 2π + πΌ
ππ (π§) β€ 1 + π1 πΎ +
1β
π1 πΎ 2 .
2 1+π β π+πΌ 1+π
1βπΌ
1βπΌ
1 + 2π + πΌ
1β
π1 πΎ 2 .
2 1+π β π+πΌ 1+π
1βπΌ
Proof: We only prove the lift βhand inequality .The proof for the right inequality is similar and is thus
omitted. Let ππ β πΊπ (π, πΌ, π).Taking the absolute value of ππ , we obtain
ππ (π§)
ππ (π§) β€ 1 + π1 πΎ β
β
β
ππ π§ π + (β1)2π
= π§β
π=2
ππ π§ π
π=1
β
( ππ + ππ )πΎ π
β€ 1 + π1 πΎ +
π=2
β
( ππ + ππ )πΎ 2
β€ 1 + π1 πΎ +
π=2
β€ 1 + π1 πΎ +
1βπΌ
2 1 + π β (π + πΌ)(π + 1)
β
2 1 + π β (π + πΌ)(π + 1)
2 1 + π β (π + πΌ)(π + 1)
×
ππ +
ππ
1βπΌ
1βπΌ
πΎ2
π=2
β€ 1 + π1 πΎ +
1βπΌ
2 1 + π β (π + πΌ)(π + 1)
β
π 1 + π β π + πΌ π΅π (π)
π 1 + π + π + πΌ π΅π (π)
×
ππ +
ππ
1βπΌ
1βπΌ
π=2
β€ 1 + π1 πΎ +
1βπΌ
1 + π + (π + πΌ)
1β
π1 πΎ 2
2 1 + π β (π + πΌ)(π + 1)
1βπΌ
β€ 1 + π1 πΎ +
1βπΌ
2+π+πΌ
1β
π1 πΎ 2 .
2 1+π β π+πΌ π+1
1βπΌ
The functions
π π§ = π§ + π1 π§ +
1
1βπΌ
2+π+πΌ
β
π§2
π + 1 2 1 + π β (π + πΌ) 2 1 + π β (π + πΌ)
π π§ = 1 β π1 π§ β
1
1βπΌ
2+π+πΌ
β
π§2
π + 1 2 1 + π β (π + πΌ) 2 1 + π β (π + πΌ)
1βπΌ
Show that the bounds given in the Theorem 3.1 are sharp
1 + 2π + πΌ
The following covering result follows form the left -hand inequality in Theorem 3.1.
for π1 β€
4 .Convex Combination And Extreme Points:
Let the function ππ,π π§ be defined, for j=1, 2 β¦m, by
+ πΎ2
312
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
ππ,π π§ = π§ β βπ=2 ππ ,π π§ π + β1 π βπ=1 ππ ,π π§ π .
(16)
Theorem 4.1: Let the function ππ,π π§ defined by (16) be in the class πΊπ (π, πΌ, π) for every j=1, 2...m. Then the
functions π‘π π§ defined by
π‘π π§ = π
(17)
π =1 ππ ππ,π π§ , π β€ ππ < 1 ,
π
are also in the classπΊπ π, πΌ, π , where
ππ = 1.
π =1
Proof: A cording to the definition of π‘π , we can write
β
β
π
π‘π π§ = π§ β
π
ππ ππ ,π
π=2
π§ + β1
π =1
π
π
π§π .
ππ,π
π=1
π =1
Further, since ππ,π π§ are inπΊπ (π, πΌ, π) for every j=1, 2β¦.m, then
β
π
π 1+π β πΌ+π
π
ππ ππ ,π
π=1
+ π 1+π + πΌ+π
ππ ππ ,π
π =1
π΅π (π)
π =1
β
π
=
ππ
π =1
π
β€
π 1 + π β πΌ + π ππ ,π + π 1 + π + πΌ + π
ππ,π π΅π (π)
π=1
ππ 2 1 β πΌ β€ 1 β πΌ . Hence theorem 4.1 follows .
π =1
Corollary 4.2: The class πΊπ (π, πΌ, π) is closed under convex liner combinations.
Proof: Let the functions ππ,π π§ = (j=1, 2β¦., m) defined by (16) be in the class πΊπ π, πΌ, π . Then the function
Ξ¨ π§ defined by
Ξ¨ π§ = πππ,π π§ + 1 β π ππ,π π§ , π β€ π < 1
is in the class πΊπ (π, πΌ, π) .
Next we determine the extreme point of closed convex hulls of πΊπ (π, πΌ, π) , denoted by clocoπΊπ (π, πΌ, π).
Theorem 4.3:Let ππ be given by (7) .Then ππ β πΊπ (π, πΌ, π) if and only if
β
ππ π§ =
ππ ππ π§ + ππ ππ ,π π§
,
π=1
where
1βπΌ
π§ π , π§ = 2,3, β¦ β¦ .,
π 1 + π β πΌ + π π΅π π
1βπΌ
π§π
π 1 + π + πΌ + π π΅π π
π1 π§ = π§ , ππ π§ = π§ β
ππ,π π§ = π§ β (β1)π
β
πππ
ππΎ + ππΎ = 1, ππΎ β₯ 0, ππΎ β₯ 0 . In particular, the extreme points of πΊπ π, πΌ, π are
π=1
ππ πππ πππ .
Proof:
For
β
ππ π§ =
the
function
ππ of
the
4.3 ,
form
we
have
ππ ππ π§ + ππ ππ ,π π§
π=1
β
ππ π§ =
β
ππ + ππ π§ β
π=1
π=1
1βπΌ
π π§ π + β1
π 1 + π β πΌ + π π΅π π π
β
π
π=1
1βπΌ
π π§π .
π 1 + π + πΌ + π π΅π π π
Then
β π 1+π β π+πΌ π΅π (π)
π=1
1βπΌ
β
β
=
ππ +
π=1
ππ +
β π 1+π + π+πΌ π΅π (π)
π=1
1βπΌ
ππ
(18)
ππ = 1 β π1 β€ 1 ,
π=1
and so ππ β ππππ πΊπ (π, πΌ, π) .
Conversely, suppose that ππ β ππππ πΊπ π, πΌ, π . Setting
π 1+π β π +πΌ π΅π (π)
ππ =
ππ , 0 β€ ππ < 1, π = 2,3,
1βπΌ
π 1 + π β π + πΌ π΅π (π)
ππ =
ππ , 0 β€ ππ < 1, π = 2,3, β¦ .,
1βπΌ
(19)
313
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
β
β
and π1 = 1 β
ππ +
π=1
β
=π§β
π=1
β
π=2
=
ππ π§ π
π=1
β
π π§ β π§ ππ +
π=2
ππ (π§)ππ +
β
π=1
(1 β πΌ)ππ
π§π
π 1 + π + πΌ + π π΅π π
ππ,π π§ β π§ ππ
π=1
β
π=2
β
=
β
π
1 β πΌ ππ
π§ π + (β1)π
π 1 + π β πΌ + π π΅π π
=π§+
β
π=1
ππ π§ π + β1
ππ π§ = π§ β
β
ππ then ππ can be written as
β
ππ,π π§ ππ + π§(1 β
π=1
β
ππ +
π=1
ππ
π=1
ππ π§ ππ + ππ,π π§ ππ , ππ ππππ’ππππ . (20)
π=2
Using corollary (4.2) we have clco πΊπ π, πΌ, π = πΊπ (π, πΌ, π) .Then the statement of Theorem (4.3) is true
for π β πΊπ π, πΌ, π .
5 . Neighborhoods:
The πΏ β neighborhood ππΏ π ofπ is the set (see ( Atintas, 2000) and (Rucsheweyh, 1981)):
ππΏ π = πΉ: βπ=2 π( ππ β π΄π + ππ β π΅πΎ + π1 β π΅1 β€ πΏ ,
where the function πΉ(π§) is given by
πΉ(π§) = π§ + βπ=2 π΄π π§ π + βπ =1 π΅π π§ π
In [8], OZTURK and YALCIN .defined the generalized πΏ-neighbrohood of π to be the set:
(21)
(22)
β
ππΏ π = πΉ:
(π β πΌ)( ππ β π΄π + ππ β π΅πΎ + (1 β πΌ) π1 β π΅1 β€ πΏ(1 β πΌ) .
π=2
π
Theorem 5.1: Let π π§ = π§ + π1 π§ + β
π=2 (ππ + ππ π§ ) be a member of πΊπ π, πΌ, π . If
2π 1 β πΌ
πΏβ€
+ π1 , then π π β πΊπ π, πΌ, π .
π+1
Proof: Let π β πΊπ (π, πΌ, π)
β
(π΄π π§ π + π΅π π§ π )
πΉ(π§) = π§ + π1 π§ +
π=2
belong toπ
π .We have
β
1 β πΌ π΅1 +
(π β πΌ)( π΄π + π΅πΎ )
π=1
β
β€ 1 β πΌ π΅1 β π1 +
β
(π β πΌ)( π΄π β ππ + π΅πΎ β ππ ) + 1 β πΌ π1 +
π=1
(π β πΌ)( ππ + ππΎ )
π=1
β
1
β€ 1 β πΌ πΏ + 1 β πΌ π1 +
(π 1 + π β πΌ + π + ( 1+π ) + (πΌ + π) π΅π (π) ππ + ππ
π+1
π=1
2 1βπΌ
β€ 1 β πΌ πΏ + 1 β πΌ π1 +
β€ 1 β πΌ,
π+1
2π 1 β πΌ
ifπΏ β€
+ π1 .
π+1
Thus πΉ β πΊπ π, πΌ, π .
6. Integral Operators:
Now, we examine a closure property of class πΊπ π, πΌ, π under the generalized Bernurdi-Libera-Livingston
integral operator πΏπ (π) which is defined by
π+1
πΏπ π = π
π§
π§
π‘ πβ1 π π‘ ππ‘ , π > β1 .
0
Theorem 6.1: Let π β πΊπ π, πΌ, π . Then πΏπ (π) β πΊπ π, πΌ, π
314
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
Proof: From the representation of πΏπ π π§ , it follows that
π+1
πΏπ π = π
π§
π+1
=
π§π
π§
π‘
π§
π‘ πβ1 π π§ + π(π‘) ππ‘ .
0
πβ1
β
π‘ πβ1 (π‘ β
ππ π‘ ) ππ‘ β
π=2
β
π΄π π§ π β
π=2
π
(π‘ β
0
β
=π§β
π§
β
0
ππ π‘π ) ππ‘ .
π=1
π΅π π§ π
π=1
π+1
π+1
π€ππππ π΄π =
π ; π΅π =
π .
π+1 π
π+1 π
Therefore,
β
π 1+π β π+πΌ π+1
π 1+π + π+πΌ
ππ +
1βπΌ
π+1
1βπΌ
π=1
β
β€
π=1
π 1+π β π+πΌ
π 1+π + π+πΌ
ππ +
ππ
1βπΌ
1βπΌ
π+1
π
π+1 π
π΅π (π)
β€ 2 1 β πΌ . Sinceπ β πΊπ π, πΌ, π , therefor by Theorem 2.2 , πΏπ π
REFERENCES
Ahuja, O.P., 2005. Planar harmonic univalent
and related mappings, J. Inequal. Pure Appl.
Math.6(4), Art., 122: 1-18.
Atintas, O., O. Ozkan, H.M. Srivastava, 2000.
Neighborhoods of a class of analytic functions with
negative coefficients, Appl. Math. Leet, 13: 63-67.
Clunie, J. and T. Sheil-Small, 1984. Harmonic
univalent functions, Ann. Acad. Sci. Fen. Series, Al
Math, 9(3): 3-25.
Duren, P., 2004. Harmonic Mappings in the plan
(Gambridgeuniv.press, Cambridge, UK, 2004).
Jahangiri, J.M., 1999. Harmonic functions
starlike in the unit disk, J. Math. Anal. Appl, 235:
470-477.
Ponnusamy, S. and A. Rasila, 2007. Planer
harmonic mappings, RMS Mathematics Newsletter,
17(2): 40-57.
π΅π (π)
β πΊπ π, πΌ, π .
Rosy, T., B.A. Stephen, K.B. Subramanian and
J.M. Jahangir, 2001. Goodman-Ronning-type
harmonic univalent functions, Kyangpook Math.J.,
41(1): 45-54.
Rucsheweyh, S., 1981. Neighborhoods of
univalent functions, Proc. Amer .Math .Soc., 81:
521-527.
Sheil-Small, T., 1990. Constants for planar
harmonic mappings, J. London Math.Soc., 2(42):
237-248.
Silverman, H. and E.M. Silvia, 1999. subclasses
of harmonic univalent functions, New Zealand J.
Math, 28: 275-284.
Silverman, H., 1998. Harmonic univalent
functions with negative coefficient, J. Math.
Anal.Appl. 220,283-289.
© Copyright 2026 Paperzz