ChineseJournalofCatalysis36(2015)175–180 催化学报2015年第36卷第2期|www.chxb.cn a v a i l a b l e a t w w w. s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : w w w . e l s e v i e r. c o m / l o c a t e / c h n j c Article Elucidationofoxygenreductionreactionpathwayon carbon‐supportedmanganeseoxides LuhuaJianga,*,QiwenTanga,b,JingLiua,b,GongquanSuna,# DalianInstituteofChemicalPhysics,ChineseAcademyofSciences,Dalian116023,Liaoning,China UniversityofChineseAcademyofSciences,Beijing100049,China a b A R T I C L E I N F O A B S T R A C T Articlehistory: Received30September2014 Accepted10November2014 Published20February2015 Keywords: Oxygenreductionreactionpathway Alkalineelectrolyte Carbon‐supportedelectrocatalyst Manganeseoxide The oxygen reduction reaction (ORR) is a complex process. This is particularly the case for car‐ bon‐supportedelectrocatalystsinalkalineelectrolytes,becausecarboncancatalyzetheORRviaa two‐electron transfer to generate hydroperoxide (HO2−), which subsequently undergoes either chemical decomposition to generate O2 and OH− (HODR) or electrochemical reduction to OH− (HORR).Inthisstudy,weelucidatedtheORRpathwayonaseriesofcarbon‐supportedmanganese oxides,whichhavebeenextensivelystudiedaselectrocatalystsinalkalineelectrolytes.Acompari‐ son of the turnover frequencies of the HODR and HORR showed that although an apparent four‐electrontransferprocesswasidentifiedwhentheHO2−yieldwasmeasuredusingtherotating ring disk electrode technique, the real ORR pathway involved a two‐electron transfer process to generateHO2−,withsubsequentchemicaldecompositionofHO2−.Theseresultswillhelpustoun‐ derstandtheintrinsiccatalyticbehaviorofcarbon‐supportedtransition‐metaloxidesfortheORRin alkalineelectrolytes. ©2015,DalianInstituteofChemicalPhysics,ChineseAcademyofSciences. PublishedbyElsevierB.V.Allrightsreserved. 1. Introduction Theoxygenreductionreaction(ORR)isveryimportantbe‐ causeitisthecathodicreactioninfuelcellsandmetal–airbat‐ teries.Pt‐basedmaterialsareextensivelyusedasORRcatalysts under acidic conditions, but under alkaline conditions, a wide range of non‐noble metals and their oxides are stable and ac‐ tive for practical applications [1–3]. An understanding of the ORR pathway on a catalyst surface is critical in both funda‐ mental and practical terms. Although the ORR pathway on a smoothcatalystsurfacecanbeeasilystudiedusingtherotating ringdiskelectrode(RRDE)technique,foracarbon‐basedprac‐ ticalporouselectrode,theORRpathwayiscomplexbecausethe considerable amount of intermediate HO2− generated at the carbonsurfacecanbereadsorbedforfurtherreactions.Specif‐ ically, hydroperoxide species have three possible subsequent pathways,asshowninScheme1,i.e.,(1)diffusiondirectlyinto theelectrolyteasaproduct,(2)furtherelectrochemicalreduc‐ tion to form OH−, and (3) chemical decomposition to produce O2 and OH−. Unlike case (1), cases (2) and (3) are apparent four‐electron processes, although only case (2) is a real four‐electronprocess.Ourpreviousstudyofcarbon‐supported cobalt oxides [4,5] clearly showed that although the apparent electrontransfernumberwasclosetofourinalargepotential *Correspondingauthor. Tel:+86‐411‐84379603;Fax:+86‐411‐84379063;E‐mail:[email protected] #Correspondingauthor. Tel:+86‐411‐84379603;Fax:+86‐411‐84379063;E‐mail:[email protected] ThisworkwassupportedbytheStrategicPriorityResearchProgramofChineseAcademyofSciences(XDA09030104),theNationalBasicResearch Program of China (973 Program, 2012CB215500), the National Natural Science Foundation of China (21033009), and the 100‐Talent Program of ChineseAcademyofSciences. DOI:10.1016/S1872‐2067(14)60249‐7|http://www.sciencedirect.com/science/journal/18722067|Chin.J.Catal.,Vol.36,No.2,February2015 176 LuhuaJiangetal./ChineseJournalofCatalysis36(2015)175–180 2.2. Workingelectrodepreparation k4 (4e ), direct 4e pathway O2 k1 (2e) k 3 (2e) HO2 k2 O2+OH OH 2e +2e 2e + HODR Scheme 1. Various possible mechanisms for O2 reduction in alkaline solution. window, differentelectrochemicalreactionsoccurreddepend‐ ingontheelectrodepotential,i.e.,atwo‐electrontransferpro‐ cess followed by chemical decomposition of hydroperoxide at low overpotentials, but two‐electron transfer followed by fur‐ ther electrochemical reduction of hydroperoxide, namely a serialfour‐electrontransferprocess,athighoverpotentials. Other promising transition‐metal oxides, e.g., manganese oxides, are also worth investigating to help us to understand catalysis of the ORR by transition‐metal oxides. Previously, it was concluded that a two‐electron transfer process with sub‐ sequentchemicaldecompositionofhydroperoxideoccurredon amanganeseoxidesurface[6,7].However,thereisstillalackof experimentalevidencetosupportthisdeduction.Inthispaper, continuingourpreviousstudyontheeffectsofmanganeseva‐ lencesinmanganeseoxidesonORRactivity[8],weaimtoelu‐ cidate the ORR pathway on carbon‐supported manganese ox‐ ides.Themanganeseoxidesamplesusedinthisstudyarethe same as those used in our previous study [8]; therefore, the preparation procedures will not be described again. First, we calculated the electron transfer number of the ORR according totheKoutecky–LevichequationbymeasuringtheORRpolar‐ izationcurvesviatherotatingdiskelectrode(RDE)technique. We then distinguished between direct and indirect four‐electrontransferprocessesbydetectingtheHO2yieldsat manganese oxides of different catalyst thicknesses via the RRDEtechnique.Finally,wedeterminedthemainreactionsin peroxidechemicaldecomposition(HODR)andelectrochemical reduction (HORR) by measuring the turnover frequencies (TOFs)ofthetworeactions. 2. Experimental 2.1. Experimentalsetup Atraditionalthree‐electrodesystemwasusedforRDEand RRDE measurements. The RDE (Φ 5 mm, glassy carbon (GC)] measurements were performed using a CHI 760D electro‐ chemical workstation. The RRDE measurements were per‐ formedusingaBi‐potentiostat(PineInstruments).GCcovered by a porous catalyst film was used as the working electrode, andPtwireandaHg/HgOelectrode(MMO,in1mol/LNaOH, 0.93 V vs reversible hydrogen electrode after calibration) served as the counter and reference electrodes, respectively. ThepotentialofthePtringelectrodewaskeptat0.2Vvsthe MMOduringtheRRDEtests. The preparation of the working electrode has been de‐ scribedindetailintheliterature[9].Briefly,catalystpowder(3 mg) was dispersed in ethanol (2 mL). Carbon powder (2 mg; VulcanXC‐72,CabotCorp.)wasaddedtoincreasetheconduc‐ tivity,and5wt%Nafionsolution(50μL;DuPont)wasaddedas a binder. The mixture was ultrasonicated to form a well‐dis‐ persedink.Acertainamountoftheinkwaspipettedontothe GC electrode and then the solvent was evaporated at room temperaturetoformacatalyst thinfilm. AlltheMnOxcatalyst sampleswerefresh,withoutanyelectrochemicalpretreatment. 2.3. DeterminationofORRandHORRpolarizationcurves The ORR and HORR polarization curves were recorded in O2‐saturated1mol/LNaOHsolutionandN2‐saturated1mol/L NaOHcontaining0.85mmol/LH2O2solution,respectively,ata scanningrateof10mV/s. 2.4. TOFmeasurements(HODR) GCcoveredwithaPt/Ccatalystwasusedasaprobetode‐ tect the changes with time in the H2O2 concentration in the electrolyteafteraddingMnOxastheHODRcatalyst.Themeas‐ urements were also carried out in a three‐electrode system [10]. The preparation procedure for the thin‐film electrode withPt/Castheelectrocatalystwasthesameasthatdescribed abovefortheMnOxelectrode.Afterelectrochemicallycleaning theelectrodesurfaceatascanningrateof100mV/sin1mol/L NaOH,theORRlimitingcurrent(ilim,ORR)wasrecordedbyhold‐ ingtheelectrodepotentialat0.5Vfor10s,withtheelectrode rotatingataspeedof1600rpm.ThenH2O2(30%)wasadded to the electrolyte to ensure a concentration of 0.85 mmol/L (the same concentration as that of O2 in the O2‐saturated 1 mol/L NaOH solution) [11]. Then MnOx (300 μg) dispersed in water (1 mL) was quickly added to the H2O2‐containing elec‐ trolyte under magnetic stirring to ensure good contact of the MnOxcatalystwithH2O2.ThePtelectrodewasheldat0.5Vfor 10stocollectthecurrent(ilim)atintervals.Theconcentration ofresidualHO2intheelectrolytecouldbecalculatedaccording to the current difference on the Pt electrode (ilim,HORR = ilim − ilim,ORR).Themeasurementscontinuedforonly10sateachin‐ tervalandthenthePtelectrodewasrapidlyremovedfromthe electrolyte after the tests, therefore it was assumed that no extraHO2decomposedatthePtsurface. 3. Resultsanddiscussion 3.1. MeasurementofORRelectrontransfernumbersof carbon‐supportedmanganeseoxideelectrocatalysts TheORRpolarizationcurvesofthecarbon‐supportedman‐ ganeseoxideelectrocatalystsweremeasuredinO2‐saturated1 mol/L NaOH electrolyte; the results are shown in Fig. 1. The ORRonsetpotentialsofthefourcarbon‐supportedMnOxcata‐ lystswithdifferentmanganesevalences,i.e.,MnOOH/Mn(OH)4, LuhuaJiangetal./ChineseJournalofCatalysis36(2015)175–180 0.0 MnOOH/Mn(OH)4 i/mA -0.2 MnO2 (1) (1) (2) (2) (3) (3) (4) (4) 177 Mn2O3 Mn3O4/Mn2O3 (1) (1) (2) (2) -0.4 -0.6 (3) (3) (4) (4) -0.8 -0.6 -0.4 -0.2 E/V vs MMO 0.0 -0.6 -0.4 -0.2 E/V vs MMO 0.0 -0.6 -0.4 -0.2 0.0 E/V vs MMO 0.2-0.6 -0.4 -0.2 0.0 E/V vs MMO 0.2 Fig.1.ORRpolarizationcurvesforMnOx+Ccatalystsatdifferentrotationrates.(1)400rpm;(2)900rpm;(3)1600rpm;(4)2500rpm. 1.2 MnOOH&Mn(OH)4 MnO2 1.0 Mn2O3 Mn3O4&Mn2O3 XC-72 0.8 2 Toelucidatetheapparentfour‐electrontransferprocess,we investigatedthechangesintheHO2yieldwithvaryingcatalyst thickness:ifHO2istheintermediateintheORR,theHO2yield shoulddecreasewithincreasingcatalystthickness,becausethe HO2 species has a greater probability of chemically decom‐ posingtoform O2[10,13];otherwise,the ORR shouldbe adi‐ rect four‐electron transfer process with negligible HO2 pro‐ duction[14,15]. To avoid any changes in the surface manganese valence, fresh MnOx samples were used for the RRDE tests. The RRDE measurements were performed in an O2‐saturated 0.1 mol/L NaOH electrolyte. The measured disk currents are shown in Fig.3(a).TheHO2yieldcanbecalculatedfromEq.(2): XHO2−=(2iring/N)/(idisk+iring/N) (2) where iring and idisk are the ring current and disk current, re‐ 1 3.2. InfluenceofcatalystthicknessonHO2yields spectively, and N is the collecting efficiency of the RRDE (N = 0.38 after calibration). The calculated HO2 yield (XHO2) is shown in Fig. 3(b). To enable a clear comparison, the HO2− yields (@–0.4 V vs MMO) for different electrocatalysts are listedinTable1.Itcanbeseenthatforallcatalysts,asthecata‐ lyst loading increases from 3.75 to 30 μg, the quasi‐limiting currentincreases,buttheORRonsetpotentialremainsalmost constant. For the MnOOH/Mn(OH)4 sample, with a catalyst loading of 3.75 μg, the maximum XHO2 is 87.4%, indicating a dominant two‐electron process. The HO2 yield sharply de‐ creaseswithincreasingcatalystloading.Asthecatalystloading increasesto30μg,theHO2yielddecreasestoaround21%.For the MnO2 sample, XHO2 decreases from 26% to 6.6% with in‐ creasing catalyst loading from 3.75 to 30 μg, suggesting a four‐electron process at high catalyst loading. These results clearlyshowthatO2isfirstreducedtoHO2,whichisthenre‐ duced or chemically decomposes in a thick catalyst layer, therefore the HO2 yield detected by the Pt ring electrode de‐ creaseswithincreasingcatalystlayerthickness.Bonakdarpour etal.[13]investigatedtheORRatFe/N/Celectrodesandmade similar observations, i.e., the HO2 yield decreased from 60%–80%to2%–15%asthecatalystlayerincreasedfrom40 μg/cm2to800μg/cm2. i / (cm /mA) MnO2, Mn2O3, and Mn3O4/Mn2O3[8],areverysimilar, andthe ORR limiting currents increase with increasing electrode ro‐ tatingrate.Forcomparison,theORRlimitingcurrentwithVul‐ can®XC‐72carbonastheelectrocatalystislowerthanthatwith MnOx.AccordingtotheKoutecky–Levichequation[12]: ilim = 0.62nFADo2/3ω1/2ν−1/6Co* (1) (wherenistheORRelectrontransfernumber,FistheFaraday constant,Aisthegeometricareaoftheelectrode,Disthediffu‐ sioncoefficientofO2intheelectrolyte,ωistherotationspeed oftheelectrodeinradians,νistheviscosityoftheelectrolyte, andCo*istheconcentrationofO2attheelectrodesurface),the limitingcurrentisproportionaltothesquarerootoftheelec‐ trode rotating rate, therefore the relationship between 1/ilim andω0.5(@E=0.5V)islinear,asshowninFig.2.Afterfitting, the electron transfer numbers for MnOOH/Mn(OH)4, MnO2, Mn2O3, and Mn3O4/Mn2O3 were calculated to be 3.5, 3.5, 3.6, and3.5,respectively,suggestingthatafour‐electrontransferis the dominant process for carbon‐supported MnOx. For com‐ parison, the electron transfer number for Vulcan® XC‐72 car‐ bonisonly2.1,suggestingthatatwo‐electronprocessisdomi‐ nantwithHO2asthemainproduct. 0.6 0.4 0.02 0.03 0.04 0.5 0.5 /rpm 0.05 Fig. 2. Koutecky–Levich plots of ORR on MnOx + C catalysts (derived fromFig.1). 178 LuhuaJiangetal./ChineseJournalofCatalysis36(2015)175–180 XHO2_ 0.6 XHO2_ 0.4 MnOOH/Mn(OH)4 0.8 0.4 0.2 0.2 (b) (b) 0.0 0.0 -0.2 3.75 g 7.5 g 15 g 30 g (a) -0.4 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 idisk/mA 0.0 0.0 idisk/mA MnO2 -0.2 3.75 g 7.5 g 15 g 30 g (a) -0.4 -0.6 0.1 -0.5 -0.4 E vs MMO/V Mn2O3 0.6 0.4 0.2 0.1 0.6 0.4 0.2 (b) 0.0 0.0 (b) 0.0 0.0 -0.2 3.75 g 7.5 g 15 g 30 g -0.4 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 E vs MMO/V 0.0 idisk/mA idisk/mA 0.0 Mn3O4/Mn2O3 0.8 XHO2_ XHO2_ 0.8 -0.3 -0.2 -0.1 E vs MMO/V (a) (a) 0.1 3.75 g 7.5 g 15 g 30 g -0.2 -0.4 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 (a) 0.1 E vs MMO/V 2 Fig.3.Diskcurrents(a)andHO yields(b)onMnOx/Ccatalystswithdifferentcatalystloadingsatrotationrateof1600rpmandscanningrateof10 mV/s.CollectionefficiencyN=0.38;ringpotentialwasmaintainedatEring=0.2V. 3.3. DeterminationofORRpathwaysatcarbon‐supportedMnOx catalysts 3.3.1. CalculationofTOF(HODR) Tofurtherclarifywhetherchemicaldecompositionorelec‐ trochemical reduction of the generated HO2 intermediate is dominant,wecalculatedandcomparedtheTOFsoftheHORR andHODR.TheHODRTOFwascalculatedasdescribedinthe Experimentalsection.ThedifferencebetweentheORRlimiting current(ilim,ORR),measuredinO2‐saturated1mol/LNaOH,and the time‐dependent limiting current of ilim, measured in O2‐saturated 1 mol/L NaOH + 0.85 mmol/L H2O2, gives the limitingcurrentforHO2electrochemicalreduction(ilim,HORR)as ilim − ilim,ORR. The changes in ilim,HORR with time can be used to Table1 HO2−yieldsfordifferentelectrocatalysts(@–0.4VvsMMO). Catalystmass (g) Mn(OH)4 3.75 87.4 7.5 55.0 15.0 41.8 30.0 21.3 HO2yield(%) MnO2 Mn2O3 26.2 65.3 21.4 37.4 15.3 13.2 6.6 4.9 Mn3O4/Mn2O3 65.4 58.7 19.0 9.7 calculatetheTOFoftheHODRattheMnOxsurface,asdescribed below[10].ItshouldbenotedthattheNaOHsolutionwassat‐ urated with O2 in measuring the H2O2 reduction current, to eliminatetheinfluenceofO2onHO2chemicaldecomposition. ItshouldalsobementionedthatthecalculationofTOFHODRwas basedonthehypothesisthat(1)TOFHODRisindependentofthe HO2concentrationand(2)alltheMnOxtakespartinthereac‐ tion.Theoretically,theHORRlimitingcurrentcanbeexpressed as ilim,HORR=2FD2c2*/ (3) whereD2isthediffusioncoefficientofHO2intheelectrolyte, c2*isthebulkconcentrationofHO2,andisthediffusionlayer thicknessoftheelectrodeatarotatingspeedof1600rpm. TheHODRisapproximatelyfirstorderatlowHO2concen‐ trations,thereforethereactionratecanbeexpressedas νHODR=−dc2*/dt=kHODRc2* (4) wherekHODRistheapparentreactionrateconstantoftheHODR, which is related to the amount of catalyst in the electrolyte. Combining Eqs. (3) and (4), the relationship between ilim,HORR andkHODRisexpressedas kHODR=−ln(10)dlog(ilim,HORR)/dt (5) The changes in log(ilim,HORR) with time are shown in Fig. 4, LuhuaJiangetal./ChineseJournalofCatalysis36(2015)175–180 MnOOH/Mn(OH)4 MnO2 Mn2O3 Mn3O4&Mn2O3 MnOOH/Mn(OH)4 MnO2 Mn2O3 Mn3O4/Mn2O3 0.00 i3/mA ilim,HORR/(mA/cm2) 1 179 -0.05 (a) -0.10 0.1 -0.6 0 1 2 t/(103 s) 3 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 E vs MMO/V 4 -0.05 Fig. 4. Time‐dependent plots of HO2 reduction current density (pro‐ portionaltobulkHO2concentration)in1mol/LNaOHsolution. (b) E vs MMO/V -0.10 whichisfittedlinearly,indicatingthattheHODRisafirst‐order reaction,assupposed.Ifthecatalystamountaddedtotheelec‐ trolyteisthesamefordifferentsamples,theslopesofthelines reflect the HODR rates for different MnOx catalysts, i.e., Mn3O4/Mn2O3>Mn2O3>MnO2>MnOOH/Mn(OH)4. Furthermore,kHODRisrelatedtotheTOFbyEq.(6)[10]: TOFHODR=kHODRVc2*MMn/(mW) (6) whereVisthevolumeoftheelectrolyte,misthemassofMnOx, c2*isthebulkconcentrationofHO2,Wisthemasspercentage of manganese in MnOx, and MMn is the atomic weight of man‐ ganese(54.95g/mol).ThecalculatedresultsarelistedinTable 2. Fig. 5. (a) Polarization curves for HORR with MnOx catalysts in N2‐saturated 0.85 mmol/L H2O2 + 1 mol/L NaOH electrolyte and (b) derivedTafelplotsforHORR(currentsarenormalizedtomassofMnOx catalyst).Electroderotatingspeed:1600rpm,scanningrate:10mV/s. 3.3.2. CalculationofTOF(HORR) TheHORR polarization curves forthe MnOx catalysts were measuredinaN2‐saturated0.85mmol/LH2O2+1mol/LNaOH electrolyte and are shown in Fig. 5(a). To eliminate the influ‐ ence of mass transport, the kinetic HORR currents were de‐ rivedfromFig.5(a)accordingto[12]: 1/ilim=1/i+1/ik (7) TheobtainedTafelplotsareshowninFig.5(b).Itcanbeseen thatreductioncurrentsaredetectedforthefourMnOxcatalysts andtheonsetpotentialsarearound−0.05V.Mn2O3andMnO2 havethemostpositiveandthemostnegativehalf‐wavepoten‐ tial,respectively.Thelimitingcurrentsareintherange0.06to 0.10 mA. For comparison, the theoretical limiting current of the HORR was calculated according to the Koutecky–Levich equation;at around1.6mA/cm2, it is ca. 0.31 mA for anelec‐ trodeof 5mm,withadiffusioncoefficientofHO2in1mol/L NaOHof1.3×10–9m2/s,electrolyteviscosityof1×10–4m2/s, and electrode rotating speed of 1600 rpm. The much lower experimental limiting current compared with the calculated valueshowsthatonlysomeHO2iselectrochemicallyreduced, andsomeischemicallydecomposedtoformO2,whichiseither electrochemically reduced or released to the atmosphere. In thefollowingcalculation,itisassumedthatthelimitingcurrent resultsentirelyfromreductionofHO2,toobtainthemaximum TOFoftheHORR.TheTOFoftheHORRiscalculatedas[10] TOFHORR=ik,HORRMMn/(nFW) (8) whereik,HORRisthekineticcurrentoftheHO2electrochemical reduction,nistheelectrontransfernumber,andF,W,andMMn have the same meanings as in Eqs. (3) and (6). The values at 0.12VarelistedinTable2forcomparison. FromTable2,itisclearlyseenthatforthefourMnOxcata‐ lysts,theTOFfortheHODRistwoordersofmagnitudehigher than that for the HORR, indicating that the intermediate HO2 mainly undergoes subsequent chemical decomposition. These MnOx samples have similar morphologies; one reason for the better ORR activities of Mn2O3 and Mn3O4/Mn2O3 is probably faster chemical decomposition of the HO2 intermediate on thesecatalysts. Table2 ReactionratesofHO2electroreductionanddecomposition. Catalyst TOFHODR(10−2s−1) MnOOH&Mn(OH)4 2.41 MnO2 2.74 2.87 Mn2O3 Mn3O4&Mn2O3 3.39 TOFHORRat0.12V(10−4s−1) 4.36 3.35 5.03 3.96 -0.15 MnOOH/Mn(OH)4 MnO2 Mn2O3 Mn3O4/Mn2O3 -0.20 -0.25 -0.30 10-1 100 ik,HORR/(A/g) 101 4. Conclusions A comparisonoftheTOFsoftheHODRand HORRshowed that although apparent four‐electron transfer processes were observedbymeasuringtheHO2−yieldviatheRRDEtechnique, therealORRpathwayinvolvesatwo‐electrontransferprocess to generate HO2−, with subsequent chemical decomposition. 180 LuhuaJiangetal./ChineseJournalofCatalysis36(2015)175–180 GraphicalAbstract Chin.J.Catal.,2015,36:175–180 doi:10.1016/S1872‐2067(14)60249‐7 Elucidationonoxygenreductionreactionpathwayoncarbon‐supported manganeseoxides LuhuaJiang*,QiwenTang,JingLiu,GongquanSun* DalianInstituteofChemicalPhysics,ChineseAcademyofSciences; UniversityofChineseAcademyofSciences O2 The real ORR pathway behind the apparent four‐electron process on car‐ bon‐supportedmanganeseoxideswasshowntobeatwo‐electrontransferreac‐ tionfollowedbyhydroperoxidedisproportionation. Theseresultsareexpectedtohelpustounderstandtheintrin‐ sic catalytic behavior of carbon‐supported transition‐metal oxidesfortheORRinalkalineelectrolytes. k4 (4e), direct 4e pathway k1 (2e ) HO2 k3 O2 +OH k2 (2e ) OH MnOx/C ElectrochimActa,2003,48:1015 [7] OhsakaT,MaoLQ,AriharaK,SotomuraT.ElectrochemCommun, 2004,6:273 [8] TangQW,JiangLH,LiuJ,WangSL,SunGQ.ACSCatal,2014,4: 457 References [9] Paulus U A, Schmidt T J, Gasteiger H A, Behm R J. J Electroanal [1] Spendelow J S, Wieckowski A. Phys Chem Chem Phys, 2007, 9: 2654 [2] YeagerE.ElectrochimActa,1984,29:1527 [3] ZhangJ,TangSH,LiaoLY,YuWF.ChinJCatal(张浩, 唐水花, 廖 Chem,2001,495:134 [10] JaouenF,DodeletJP.JPhysChemC,2009,113:15422 [11] PaliteiroC,HamnettA,GoodenoughJB.JElectroanalChem,1987, 233:147 [12] BardAJ,FaulknerLR.ElectrochemicalMethods–Fundamentals 龙渝, 郁卫飞. 催化学报),2013,34:1051 [4] LiuJ,JiangLH,TangQW,ZhangBS,SuDS,WangSL,SunGQ. andApplications.NewYork:JohnWiley&Sons,1980.237 [13] BonakdarpourA,LefevreM,YangRZ,JaouenF,DahnT,DodeletJ ChemSusChem,2012,5:2315 P,DahnJR.ElectrochemSolid‐StateLett,2008,11:B105 [5] LiuJ,JiangLH,ZhangBS,JinJT,SuDS,WangSL,SunGQ.ACS Catal,2014,4:2998 [14] JaouenF.JPhysChemC,2009,113:15433 [15] HerrmannI,KoslowskiUI,RadnikJ,FiechterS,BogdanoffP.ECS [6] Mao L Q,Zhang D, SotomuraT,NakatsuK,KoshibaN, OhsakaT. Trans,2008,13(17):143 碳载氧化锰表面氧还原反应路径研究 姜鲁华a,*, 唐琪雯a,b, 刘 静a,b, 孙公权a,# 中国科学院大连化学物理研究所, 大连洁净能源国家实验室(筹), 辽宁大连116023 b 中国科学院大学, 北京100049 a 摘要: 氧还原反应(ORR)是一个复杂的过程, 尤其在碱性电解液中, 炭载型催化剂表面的ORR路径尤为复杂, 因为碳本身可以催化 ORR以二电子转移过程发生, 产生过氧化氢, 继而过氧化氢或者发生化学分解生成氧气(HODR), 或者发生电化学还原生成OH– (HORR). 本文详细研究了ORR在常用氧化锰催化剂表面的反应路径. 通过比较HODR和HORR的转换频率发现, 尽管利用旋转环 盘电极方法得到的表观电子转移数接近4, 真实的ORR主要是2电子过程, 反应生成的过氧化氢继而大部分发生化学分解生成氧 气. 该结果有助于理解碱性电解质中炭载型过渡金属氧化物电催化剂对ORR的催化行为. 关键词: 氧还原反应路径; 碱性电解质; 碳载氧化锰电催化剂 收稿日期: 2014-09-30. 接受日期: 2014-11-10. 出版日期: 2015-02-20. *通讯联系人. 电话: (0411)84379603; 传真: (0411)84379063; 电子信箱: [email protected] # 通讯联系人. 电话: (0411)84379603; 传真: (0411)84379063; 电子信箱: [email protected] 基金来源: 中国科学院战略性先导科技专项(XDA09030104); 国家重点基础研究发展计划(973计划, 2012CB215500); 国家自然 科学基金(21033009); 中国科学院“百人计划”. 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18722067).
© Copyright 2026 Paperzz