NCEA Level 3 Calculus (91578) 2016 — page 1 of 6 Assessment Schedule – 2016 Calculus: Apply differentiation methods in solving problems (91578) Evidence Statement Q1 Expected Coverage Achievement (u) (a) dy = 1+ x -2 - 2x -3 dx Correct solution (b) dh 3.2π πö æ 4π = cos ç t + ÷ è 25 dt 25 2ø æ 36π π ö = 0.402 cos ç + è 25 2 ÷ø = 0.395 metres per hour Correct solution with correct derivative (c) dx = -4 sin 2t dt dy = 2 tant sec 2 t dt dy 2 tant sec2 t = dx -4 sin 2t 2 tant = -4 sin 2t cos 2 t 2 π dy = At t = , 2 dx 4 æ 1 ö -4 ´ ç è 2 ÷ø 2 = = -1 -2 (d) 1 ( x - 2 )2 4 dy 1 = ( x - 2) dx 2 y= dy 1 = ( 6 - 2) = 2 dx 2 dy -1 At P = dx 2 -1 1 = ( x - 2) 2 2 -1 = x - 2 x =1 At Q (6, 4) dx or dt Correct solution with correct derivatives. dy -1 = dx 2 Correct solution with correct derivative. Correct dy dt At P Merit (r) Excellence (t) NCEA Level 3 Calculus (91578) 2016 — page 2 of 6 (e) f (x) = e-( x-k ) Correct f ¢(x) 2 f ¢(x) = -2 ( x - k ) e-( x-k ) Correct f ¢¢(x) Correct solutions with correct f ¢(x) and 2 f ¢¢(x) f ¢¢(x) = -2e-( x-k ) + 4 ( x - k ) e-( x-k ) 2 2 2 2 = e-( x-k ) éë 4 ( x - k ) - 2 ùû 2 f ¢¢(x) = 0 Þ 4 ( x - k ) - 2 = 0 2 4(x - k) = 2 2 1 2 ±1 (x - k) = 2 1 x=k± 2 ( x - k )2 = NØ N1 N2 A3 A4 M5 M6 E7 E8 No response; no relevant evidence. ONE answer demonstrating limited knowledge of differentiation techniques. 1u 2u 3u 1r 2r 1t with minor error(s). 1t NCEA Level 3 Calculus (91578) 2016 — page 3 of 6 Q2 (a) (b) (c)(i) Expected Coverage f ¢ ( x ) = ln(3x -1) + x × 3 3x -1 1 y = ( 2x -1) 2 -1 dy 1 = ( 2x -1) 2 .2 dx 2 1 = 2x - 1 dy 1 At x = 5 , = dx 3 1: 2: 3: 4: –1, 1 –2, –1, 1, 4 –4, 3, x > 4 Achievement (u) Merit (r) Correct derivative Correct solution with correct derivative. 2 correct answers. 3 correct answers. Correct expression for dr dt Correct solution dr with correct dt – units not required. 1< x < 4 (ii) 1 (d) dV = 4800 cm 3 s-1 dt 4 V = πr 3 3 dV = 4πr 2 dr dr dr dV = ´ dt dV dt 4800 1200 = = 4πr 2 πr 2 4 V = 288000π = πr 3 3 4 3 288000 = r 3 3 r = 216 000 r = 60 cm dr 1200 \ = = 0.106 cm s–1 dt π ´ 60 2 Excellence (t) NCEA Level 3 Calculus (91578) 2016 — page 4 of 6 (e) Correct expression for dV ds 1 Vol = π r 2 h 3 h= 6+s s2 + r 2 = 62 Correct solution. r 2 = 36 - s 2 ( ) 1 \V = π 36 - s 2 ( 6 + s ) 3 1 = π 216 + 36s - 6s 2 - s 3 3 dV 1 = π 36 -12s - 3s 2 ds 3 dV Max volume when =0 ds 3s 2 +12s - 36 = 0 s 2 + 4s -12 = 0 ( ( ) ) ( s + 6)( s - 2) = 0 s = -6 or s = 2 s=2 NØ N1 N2 A3 A4 M5 M6 E7 E8 No response; no relevant evidence. ONE answer demonstrating limited knowledge of differentiation techniques. 1u 2u 3u 1r 2r 1t with minor error(s). 1t NCEA Level 3 Calculus (91578) 2016 — page 5 of 6 Q3 (a) (b) Expected Coverage f ¢(x) = -3 1 ( 3x + 2 ) 4 ×3 4 Achievement (u) Merit (r) Correct derivative. y = 6x - e 3x Correct solution with correct derivative. dy = 6 - 3e 3x dx dy Want =0 dx 3e 3x = 6 e 3x = 2 x= (c) ln 2 = 0.231 3 Area = A(x) = x ( x - 6 ) 2 = x -12x + 36x A¢ ( x ) = 3x 2 - 24x + 36 3 2 Correct expression for Correct solution for maximum area with correct derivative. Correct expression for dy . dx Correct proof with correct derivative. A¢ ( x ) Max when A¢ ( x ) = 0 ( ) 3 x 2 - 8x + 12 = 0 3( x - 6 ) ( x - 2 ) = 0 Max when x = 2 Max Area = 2 ´16 = 32 (d) ex sin x dy sin x × e x - e x .cos x = dx sin 2 x sin x × e x e x .cos x = sin 2 x sin 2 x x x e e cos x = × sin x sin x sin x = y - y × cot x y= = y (1- cot x ) Excellence (t) NCEA Level 3 Calculus (91578) 2016 — page 6 of 6 (e) tan a = 15 d tan (a + q ) = Correct expression for d ( tan q ) dd 20.4 d tanq = tan ((a + q ) - a ) tan (a + q ) - tan a 1- tan (a + q ) × tan a 20.4 15 d d = 20.4 ´ 15 1+ d2 5.4 = 2 d d + 306 d2 5.4d = 2 d + 306 = d ( tan q ) =0 dd d 2 + 306 ´ 5.4 - 5.4d ´ 2d or Correct solution – units not required. dq dd Max when ( ( ) d 2 + 306 ) 2 =0 5.4d + 306 ´ 5.4 -10.8d 2 = 0 5.4d 2 - 306 ´ 5.4 = 0 2 d 2 = 306 d = 17.5 m NØ N1 N2 A3 A4 M5 M6 E7 E8 No response; no relevant evidence. ONE answer demonstrating limited knowledge of differentiation techniques. 1u 2u 3u 1r 2r 1t with minor error(s). 1t Cut Scores Not Achieved Achievement Achievement with Merit Achievement with Excellence 0–7 8–12 13–18 19–24
© Copyright 2026 Paperzz