On Subclass of Harmonic Univalent Function Defined by

Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
ISSN:1991-8178
Australian Journal of Basic and Applied Sciences
Journal home page: www.ajbasweb.com
On Subclass of Harmonic Univalent Function Defined by Ruscheweyh Derivative
1
Abdul Rhman S. Juma, 2Hassn H Ebrahim and 3Shamil I Ahmed
1
Department of Mathematics, Alanbar University. Ramadi-Iraq
Department of Mathematics, Tikrit University. Tikrit–Iraq
2
ARTICLE INFO
Article history:
Received 12 November 2014
Received in revised form 26 December
2014
Accepted 29 January 2015
Available online 10 February 2015
ABSTRACT
In the present paper, we introduce a new subclass of harmonic function in the unit disc
U by the Ruscheweyh derivative. Also, we obtain coefficient condition, convolution
condition, convexcombinations, extreme point,Ξ΄-neighborhood, integral operator.
Keywords:
Univalent functions, harmonic,
Ruscheweyh derivative, distortion theorem, starlike functions, convex
functions,Ξ΄-ne© 2015 AENSI Publisher All rights reserved.
ighborhood ,integraloperat-or,extreme
point
To Cite This Article: Abdul Rhman S. Juma, Hassn H Ebrahim and Shamil I Ahmed, On Subclass of Harmonic Univalent Function
Defined by Ruscheweyh Derivative. Aust. J. Basic & Appl. Sci., 9(5): 307-314, 2015
INTRODUCTION
functions. Furthermore we refer to Duren (Duren,
2004), ponnusamy (Ponnusamy, 2007) and references there in for basic results on the subject.
Denoted by 𝐴𝐻𝑆 , the class of function 𝑓 = 𝑕 +
𝑔 that are harmonic, univalent and sense-preser-ving
in the unit disk π‘ˆ = {𝑍: 𝑍 < 1} whith
normalization 𝑓 0 = 𝑕 0 = 𝑓𝑧 0 βˆ’ 1 = 0.Then
for 𝑓 = 𝑕 + 𝑔 οƒŽπ΄π»π‘† , we may express the analytic
functions 𝑕 π‘Žπ‘›π‘‘ 𝑔 as
𝑕 𝑧 = 𝑧 + βˆžπ‘˜=2 π‘Žπ‘˜ 𝑧 π‘˜ , 𝑔 𝑍 =
𝑧 + βˆžπ‘˜=1 π‘π‘˜ 𝑧 π‘˜ , 𝑏1 < 1.
(1)
Observe that 𝐴𝐻𝑆 reduces to , the class of
normalized univalent functions, if the co- analytic
part of 𝑓 is zero. Also, denoted by 𝐴𝐻𝑆 βˆ— the subclass
of 𝐴𝐻𝑆 , consisting of function 𝑓 that map π‘ˆ onto a
starlike domain.
For 𝑓 = 𝑕 + 𝑔 given by (1) and 𝐷 πœ† 𝑓 𝑧 is the
Ruscheweyh derivative of 𝑓 and defined by
A continuous function 𝑓 = 𝑒 + 𝑖𝑣 is a complex
valued harmonic function in a complex domain C if
both 𝑒 and𝑣 are real harmonic in 𝐢 . In any simply
connected domain 𝐷 βŠ‚ 𝐢, we can write𝑓 = 𝑕 + 𝑔,
where 𝑕 and 𝑔 are analytic in D. We call 𝑕 the
analytic part and 𝑔 the co-analytic part of 𝑓 . A
necessary and sufficient condition for 𝑓 to be
locally univalent and sense –preserving in 𝐷 is
that 𝑕′(𝑧) > 𝑔′(𝑧) in 𝐷, see (Clunie, 1984). In
1984, Clunie and Sheil-Small (Clunie, 1984)
investigated the class 𝐴𝐻𝑆 and studied some
sufficient bounds.Since then the-re have been several
paper published related to𝐴𝐻𝑆 and its subclasses. In
fact by introducing new subclasses Sheil-small
(Sheil-Small, 1990), Silverman (Silverman, 1998),
Silverman and Silvia (Silverman, 1999), Jahangir
(Jahangiri, 1999) and Ahuja (Ahuja, 2005) presented
a systematic and unified study of harmonic univalent
∞
πœ† + 1 πœ† + 2 … . . (πœ† + 𝑛 βˆ’ 1)
π·πœ† 𝑓 𝑧 =
π΅π‘˜ πœ† π‘π‘˜ 𝑧 π‘˜ , πœ† > βˆ’1 , π΅π‘˜ πœ† =
(𝑛 βˆ’ 1)!
π‘˜=1
also𝐷 πœ† 𝑓 𝑧 = 𝐷 πœ† 𝑕 𝑧 + 𝐷 πœ† 𝑔(𝑧)
(2)
Recently Rosy et al. (Rosy, 2001) defined the subclass 𝐺𝑆 βŠ† 𝐴𝐻𝑆 consisting of a harmonic univalent
function 𝑓(𝑧) satisfying the condition
Corresponding Author: Abdul Rhman S. Juma, Department of Mathematics, Alanbar University. Ramadi-Iraq
E-mail: [email protected]
308
𝑅𝑒
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
𝑧𝑓′(𝑧)
βˆ’ 𝑒 𝑖𝛼
𝑓(𝑧)
1 + 𝑒 𝑖𝛼
β‰₯ 𝛾 , 0 ≀ 𝛾 < 1, 𝛼 ∈ 𝑅.
They proved that if 𝑓 = 𝑕 + 𝑔 is given by (1) and if
2π‘˜+1+𝛾
π‘Žπ‘˜ +
π‘Žπ‘˜ ≀ 2 , 0 ≀ Ξ³ < 1,
2π‘˜βˆ’1βˆ’π›Ύ
∞
π‘˜=1
1βˆ’π›Ύ
1βˆ’π›Ύ
(3)
then𝑓 is in 𝐺𝑆 𝛾 .
This condition is proved to be also necessary by Rosy ef al. if 𝑕 π‘Žπ‘›π‘‘ 𝑔 are of the form
𝑕 𝑧 = 𝑧 βˆ’ βˆžπ‘˜=2 π‘Žπ‘˜ 𝑧 π‘˜ , 𝑔(𝑧) = βˆ’ βˆžπ‘˜=1 π‘π‘˜ 𝑧 π‘˜
(4)
Motivated by this aforementioned work, new we introduce the class 𝐺𝑆 (πœ†, 𝛼. 𝑝) as the subclass of functions of
the form (1) satisfy the following condition
𝑅𝑒
𝐷 πœ† +π‘ž (𝑧)
1 + 𝑝𝑒 𝑖𝛼
𝐷 πœ† 𝑓(𝑧)
βˆ’ 𝑝𝑒 𝑖𝛼
β‰₯ 𝛾 , 0 ≀ 𝛾 < 1, 𝛼 ∈ 𝑅 𝑝 β‰₯ 0, π‘ž ∈ β„•,
(5)
where𝐷 πœ† 𝑓(𝑧) is defied by (2)
Let 𝐺𝑆 (πœ†, 𝛼, 𝑝) denoted that the subclass of 𝐺𝑆 (πœ†, 𝛼, 𝑝) which consists of harmonic function π‘“π‘˜ = 𝑕 + π‘”π‘˜
such that 𝑕 π‘Žπ‘›π‘‘ 𝑔 are the form
𝑕 𝑧 = 𝑧 βˆ’ βˆžπ‘˜=2 π‘Žπ‘˜ 𝑧 π‘˜ , 𝑔𝑛 𝑧 = βˆ’1 𝑛 βˆžπ‘˜=1 π‘π‘˜ 𝑧 π‘˜ .
(6)
In this paper, we will give sufficient condition for function 𝑓 = 𝑕 + 𝑔 ,where 𝑕 π‘Žπ‘›π‘‘ 𝑔 are given by (1) ,to
be in the class 𝐺𝑆 (πœ†, 𝛼, 𝑝) it is shown that is coefficient condition is also necessary for function in the class
𝐺𝑆 (πœ†, 𝛼, 𝑝) .Also we obtain distortion theorem and characterize the extreme point and convolution conditions for
functions in𝐺𝑆 (πœ†, 𝛼, 𝑝) .
Closure theorems and application of neighborhood also obtain.
Coefficient Inequality:
We being with a sufficient condition for in 𝐺𝑆 πœ†, 𝛼, 𝑝 .
Theorem 2.1: Let 𝑓 = 𝑕 + 𝑔 be given by (2.1). If
∞
(7)
π‘˜=1 π‘˜ 1 + 𝜌 βˆ’ (𝛼 + 𝜌 π‘Žπ‘˜ + π‘˜ 1 + 𝜌 + (𝛼 + 𝜌 π‘π‘˜ 𝐡𝐾 πœ† ≀ 2 1 βˆ’ 𝛼 ,
πœ† + 1 πœ† + 2 ….. πœ† + 𝑛 βˆ’ 1
whereπ‘Ž1 = 1, πœ† ∈ β„•0 , π΅π‘˜ πœ† =
, 𝜌 β‰₯ 0 π‘Žπ‘›π‘‘ 0 ≀ 𝛼 < 1, 𝑑𝑕𝑒𝑛 𝑓𝑖𝑠 sense βˆ’
π‘›βˆ’1 !
Preserving harmonic in π‘ˆ and 𝑓 οƒŽ 𝐺𝑆 (πœ†, 𝛼, 𝑝).
Proof: If 𝑍1 β‰  𝑍2 , then
𝑓 𝑧1 βˆ’ 𝑓(𝑧2 )
𝑔 𝑧1 βˆ’ 𝑔(𝑧2 )
β‰₯ 1βˆ’
𝑕 𝑧1 βˆ’ 𝑕(𝑧2 )
𝑕 𝑧1 βˆ’ 𝑕(𝑧2 )
ο‚₯
οƒ₯
π‘π‘˜ (𝑧1π‘˜ βˆ’ 𝑧2π‘˜ )
k ο€½1
=1βˆ’
ο‚₯
𝑧1 βˆ’ 𝑧2 +
οƒ₯
π‘Žπ‘˜ (𝑧1π‘˜ βˆ’ 𝑧2π‘˜ )
k ο€½2
ο‚₯
οƒ₯
β‰₯ 1βˆ’
π‘˜ π‘π‘˜
k ο€½1
(8)
ο‚₯
1βˆ’
οƒ₯
π‘˜ π‘Žπ‘˜
k ο€½1
ο‚₯
οƒ₯
π‘˜ 1+𝜌 +(𝛼+𝜌 𝐡𝐾 πœ† 𝑏 π‘˜
k ο€½1
1βˆ’π›Ό
β‰₯ 1βˆ’
ο‚₯
οƒ₯
1βˆ’
[ π‘˜ 1+𝜌 +(𝛼 +𝜌 ] 𝐡𝐾 πœ† π‘Ž π‘˜
k ο€½2
1βˆ’π›Ό
β‰₯0,
which proves univalence. Not that 𝑓 is sense preserving in π‘ˆ.This is because
309
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
∞
𝑕′(𝑧) β‰₯ 1 βˆ’
∞
π‘˜=2
β‰₯1βˆ’
β‰₯1βˆ’
π‘˜βˆ’1
π‘˜ π‘Žπ‘˜ 𝑧
π‘˜=2
∞
π‘˜=1
∞
β‰₯1βˆ’
π‘˜=1
π‘˜ 1 + 𝜌 βˆ’ 𝛼 + 𝜌 π΅π‘˜ (πœ†) π‘Žπ‘˜ |
1βˆ’π›Ό
π‘˜ 1+𝜌 + 𝛼 +𝜌 π΅π‘˜ πœ† 𝑏 π‘˜ |
1βˆ’π›Ό
(9)
π‘˜ 1 + 𝜌 + 𝛼 + 𝜌 π΅π‘˜ πœ† π‘π‘˜ | 𝑍
1βˆ’π›Ό
∞
π‘˜βˆ’1
β‰₯
π‘˜βˆ’1
π‘˜ π‘Žπ‘˜ 𝑧
π‘˜=2
β‰₯ 𝑔′ 𝑧 .
Using the fact that𝑅𝑒 𝑀 > 𝛼 if and only if 1 βˆ’ 𝛼 + 𝑀 β‰₯ 1 + 𝛼 βˆ’ 𝑀 it suffice to show that
1 βˆ’ 𝛼 + 1 + πœŒπ‘’ π‘–π‘Ÿ
𝐷 πœ† +1 𝑓 𝑧
βˆ’ πœŒπ‘’ π‘–π‘Ÿ βˆ’
π·πœ† 𝑓 𝑧
1 + 𝛼 βˆ’ 1 + πœŒπ‘’ π‘–π‘Ÿ
𝐷 πœ† +1 𝑓 𝑧
π·πœ† 𝑓 𝑧
βˆ’ πœŒπ‘’ π‘–π‘Ÿ β‰₯ 0 .
(10)
πœ†
Substituting the value of 𝐷 𝑓(𝑧) in (10) yields, by(7),
1 βˆ’ 𝛼 βˆ’ πœŒπ‘’ π‘–π‘Ÿ 𝐷 πœ† 𝑓 𝑧 + (1 + πœŒπ‘’ π‘–π‘Ÿ )𝐷 πœ†+1 𝑓(𝑧) βˆ’ βˆ’ 1 + 𝛼 + πœŒπ‘’ π‘–π‘Ÿ 𝐷 πœ† 𝑓 𝑧 + 1 + πœŒπ‘’ π‘–π‘Ÿ 𝐷 πœ† +1 𝑓 𝑧
∞
=
π‘˜ 1 + πœŒπ‘’ π‘–π‘Ÿ + (1 βˆ’ 𝛼 βˆ’ πœŒπ‘’ π‘–π‘Ÿ ) π΅π‘˜ (πœ†) × π‘Žπ‘˜ 𝑧 π‘˜
2βˆ’π›Ό 𝑧+
π‘˜=2
∞
π‘˜
π‘˜ 1 + πœŒπ‘’ π‘–π‘Ÿ βˆ’ (1 βˆ’ 𝛼 βˆ’ πœŒπ‘’ π‘–π‘Ÿ ) π΅π‘˜ (πœ†) π‘π‘˜ 𝑧 π‘˜
βˆ’ (βˆ’1)
π‘˜=1
∞
π‘˜ 1 + πœŒπ‘’ π‘–π‘Ÿ + (1 + 𝛼 + πœŒπ‘’ π‘–π‘Ÿ ) π΅π‘˜ (πœ†) π‘Žπ‘˜ 𝑧 π‘˜
βˆ’ βˆ’π›Όπ‘§ +
π‘˜=2
∞
βˆ’ (βˆ’1)π‘˜
π‘˜ 1 + πœŒπ‘’ π‘–π‘Ÿ + (1 + 𝛼 + πœŒπ‘’ π‘–π‘Ÿ ) π΅π‘˜ (πœ†) π‘π‘˜ 𝑧 π‘˜
π‘˜=1
∞
β‰₯2 1βˆ’π›Ό 𝑧 1βˆ’
π‘˜ 1+𝜌 βˆ’
𝛼 + 𝜌 π΅π‘˜ πœ† π‘Žπ‘˜ 𝑧
1βˆ’π›Ό
π‘˜=2
∞
β‰₯2 1βˆ’π›Ό 𝑧 1βˆ’
π‘˜ 1+𝜌 βˆ’
π‘˜=2
𝛼+𝜌
1βˆ’π›Ό
π΅π‘˜ πœ† π‘Žπ‘˜
∞
π‘˜
βˆ’
π‘˜ 1+𝜌
+ (𝛼 + 𝜌 ) π΅π‘˜ (πœ†) π‘π‘˜ 𝑧
1βˆ’π›Ό
π‘˜ 1+𝜌
+ 𝛼+𝜌
1βˆ’π›Ό
π‘˜=1
∞
βˆ’
π‘˜=1
π΅π‘˜ πœ† π‘π‘˜
This last expression is non-negative by (8) ,and so the proof is complete.∎
The harmonic function
1βˆ’π›Ό
1βˆ’π›Ό
𝑓 𝑧 = 𝑧 + βˆžπ‘˜=2
π‘₯π‘˜ 𝑧 π‘˜ + βˆžπ‘˜=1
π‘¦π‘˜ 𝑧 π‘˜
π‘˜ 1+𝜌 βˆ’ 𝛼 +𝜌 π΅π‘˜ πœ†
∞
π‘€π‘•π‘’π‘Ÿπ‘’ πœ† ∈ β„•0 , 0 ≀ 𝜌 ≀ 1π‘Žπ‘›π‘‘
π‘˜ 1+𝜌 + 𝛼 +𝜌 π΅π‘˜ πœ†
∞
π‘₯π‘˜ +
π‘˜=2
π‘˜
.
(11)
π‘¦π‘˜ = 1 , shows that the coefficient bound given
π‘˜=1
by (7) is sharp. The functions of the form (11) are in 𝐺𝑆 πœ†, 𝛼, 𝑝 because
π‘˜ 1+𝜌 βˆ’(𝛼 +𝜌 )
∞
π‘˜=1
1βˆ’π›Ό
π‘Žπ‘˜ +
π‘˜ 1+𝜌 +(𝛼+𝜌)
1βˆ’π›Ό
π‘π‘˜ π΅π‘˜ (πœ†)
(12)
∞
= 1+
∞
π‘₯π‘˜ +
π‘˜=2
π‘¦π‘˜ = 2.
π‘˜=1
In the following theorem, it is shown that the condition (7) is also necessary for functions 𝑓𝑛 = 𝑕 + 𝑔𝑛 ,
where 𝑕 π‘Žπ‘›π‘‘ 𝑔𝑛 π‘Žπ‘Ÿπ‘’ π‘œπ‘“ 𝑑𝑕𝑒 π‘“π‘œπ‘Ÿπ‘š 6 .
Theorem 2.2: Let 𝑓𝑛 = 𝑕 + 𝑔𝑛 be given by (7).Then 𝑓𝑛 ∈ 𝐺𝑆 (πœ†, 𝛼, 𝑝) if and only if
∞
(13)
π‘˜=1 π‘˜ 1 + 𝜌 βˆ’ (𝛼 + 𝜌 π‘Žπ‘˜ + π‘˜ 1 + 𝜌 + (𝛼 + 𝜌 π‘π‘˜ 𝐡𝐾 πœ† ≀ 2 1 βˆ’ 𝛼
πœ† + 1 πœ† +2 ….. πœ† + 𝑛 βˆ’1
π‘€π‘•π‘’π‘Ÿπ‘’ π‘Ž1 = 1, πœ† ∈ β„•0 , π΅π‘˜ πœ† =
, 𝜌 β‰₯ 0 π‘Žπ‘›π‘‘ 0 ≀ 𝛼 < 1.
π‘›βˆ’1 !
Proof: Since 𝐺𝑆 (πœ†, 𝛼, 𝑝) βŠ‚ 𝐺𝑆 πœ†, 𝛼, 𝑝 we only need to prove the "only if" part of Theorem (2.2). To this
end, for functions 𝑓𝑛 of the form (6) , we notice that the condition (5) is equation to
𝑅𝑒
⟹
1 + 𝑝𝑒 𝑖𝛼
𝐷 πœ† +π‘ž 𝑧
βˆ’ (𝑝𝑒 𝑖𝛼 + 𝛼 β‰₯ 0
π·πœ† 𝑓 𝑧
310
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
1 + πœŒπ‘’ π‘–π‘Ÿ 𝐷 πœ† +1 𝑓 𝑧 βˆ’ (πœŒπ‘’ π‘–π‘Ÿ + 𝛼)𝐷 πœ† 𝑓(𝑧)
β‰₯0
𝐷 πœ† 𝑓(𝑧)
𝑅𝑒
⟹
ο‚₯
1 + πœŒπ‘’
π‘–π‘Ÿ
ο‚₯
οƒ₯
(𝑧 βˆ’
οƒ₯
π‘˜
π‘˜π΅π‘˜ πœ† π‘Žπ‘˜ 𝑧 +
k ο€½2
𝑅𝑒
ο‚₯
π΅π‘˜ πœ† π‘Žπ‘˜ 𝑧 π‘˜ + βˆ’1
οƒ₯
2πœ†
k ο€½2
k ο€½1
ο‚₯
οƒ₯
π‘˜π΅π‘˜ πœ† π‘Žπ‘˜ 𝑧 π‘˜ + (βˆ’1)2πœ†+1
k ο€½2
βˆ’
οƒ₯
οƒ₯
π‘˜ π‘π‘˜ π΅π‘˜ (πœ†)𝑧 π‘˜
k ο€½1
ο‚₯
π‘§βˆ’
π‘˜ π‘π‘˜ π΅π‘˜ πœ† 𝑧 π‘˜
π‘π‘˜ π΅π‘˜ πœ† π‘§π‘˜
ο‚₯
πœŒπ‘’ π‘–π‘Ÿ + 𝛼 (𝑧 βˆ’
2πœ†+1
ο‚₯
οƒ₯
π‘§βˆ’
βˆ’1
k ο€½1
β‰₯0
ο‚₯
π΅π‘˜ (πœ†) π‘Žπ‘˜ 𝑧 π‘˜ + (βˆ’1)2πœ†
k ο€½2
οƒ₯
π‘π‘˜ π΅π‘˜ (πœ†)π‘§π‘˜
k ο€½1
⟹
ο‚₯
οƒ₯
1βˆ’π›Ό βˆ’
π‘˜ 1 + πœŒπ‘’ π‘–π‘Ÿ βˆ’ πœŒπ‘’ π‘–π‘Ÿ + 𝛼 π΅π‘˜ πœ† π‘Žπ‘˜ 𝑧 π‘˜ βˆ’1
k ο€½2
𝑅𝑒
ο‚₯
οƒ₯
1βˆ’
π΅π‘˜ πœ† π‘Žπ‘˜ 𝑧 π‘˜ βˆ’1 +
k ο€½2
ο‚₯
𝑧
βˆ’1
𝑧
2πœ†
οƒ₯
π΅π‘˜ πœ† π‘π‘˜ π‘§π‘˜βˆ’1
k ο€½1
ο‚₯
𝑧
βˆ’1 2πœ†
𝑧
βˆ’
οƒ₯
π‘˜ 1+ 𝜌 𝑒 π‘–π‘Ÿ + 𝜌 𝑒 π‘–π‘Ÿ +𝛼 π΅π‘˜ πœ† 𝑏 π‘˜ 𝑧 π‘˜βˆ’1
k ο€½2
ο‚₯
1βˆ’
β‰₯0
ο‚₯
οƒ₯
𝑧
π΅π‘˜ πœ† π‘Ž π‘˜ 𝑧 π‘˜ βˆ’1 + βˆ’1 2πœ†
𝑧
k ο€½2
οƒ₯
(14)
π΅π‘˜ πœ† 𝑏 π‘˜ 𝑧 π‘˜βˆ’1
k ο€½1
The above condition (14) must hold for all values of z on the positive real axes, where, 0 ≀ 𝑧 = 𝛾 <
1, 𝑀𝑒 must have
ο‚₯
1βˆ’π›Ό βˆ’
οƒ₯
(π‘˜ βˆ’ 𝛼)π΅π‘˜ (πœ†) π‘Žπ‘˜ 𝛾 π‘˜βˆ’1
k ο€½2
𝑅𝑒
ο‚₯
ο‚₯
οƒ₯
1βˆ’
π΅π‘˜ πœ† π‘Žπ‘˜ 𝛾 π‘˜βˆ’1 + (βˆ’1)2πœ†
k ο€½2
οƒ₯
π΅π‘˜ (πœ†) π‘Žπ‘˜ 𝛾 π‘˜βˆ’1
k ο€½1
ο‚₯
βˆ’1
2πœ†
ο‚₯
οƒ₯
π‘˜ + 𝛼 π΅π‘˜ πœ† π‘π‘˜ 𝛾 π‘˜βˆ’1 βˆ’ πœŒπ‘’ π‘–π‘Ÿ
k ο€½2
βˆ’
οƒ₯
π‘˜ βˆ’ 1 π΅π‘˜ πœ† π‘Žπ‘˜ 𝛾 π‘˜βˆ’1
k ο€½2
ο‚₯
1βˆ’
οƒ₯
βˆ’
ο‚₯
π΅π‘˜ πœ† π‘Žπ‘˜ 𝛾 π‘˜βˆ’1 + βˆ’1
k ο€½2
2πœ†
οƒ₯
π΅π‘˜ πœ† π‘π‘˜ 𝛾 π‘˜βˆ’1
k ο€½1
ο‚₯
2πœ†
βˆ’1
πœŒπ‘’ π‘–π‘Ÿ
οƒ₯
π‘˜ + 1 π΅π‘˜ πœ† π‘π‘˜ 𝛾 π‘˜βˆ’1
k ο€½2
βˆ’
ο‚₯
1βˆ’
β‰₯ 0.
ο‚₯
οƒ₯
π΅π‘˜ πœ† π‘Žπ‘˜ 𝛾 π‘˜βˆ’1 + βˆ’1
2πœ†
k ο€½2
οƒ₯
π΅π‘˜ πœ† π‘π‘˜ 𝛾 π‘˜βˆ’1
k ο€½1
Since Re βˆ’π‘’ π‘–π‘Ÿ β‰₯ βˆ’ 𝑒 π‘–π‘Ÿ = βˆ’1, the above inequality reduce to
ο‚₯
1βˆ’π›Ό βˆ’
οƒ₯
π‘˜ 1 + 𝜌 βˆ’ 𝜌 + 𝛼 π΅π‘˜ (πœ†) π‘Žπ‘˜ 𝛾 π‘˜βˆ’1
k ο€½2
βˆ’
ο‚₯
1βˆ’
οƒ₯
k ο€½2
ο‚₯
π΅π‘˜ πœ† π‘Žπ‘˜ 𝛾 π‘˜βˆ’1 +
οƒ₯
k ο€½1
π΅π‘˜ (πœ†) π‘π‘˜ 𝛾 π‘˜βˆ’1
311
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
ο‚₯
οƒ₯
π‘˜ 1+ 𝜌 + 𝜌 +𝛼 π΅π‘˜ πœ† 𝑏 π‘˜ 𝛾 π‘˜ βˆ’1
k ο€½2
βˆ’
ο‚₯
1βˆ’
β‰₯ 0.
ο‚₯
οƒ₯
π΅π‘˜ πœ† π‘Ž π‘˜ 𝛾 π‘˜ βˆ’1 +
k ο€½2
οƒ₯
(15)
π΅π‘˜ πœ† 𝑏 π‘˜ 𝛾 π‘˜βˆ’1
k ο€½1
If the condition (13) does not hold, then the numerator in (15) is negative for  sufficiently close to
1.Hence there exists a 𝑧0 = 𝑦0 in (0, 1) for which the quotient in (15) is negative. This contrad- icts the
condition for 𝑓 ∈ 𝐺𝑠 (πœ†, 𝛼, 𝑝) and so proof is complete.
3.Distortion Bounds:
In this section, we will obtain distortion bounds for function in 𝐺𝑆 (πœ†, 𝛼, 𝑝) .
Theorem 3.1: Let 𝑓𝑛 ∈ 𝐺𝑆 (πœ†, 𝛼, 𝑝) .Then for 𝑧 = 𝛾 < 1, we have
1βˆ’π›Ό
1 + 2𝜌 + 𝛼
𝑓𝑛 (𝑧) ≀ 1 + 𝑏1 𝛾 +
1βˆ’
𝑏1 𝛾 2 .
2 1+𝜌 βˆ’ 𝜌+𝛼 1+πœ†
1βˆ’π›Ό
1βˆ’π›Ό
1 + 2𝜌 + 𝛼
1βˆ’
𝑏1 𝛾 2 .
2 1+𝜌 βˆ’ 𝜌+𝛼 1+πœ†
1βˆ’π›Ό
Proof: We only prove the lift –hand inequality .The proof for the right inequality is similar and is thus
omitted. Let 𝑓𝑛 ∈ 𝐺𝑆 (πœ†, 𝛼, 𝑝).Taking the absolute value of 𝑓𝑛 , we obtain
𝑓𝑛 (𝑧)
𝑓𝑛 (𝑧) ≀ 1 + 𝑏1 𝛾 βˆ’
∞
∞
π‘Žπ‘˜ 𝑧 π‘˜ + (βˆ’1)2𝑛
= π‘§βˆ’
π‘˜=2
π‘π‘˜ 𝑧 π‘˜
π‘˜=1
∞
( π‘Žπ‘˜ + π‘π‘˜ )𝛾 π‘˜
≀ 1 + 𝑏1 𝛾 +
π‘˜=2
∞
( π‘Žπ‘˜ + π‘π‘˜ )𝛾 2
≀ 1 + 𝑏1 𝛾 +
π‘˜=2
≀ 1 + 𝑏1 𝛾 +
1βˆ’π›Ό
2 1 + 𝜌 βˆ’ (𝜌 + 𝛼)(πœ† + 1)
∞
2 1 + 𝜌 βˆ’ (𝜌 + 𝛼)(πœ† + 1)
2 1 + 𝜌 βˆ’ (𝜌 + 𝛼)(πœ† + 1)
×
π‘Žπ‘˜ +
π‘π‘˜
1βˆ’π›Ό
1βˆ’π›Ό
𝛾2
π‘˜=2
≀ 1 + 𝑏1 𝛾 +
1βˆ’π›Ό
2 1 + 𝜌 βˆ’ (𝜌 + 𝛼)(πœ† + 1)
∞
π‘˜ 1 + 𝜌 βˆ’ 𝜌 + 𝛼 π΅π‘˜ (πœ†)
π‘˜ 1 + 𝜌 + 𝜌 + 𝛼 π΅π‘˜ (πœ†)
×
π‘Žπ‘˜ +
π‘π‘˜
1βˆ’π›Ό
1βˆ’π›Ό
π‘˜=2
≀ 1 + 𝑏1 𝛾 +
1βˆ’π›Ό
1 + 𝜌 + (𝜌 + 𝛼)
1βˆ’
𝑏1 𝛾 2
2 1 + 𝜌 βˆ’ (𝜌 + 𝛼)(πœ† + 1)
1βˆ’π›Ό
≀ 1 + 𝑏1 𝛾 +
1βˆ’π›Ό
2+𝜌+𝛼
1βˆ’
𝑏1 𝛾 2 .
2 1+𝜌 βˆ’ 𝜌+𝛼 πœ†+1
1βˆ’π›Ό
The functions
𝑓 𝑧 = 𝑧 + 𝑏1 𝑧 +
1
1βˆ’π›Ό
2+𝜌+𝛼
βˆ’
𝑧2
πœ† + 1 2 1 + 𝜌 βˆ’ (𝜌 + 𝛼) 2 1 + 𝜌 βˆ’ (𝜌 + 𝛼)
𝑓 𝑧 = 1 βˆ’ 𝑏1 𝑧 βˆ’
1
1βˆ’π›Ό
2+𝜌+𝛼
βˆ’
𝑧2
πœ† + 1 2 1 + 𝜌 βˆ’ (𝜌 + 𝛼) 2 1 + 𝜌 βˆ’ (𝜌 + 𝛼)
1βˆ’π›Ό
Show that the bounds given in the Theorem 3.1 are sharp
1 + 2𝜌 + 𝛼
The following covering result follows form the left -hand inequality in Theorem 3.1.
for 𝑏1 ≀
4 .Convex Combination And Extreme Points:
Let the function 𝑓𝑛,𝑗 𝑧 be defined, for j=1, 2 …m, by
+ 𝛾2
312
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
𝑓𝑛,𝑗 𝑧 = 𝑧 βˆ’ βˆžπ‘˜=2 π‘Žπ‘˜ ,𝑗 𝑧 π‘˜ + βˆ’1 𝑛 βˆžπ‘˜=1 π‘π‘˜ ,𝑗 𝑧 π‘˜ .
(16)
Theorem 4.1: Let the function 𝑓𝑛,𝑗 𝑧 defined by (16) be in the class 𝐺𝑆 (πœ†, 𝛼, 𝑝) for every j=1, 2...m. Then the
functions 𝑑𝑗 𝑧 defined by
𝑑𝑗 𝑧 = π‘š
(17)
𝑗 =1 𝑐𝑗 𝑓𝑛,𝑗 𝑧 , π‘œ ≀ 𝑐𝑗 < 1 ,
π‘š
are also in the class𝐺𝑆 πœ†, 𝛼, 𝑝 , where
𝑐𝑗 = 1.
𝑗 =1
Proof: A cording to the definition of 𝑑𝑗 , we can write
∞
∞
π‘š
𝑑𝑗 𝑧 = 𝑧 βˆ’
π‘˜
𝑐𝑗 π‘Žπ‘˜ ,𝑗
π‘˜=2
𝑧 + βˆ’1
𝑗 =1
π‘š
𝑛
π‘§π‘˜ .
π‘π‘˜,𝑗
π‘˜=1
𝑗 =1
Further, since 𝑓𝑛,𝑗 𝑧 are in𝐺𝑆 (πœ†, 𝛼, 𝑝) for every j=1, 2….m, then
∞
π‘š
π‘˜ 1+𝜌 βˆ’ 𝛼+𝜌
π‘š
𝑐𝑗 π‘Žπ‘˜ ,𝑗
π‘˜=1
+ π‘˜ 1+𝜌 + 𝛼+𝜌
𝑐𝑗 π‘π‘˜ ,𝑗
𝑗 =1
π΅π‘˜ (πœ†)
𝑗 =1
∞
π‘š
=
𝑐𝑗
𝑗 =1
π‘š
≀
π‘˜ 1 + 𝜌 βˆ’ 𝛼 + 𝜌 π‘Žπ‘˜ ,𝑗 + π‘˜ 1 + 𝜌 + 𝛼 + 𝜌
π‘π‘˜,𝑗 π΅π‘˜ (πœ†)
π‘˜=1
𝑐𝑗 2 1 βˆ’ 𝛼 ≀ 1 βˆ’ 𝛼 . Hence theorem 4.1 follows .
𝑗 =1
Corollary 4.2: The class 𝐺𝑆 (πœ†, 𝛼, 𝑝) is closed under convex liner combinations.
Proof: Let the functions 𝑓𝑛,𝑗 𝑧 = (j=1, 2…., m) defined by (16) be in the class 𝐺𝑆 πœ†, 𝛼, 𝑝 . Then the function
Ξ¨ 𝑧 defined by
Ξ¨ 𝑧 = πœ‡π‘“π‘›,𝑗 𝑧 + 1 βˆ’ πœ‡ 𝑓𝑛,𝑗 𝑧 , π‘œ ≀ πœ‡ < 1
is in the class 𝐺𝑆 (πœ†, 𝛼, 𝑝) .
Next we determine the extreme point of closed convex hulls of 𝐺𝑆 (πœ†, 𝛼, 𝑝) , denoted by cloco𝐺𝑆 (πœ†, 𝛼, 𝑝).
Theorem 4.3:Let 𝑓𝑛 be given by (7) .Then 𝑓𝑛 ∈ 𝐺𝑆 (πœ†, 𝛼, 𝑝) if and only if
∞
𝑓𝑛 𝑧 =
𝑋𝑛 π‘•π‘˜ 𝑧 + π‘Œπ‘› 𝑔𝑛 ,π‘˜ 𝑧
,
π‘˜=1
where
1βˆ’π›Ό
𝑧 π‘˜ , 𝑧 = 2,3, … … .,
π‘˜ 1 + 𝜌 βˆ’ 𝛼 + 𝜌 π΅π‘˜ πœ†
1βˆ’π›Ό
π‘§π‘˜
π‘˜ 1 + 𝜌 + 𝛼 + 𝜌 π΅π‘˜ πœ†
𝑕1 𝑧 = 𝑧 , π‘•π‘˜ 𝑧 = 𝑧 βˆ’
𝑔𝑛,π‘˜ 𝑧 = 𝑧 βˆ’ (βˆ’1)𝑛
∞
π‘Žπ‘›π‘‘
𝑋𝐾 + π‘ŒπΎ = 1, 𝑋𝐾 β‰₯ 0, π‘ŒπΎ β‰₯ 0 . In particular, the extreme points of 𝐺𝑆 πœ†, 𝛼, 𝑝 are
π‘˜=1
π‘•π‘˜ π‘Žπ‘›π‘‘ π‘”π‘›π‘˜ .
Proof:
For
∞
𝑓𝑛 𝑧 =
the
function
𝑓𝑛 of
the
4.3 ,
form
we
have
𝑋𝑛 π‘•π‘˜ 𝑧 + π‘Œπ‘› 𝑔𝑛 ,π‘˜ 𝑧
π‘˜=1
∞
𝑓𝑛 𝑧 =
∞
𝑋𝑛 + π‘Œπ‘› 𝑧 βˆ’
π‘˜=1
π‘˜=1
1βˆ’π›Ό
𝑋 𝑧 π‘˜ + βˆ’1
π‘˜ 1 + 𝜌 βˆ’ 𝛼 + 𝜌 π΅π‘˜ πœ† 𝑛
∞
𝑛
π‘˜=1
1βˆ’π›Ό
π‘Œ π‘§π‘˜ .
π‘˜ 1 + 𝜌 + 𝛼 + 𝜌 π΅π‘˜ πœ† 𝑛
Then
∞ π‘˜ 1+𝜌 βˆ’ 𝜌+𝛼 π΅π‘˜ (πœ†)
π‘˜=1
1βˆ’π›Ό
∞
∞
=
π‘‹π‘˜ +
π‘˜=1
π‘Žπ‘˜ +
∞ π‘˜ 1+𝜌 + 𝜌+𝛼 π΅π‘˜ (πœ†)
π‘˜=1
1βˆ’π›Ό
π‘π‘˜
(18)
π‘Œπ‘˜ = 1 βˆ’ 𝑋1 ≀ 1 ,
π‘˜=1
and so 𝑓𝑛 ∈ π‘π‘™π‘π‘œ 𝐺𝑆 (πœ†, 𝛼, 𝑝) .
Conversely, suppose that 𝑓𝑛 ∈ π‘π‘™π‘π‘œ 𝐺𝑆 πœ†, 𝛼, 𝑝 . Setting
π‘˜ 1+𝜌 βˆ’ 𝜌 +𝛼 π΅π‘˜ (πœ†)
π‘‹π‘˜ =
π‘Žπ‘˜ , 0 ≀ π‘‹π‘˜ < 1, π‘˜ = 2,3,
1βˆ’π›Ό
π‘˜ 1 + 𝜌 βˆ’ 𝜌 + 𝛼 π΅π‘˜ (πœ†)
π‘Œπ‘˜ =
π‘π‘˜ , 0 ≀ π‘Œπ‘˜ < 1, π‘˜ = 2,3, … .,
1βˆ’π›Ό
(19)
313
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
∞
∞
and 𝑋1 = 1 βˆ’
π‘‹π‘˜ +
π‘˜=1
∞
=π‘§βˆ’
π‘˜=1
∞
π‘˜=2
=
π‘π‘˜ 𝑧 π‘˜
π‘˜=1
∞
𝑕 𝑧 βˆ’ 𝑧 π‘‹π‘˜ +
π‘˜=2
π‘•π‘˜ (𝑧)π‘‹π‘˜ +
∞
π‘˜=1
(1 βˆ’ 𝛼)π‘Œπ‘˜
π‘§π‘˜
π‘˜ 1 + 𝜌 + 𝛼 + 𝜌 π΅π‘˜ πœ†
𝑔𝑛,π‘˜ 𝑧 βˆ’ 𝑧 π‘Œπ‘˜
π‘˜=1
∞
π‘˜=2
∞
=
∞
𝑛
1 βˆ’ 𝛼 π‘‹π‘˜
𝑧 π‘˜ + (βˆ’1)𝑛
π‘˜ 1 + 𝜌 βˆ’ 𝛼 + 𝜌 π΅π‘˜ πœ†
=𝑧+
∞
π‘˜=1
π‘Žπ‘˜ 𝑧 π‘˜ + βˆ’1
𝑓𝑛 𝑧 = 𝑧 βˆ’
∞
π‘Œπ‘˜ then 𝑓𝑛 can be written as
∞
𝑔𝑛,π‘˜ 𝑧 π‘Œπ‘˜ + 𝑧(1 βˆ’
π‘˜=1
∞
π‘‹π‘˜ +
π‘˜=1
π‘Œπ‘˜
π‘˜=1
π‘•π‘˜ 𝑧 π‘‹π‘˜ + 𝑔𝑛,π‘˜ 𝑧 π‘Œπ‘˜ , π‘Žπ‘  π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ . (20)
π‘˜=2
Using corollary (4.2) we have clco 𝐺𝑆 πœ†, 𝛼, 𝑝 = 𝐺𝑆 (πœ†, 𝛼, 𝑝) .Then the statement of Theorem (4.3) is true
for 𝑓 ∈ 𝐺𝑆 πœ†, 𝛼, 𝑝 .
5 . Neighborhoods:
The 𝛿 βˆ’ neighborhood 𝑁𝛿 𝑓 of𝑓 is the set (see ( Atintas, 2000) and (Rucsheweyh, 1981)):
𝑁𝛿 𝑓 = 𝐹: βˆžπ‘˜=2 π‘˜( π‘Žπ‘˜ βˆ’ π΄π‘˜ + π‘π‘˜ βˆ’ 𝐡𝐾 + 𝑏1 βˆ’ 𝐡1 ≀ 𝛿 ,
where the function 𝐹(𝑧) is given by
𝐹(𝑧) = 𝑧 + βˆžπ‘˜=2 π΄π‘˜ 𝑧 π‘˜ + βˆžπ‘˜ =1 π΅π‘˜ 𝑧 π‘˜
In [8], OZTURK and YALCIN .defined the generalized 𝛿-neighbrohood of 𝑓 to be the set:
(21)
(22)
∞
𝑁𝛿 𝑓 = 𝐹:
(π‘˜ βˆ’ 𝛼)( π‘Žπ‘˜ βˆ’ π΄π‘˜ + π‘π‘˜ βˆ’ 𝐡𝐾 + (1 βˆ’ 𝛼) 𝑏1 βˆ’ 𝐡1 ≀ 𝛿(1 βˆ’ 𝛼) .
π‘˜=2
π‘˜
Theorem 5.1: Let 𝑓 𝑧 = 𝑧 + 𝑏1 𝑧 + ∞
π‘˜=2 (π‘Žπ‘˜ + π‘π‘˜ 𝑧 ) be a member of 𝐺𝑆 πœ†, 𝛼, 𝑝 . If
2𝜌 1 βˆ’ 𝛼
𝛿≀
+ 𝑏1 , then 𝑁 𝑓 βŠ‚ 𝐺𝑆 πœ†, 𝛼, 𝑝 .
𝜌+1
Proof: Let 𝑓 ∈ 𝐺𝑆 (πœ†, 𝛼, 𝑝)
∞
(π΄π‘˜ 𝑧 π‘˜ + π΅π‘˜ 𝑧 π‘˜ )
𝐹(𝑧) = 𝑧 + 𝑏1 𝑧 +
π‘˜=2
belong to𝑁
𝑓 .We have
∞
1 βˆ’ 𝛼 𝐡1 +
(π‘˜ βˆ’ 𝛼)( π΄π‘˜ + 𝐡𝐾 )
π‘˜=1
∞
≀ 1 βˆ’ 𝛼 𝐡1 βˆ’ 𝑏1 +
∞
(π‘˜ βˆ’ 𝛼)( π΄π‘˜ βˆ’ π‘Žπ‘˜ + 𝐡𝐾 βˆ’ π‘π‘˜ ) + 1 βˆ’ 𝛼 𝑏1 +
π‘˜=1
(π‘˜ βˆ’ 𝛼)( π‘Žπ‘˜ + 𝑏𝐾 )
π‘˜=1
∞
1
≀ 1 βˆ’ 𝛼 𝛿 + 1 βˆ’ 𝛼 𝑏1 +
(π‘˜ 1 + 𝜌 βˆ’ 𝛼 + 𝜌 + ( 1+𝜌 ) + (𝛼 + 𝜌) π΅π‘˜ (πœ†) π‘Žπ‘˜ + π‘π‘˜
𝜌+1
π‘˜=1
2 1βˆ’π›Ό
≀ 1 βˆ’ 𝛼 𝛿 + 1 βˆ’ 𝛼 𝑏1 +
≀ 1 βˆ’ 𝛼,
𝜌+1
2𝜌 1 βˆ’ 𝛼
if𝛿 ≀
+ 𝑏1 .
𝜌+1
Thus 𝐹 ∈ 𝐺𝑆 πœ†, 𝛼, 𝑝 .
6. Integral Operators:
Now, we examine a closure property of class 𝐺𝑆 πœ†, 𝛼, 𝑝 under the generalized Bernurdi-Libera-Livingston
integral operator 𝐿𝑐 (𝑓) which is defined by
𝑐+1
𝐿𝑐 𝑓 = 𝑐
𝑧
𝑧
𝑑 π‘βˆ’1 𝑓 𝑑 𝑑𝑑 , 𝑐 > βˆ’1 .
0
Theorem 6.1: Let 𝑓 ∈ 𝐺𝑆 πœ†, 𝛼, 𝑝 . Then 𝐿𝑐 (𝑓) ∈ 𝐺𝑆 πœ†, 𝛼, 𝑝
314
Abdul Rhman S. Juma et al, 2015
Australian Journal of Basic and Applied Sciences, 9(5) March 2015, Pages: 307-314
Proof: From the representation of 𝐿𝑐 𝑓 𝑧 , it follows that
𝑐+1
𝐿𝑐 𝑓 = 𝑐
𝑧
𝑐+1
=
𝑧𝑐
𝑧
𝑑
𝑧
𝑑 π‘βˆ’1 𝑕 𝑧 + 𝑔(𝑑) 𝑑𝑑 .
0
π‘βˆ’1
∞
𝑑 π‘βˆ’1 (𝑑 βˆ’
π‘Žπ‘˜ 𝑑 ) 𝑑𝑑 βˆ’
π‘˜=2
∞
π΄π‘˜ 𝑧 π‘˜ βˆ’
π‘˜=2
π‘˜
(𝑑 βˆ’
0
∞
=π‘§βˆ’
𝑧
∞
0
π‘π‘˜ π‘‘π‘˜ ) 𝑑𝑑 .
π‘˜=1
π΅π‘˜ 𝑧 π‘˜
π‘˜=1
𝑐+1
𝑐+1
π‘€π‘•π‘’π‘Ÿπ‘’ π΄π‘˜ =
π‘Ž ; π΅π‘˜ =
𝑏 .
π‘˜+1 π‘˜
π‘˜+1 π‘˜
Therefore,
∞
π‘˜ 1+𝜌 βˆ’ 𝜌+𝛼 𝑐+1
π‘˜ 1+𝜌 + 𝜌+𝛼
π‘Žπ‘˜ +
1βˆ’π›Ό
π‘˜+1
1βˆ’π›Ό
π‘˜=1
∞
≀
π‘˜=1
π‘˜ 1+𝜌 βˆ’ 𝜌+𝛼
π‘˜ 1+𝜌 + 𝜌+𝛼
π‘Žπ‘˜ +
π‘π‘˜
1βˆ’π›Ό
1βˆ’π›Ό
𝑐+1
𝑏
π‘˜+1 π‘˜
π΅π‘˜ (πœ†)
≀ 2 1 βˆ’ 𝛼 . Since𝑓 ∈ 𝐺𝑆 πœ†, 𝛼, 𝑝 , therefor by Theorem 2.2 , 𝐿𝑐 𝑓
REFERENCES
Ahuja, O.P., 2005. Planar harmonic univalent
and related mappings, J. Inequal. Pure Appl.
Math.6(4), Art., 122: 1-18.
Atintas, O., O. Ozkan, H.M. Srivastava, 2000.
Neighborhoods of a class of analytic functions with
negative coefficients, Appl. Math. Leet, 13: 63-67.
Clunie, J. and T. Sheil-Small, 1984. Harmonic
univalent functions, Ann. Acad. Sci. Fen. Series, Al
Math, 9(3): 3-25.
Duren, P., 2004. Harmonic Mappings in the plan
(Gambridgeuniv.press, Cambridge, UK, 2004).
Jahangiri, J.M., 1999. Harmonic functions
starlike in the unit disk, J. Math. Anal. Appl, 235:
470-477.
Ponnusamy, S. and A. Rasila, 2007. Planer
harmonic mappings, RMS Mathematics Newsletter,
17(2): 40-57.
π΅π‘˜ (πœ†)
∈ 𝐺𝑆 πœ†, 𝛼, 𝑝 .
Rosy, T., B.A. Stephen, K.B. Subramanian and
J.M. Jahangir, 2001. Goodman-Ronning-type
harmonic univalent functions, Kyangpook Math.J.,
41(1): 45-54.
Rucsheweyh, S., 1981. Neighborhoods of
univalent functions, Proc. Amer .Math .Soc., 81:
521-527.
Sheil-Small, T., 1990. Constants for planar
harmonic mappings, J. London Math.Soc., 2(42):
237-248.
Silverman, H. and E.M. Silvia, 1999. subclasses
of harmonic univalent functions, New Zealand J.
Math, 28: 275-284.
Silverman, H., 1998. Harmonic univalent
functions with negative coefficient, J. Math.
Anal.Appl. 220,283-289.