Figure S1 Zingiberales Calathea lancifolia (Marantaceae) P5 701 P4M P6 833 P7 759 P4M 1097 800 900 m/z 1000 1100 700 1200 Zingiber officinialis (Zingiberaceae) P5 701 745 759 700 800 900 m/z 1000 1100 700 1200 m/z 1000 1100 1200 Musa sp (Musaceae) P6 833 877 745 1097 965 891 877 P4U P8 P P5U P5M 7 1009 1023 913 891 929 797 832 P8 P6M 1097 P5M 759 781 701 P4U P4M 900 P4M P6 P7 965 877 891 800 P5 P 5M P5U 759 745 891 700 P6 833 701 P8 965 P5M Ctenanthe oppenheiminiana (Marantaceae) P5 800 900 m/z 1000 1100 1200 Arecales P4M 781 759 P5 Rhapis excelsa (Arecaceae) P5M 913 930 797 P6M P5 701 1024 1046 701 700 800 900 913 781 759 891 m/z 1000 1100 1200 Caryota mitis (Arecaceae) P5M P4M 891 930 797 P6M 1024 1046 700 800 900 m/z 1000 1100 1200 Asparagales P4M 759 781 Ludisia discolor (Orchidaceae) P5M P5U 891 877 913 P4U P6U P M 6 P4U 759 745 781 10091023 1045 P7U 891 913 877 P7M P6U 800 900 m/z 1000 1100 1200 P5M 700 800 P4M 759 781 900 929 m/z 1009 1000 m/z 1000 1100 1200 758 780 P7M 1061 1100 P4U 877 P5M 891 700 800 P6U 1009 913 745 1155 1176 1200 Elodea canadensis (Araceae) P5U P4M P6U 877 800 Clivia miniata (Amaryllidaceae) 1023 1045 P5U 900 Alismatales P6M 891 913 P6M 1023 1009 1045 Asparagales 700 P5M P5U 1155 1141 1177 745 700 P4M Iris germanica (Iridaceae) 900 m/z P6M 1023 1045 1000 1100 1200 Supplementary Fig. S1. MALDI-TOF mass spectrum of the isolated xylo-oligosaccharides generated by xylanase treatment of the 1 M KOH extracts of AIR from selected monocots. The [M+Na]+and [M-H+2Na]+ ions corresponding to the most abundant xylo-oligosaccharides in each mixture are labeled as described in Figure 2 (main text). Figure S2 Poales Brachypodium distachyon (Poaceae) Terminal Reducing β-Xylp α-Araf Terminal Reducing 4Me-α-GlcpA α-Xylp Terminal α-GlcpA 2-α-Araf 2,4-β-Xylp (MG) 3,4-β-Xylp (Araf) Panicum virgatum (Poaceae) Oryza sativa (Poaceae) Miscanthus x giganteus (Poaceae) Setaria italica (Poaceae) Terminal 4Me-α-GlcpA Cyperus alternifolius (Cyperaceae) 2,4-β-Xylp (MG) 3,4-β-Xylp (Araf) Terminal α-GlcpA 2-α-Araf Ananus comosus (Bromeliaceae) α-Rhap α-GalpA β-Xylp (Rhap) Tillandsia usneoides (Bromeliaceae) 5.6 5.5 5.4 5.3 5.2 5.1 4.7 Chemical Shift (ppm) 4.6 4.5 4.4 4.3 Supplementary Fig. S2. Partial 600-MHz 1D 1H NMR spectra of xylo-oligosaccharides of selected commelinid species. 4.2 Figure S3 Zingiberales Amomum costatum (Zingiberaceae) Terminal α-Araf Terminal 4Me-α-GlcpA Terminal α-GlcpA α-GalpA Reducing α-Xylp α-Rhap Reducing β-Xylp 3,4-β-Xylp 2,4-β-Xylp (Araf) β-Xylp (MG) (Rhap) Hedychium coronarium (Zingiberaceae) Strelitzia alba (Streliziaceae) Commelinales Tradescantia virginiana (Commelinaceae Starch Sabal etonia (Arecaceae) Arecales 2-α-MeGlcpA (Arap) Terminal α-Araf Cocos nucifera (Arecaceae) Howea forsteriana (Arecaceae) 5.6 5.5 5.4 5.3 5.2 5.1 4.7 Chemical Shift (ppm) 4.6 4.5 4.4 Supplementary Fig. S3. Partial 600-MHz 1D 1H NMR spectra of xylo-oligosaccharides of selected Zingiberales, Commelinales and Arecales species. 4.3 4.2 Figure S4 Asparagales Crinum americanum (Amarylidaceae) 2-α-MeGlcpA (Arap) Terminal Terminal 2-α-GlcpA α-GlcpA 4Me-α-GlcpA (Arap) Reducing α-Xylp Terminal α-Arap Reducing β-Xylp 2,4-β-Xylp (Arap) Agapanthus africanus (Amarylidaceae) Allium cepa (Amarylidaceae) Asparagus officinalis (Asparagaceae) Tip Asparagus officinalis (Asparagaceae) Stem α-GalpA α-Rhap β-Xylp (Rha) Agave americana (Asparagaceae) 5.6 5.5 5.4 5.3 5.2 5.1 4.7 Chemical Shift (ppm) 4.6 4.5 4.4 4.3 Supplementary Fig. S4 Partial 600-MHz 1D 1H NMR spectra of xylo-oligosaccharides isolated from selected Asparagales (non-commelinid) species. 4.2 Figure S5 Liliales Alstroemeria sp. (Alstroemeriaceae) H1-Terminal α-GlcpA α-GalpA Reducing α-Xylp α-Rhap 2,4-β-Xylp Reducing β-Xylp (GlcA) β-Xylp (Rha) H1-Terminal 4Me-α-GlcpA Tulip sp. (Liliaceae) 2,4-β-Xylp (MeGlcA) Pandales Pandanus utilis (Pandanaceae) Starch Dioscorea alata (Dioscoreaceae) Dioscoreales Alismatales Orontium aquaticum (Araceae) 2-α-GlcpA Reducing Terminal (Arap) Terminal α-GlcpA 4Me-α-GlcpA α-Xylp 2,4-β-Xylp (Arap) Terminal Reducing α-Arap β-Xylp Spirodela polyrhiza (Araceae) Lemna minor (Araceae) Acorus americanus (Acoraceae) 5.6 5.5 Acorales 5.4 5.3 5.2 5.1 4.7 Chemical Shift (ppm) 4.6 4.5 4.4 4.3 Supplementary Fig. S5 Partial 600-MHz 1D 1H NMR spectra of xylo-oligosaccharides isolated from selected Liliales, Pandales, Discoreales Alismatales, and Acorales species. 4.2 Figure S6 2,4-β-Xylp (MeGlcpA-Galp) Terminal α-Arap (MeGlcpA) Terminal β-Galp (MeGlcpA) 2,4-β-Xylp (MeGlcpA-Arap) Terminal 4Me-α-GlcpA Reducing α-Xylp Terminal α-GlcpA 2-α-MeGlcpA (Arap) 2-α-MeGlcpA (Galp) Supplementary Fig. S6 Partial 600-MHz 1D 1H gCOSY NMR spectra of xylo-oligosaccharides generated from Eucalyptus grandis wood GX. The labeled cross-peaks correspond to correlations between vicinal protons of the glycosyl residues in the sidechains containing GlcA/MeGlcA substituted with α-lArap or β-d-Galp residues. Figure S7 a 915 P3M-2AB 929 P4M-2AB 1075 1089 P2M-2AB 753 700 959 945 769 800 900 P5M-2AB 1249 1119 1000 m/z 1100 1200 1300 P5 - 2AB 1031 b P3 - 2AB 711 1003 P4- 2AB 871 857 700 800 P6 - 2AB 1191 P4M-2AB 1089 P3M-2AB 929 900 1061 1000 m/z 1100 1163 P5M-2AB 1249 1200 1300 Supplementary Fig. S7. ESI-MS spectra of the per-O-methylated and 2AB-labeled xylooligosaccharides from Setaria italica. Xylo-oligosaccharides were generated by selectively labeling the reducing ends of polysaccharides in Setaria italica AIR with 2AB, extracting the labeled polysaccharides with 1 M KOH, fragmenting the resulting polysaccharides with endo-xylanase, separating the resulting products into fractions enriched in acidic and neutral oligosaccharides, and perO-methylating the oligosaccharides in each fraction. a Spectrum of the fraction enriched in acidic oligosaccharides P2M, P3M, P4M, and P5M, which correspond to [M + Na]+ ions at m/z 769, 929, 1089, and 1249, respectively. b Spectrum of the fraction enriched in neutral oligosaccharides P3, P4, P5, and P6, which correspond to [M + Na]+ ions at m/z 711, 871, 1031, and 1191,, respectively. Comparable oligosaccharides were generated from Miscanthus giganteus, Panicum virgatum, Oryza sativa, and Brachypodium distachyon. Figure S8 MS2 m/z 929 595 595 755 595 595 XXX2AB 697 M XX2AB 755 697 P M 929 929 755 755 363 697 697 503 m/z MS3 m/z 929→755 595 595 XX2AB 523 M 595 XX2AB 523 M 755 523 581 363 m/z Supplementary Fig. S8. ESI-MSn indicates that the reducing-end xylose of Setaria italica GAX is frequently substituted with GlcA. The precursor ion at m/z 929 (i.e., P3M-2AB) was selected from the MS1 spectrum (see supplementary Fig. S7a) of the fraction enriched in acidic oligosaccharides and subjected to ESI-MSn. Possible precursor ion structures and their fragmentation leading to the generation of Y-ions are shown in each spectrum. The fragmentation pathway (929 – 755 – 595/523) is consistent with the sequence Xyl-Xyl-(MeGlcA)-Xyl-2AB. The data do not rule out the possibility that an oligosaccharide with the sequence (Pentose)-Xyl-(MeGlcA)-Xyl-2AB, which corresponds to an oligosaccharide bearing a pentosyl sidechain, may also be present. Figure S9 MS2 m/z 1089 915 755 595 915 595 X→X→X→X→2AB 857 M 595 X→X→X→2AB 915 857 P M 915 755 1089 857 897 363 m/z MS3 m/z 1089 → 915 741 595 595 XXX2AB 683 M 755 595 XXX2AB 683 M 595 →X→X→2AB 683 P M 741 741 755 915 683 363 m/z MS4 m/z 1089 → 915 → 755 595 595 XX2AB 523 M 363 523 581 755 m/z Supplementary Fig. S9. Further evidence that the reducing-end xylose of Setaria italica GAX is frequently substituted with GlcA. The precursor ion at m/z 1089 (i.e., P4M-2AB) was selected from the MS1 spectrum (see supplementary Fig. S7a) of the fraction enriched in acidic oligosaccharides and subjected to ESI-MSn. Fragmentation events leading to the generation of Y ions are indicated in each spectrum.
© Copyright 2026 Paperzz