Development of Palladium-Catalyzed C-N Bond Formation Reaction Wu Hua 2010.4.24 First Intermolecular Carbon-Nitrogen Bond Formation In 1983 Kosugi et al. published report of intermolecular carbon-nitrogen bond formation. Only electron neutral aryl bromides gave products in good yields. Vinyl Bromides and aryl bromides containing electron donating or electron withdrawing groups gave products in low yields. R R Br + Bu3SnNR 2 [(o-MeC6H4)3P)2PdX2 NR2 + Bu3SnBr Only Unhindered dialkyl amides gave good yields of amination products. M. Kosugi, M. Kameyama, T. Migita, Chem. Lett. 1983, 927 First Intramolecular Carbon-Nitrogen Bond formation First example of palladium(0) mediated carbon-nitrogen bond formation using stoichiometric quantities of palladium(0) was reported by Boger in 1984 O O O N O N EtO OEt EtO OEt Pd(PPh3)4 H2N HN Br eq. Pd(PPh3)4 Solvent Temperature/oC Time/h Yield/% 1.0 THF(sealed tube) 80 20 50 1.2 THF(sealed tube) 80 21 81 1.5 THF(sealed tube) 80 21 84 1.2 Dioxane 100 20 50 1.5 Dioxane 100 24 73-80 1.2 Toluene 100 24 43 0.01 THF(sealed tube) 80 24 0 D. L. Boger, J. S. Panek, Tetrahedron Lett. 1984, 3175 Catalytic examples using amino stanannes Work reported by S. Buchwald: R'' Br R'' o Bu3Sn-NEt 2 + HNRR' ~80 C -HNEt 2 Bu3Sn-NRR' NRR' 1-2.5 mol% Pd cat. Toluene, 105oC Examples: Ph EtO2C N 88 % Ph Me2N N 81 % H N 66 % N 55 % A. S. Guram, S. L. Buchwald, J. Am. Chem. Soc. 1994, 7901. Catalytic examples using amino stanannes Work reported by J. Hartwig: R Br + Bu3SnNMe 2 [(o-MeC6H4)3P)2PdX2 R 75-85% Catalytic cycle: NMe2 L2PdX2 L(NHR 2)PdX2 R=Me,Et reduction/ L2Pd ArNR2 dissoc. ArBr L-Pd L L NR2 Br Ar Ar Pd Pd-L Pd Ar n=1,2 Br Br Pd Ar L A lot of advantages ! BrSnBu3 R2NSnBu 3 F. Paul, J. Patt, J. F. Hartwig, J. Am. Chem. Soc. 1998, 5969. Achieving the Same Chemistry Without the use of Tin Reagents Work reported by J. Hartwig: L2Pd or L 2PdCl2 ArBr + HNRR' LiN(SiMe3)2 L=P(o-tol) 3 ArNRR' Catalytic cycle: reduction L2PdCl2 L2Pd ArNR 2 ArBr L-Pd L Ar NR2 Br Pd Pd Pd-L L H HN(TMS) 2 + LiBr Ar Br Ar Br Br Pd Ar NR 2 Pd L Ar HNR 2 LiN(TMS) 2 J. Louie, J. F. Hartwig, Tetrahedron Lett. 1995, 3609. L Achieving the Same Chemistry Without the use of Tin Reagents Work reported by S. Buchwald: I + cat. Pd 2(dba)3 P(o-tolyl) 3 t NaO Bu Dioxane o o 65 C or 100 C HNRR' R NRR' R Tested a variety of aryl iodides with primary and secondary amines: I MeO I I Cl I O H N MeO HN HNBu 2 HN O O H2N I I NBu2 Good yields for all, 59-79%. J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 1996, 1133. NH2 n-Hexyl-NH 2 Catalyst Development Buchwald found dramatic improvements in yield and substrate generality by using BINAP as the ligand Catalyst loadings are also significantly reduced PPh2 Ph2P Br + RNH 2 Pd2(dba)3 BINAP t NaO Bu Toluene o 80 C NHR R Mol% Pd Reaction time/h Yield/% n-hexyl 0.5 2 88 Bn 0.5 4 79 Bn 0.05 7 79 Cyclohexyl 0.5 18 83 Compared with 35% when using P(o-tolyl)3 and R = n-hexyl J. P. Wolfe, S. Wagaw, S. L. Buchwald, J. Am. Chem. Soc. 1996, 7215. BINAP Reaction Mechanism Pd2(dba)3 + BINAP (BINAP)Pd(dba) ArNRR' ArBr (BINAP)Pd (BINAP)Pd(Ar)[NRR'] (BINAP)Pd(Ar)(Br) NaBr + HOtBu NHRR' (BINAP)Pd(Ar)(Br) t NaO Bu Catalyst development Hartwig developed a dppf based system that shows enhanced catalytic qualities PPh2 Fe PdCl2 P Ph2 Good for primary amines and works on electron deficient aryl halides R t X + H2NR + NaO Bu 5mol% (DPPF)PdCl2 DPPF THF o 100 C/~3h R M. S. Driver, J. F. Hartwig, J. Am. Chem. Soc. 1996, 1133. NHR Coupling of Secondary Acyclic Amines Bu 0.25 mol% Pd2(dba)3 0.75 mol% Ligand Br N t + Bu2NH Bu 1.4 equiv. NaO Bu toluene o 80 C t-Bu t-Bu PPh2 Fe (rac)-BPPFA PPh2 OMe NMe2 NMe 2 PPh2 PPh2 PPh2 Fe Fe Fe FcPPh2 (rac)-PPFA (rac)-PPF-OMe Ligand Time/h Isolated yield/% P(o-tolyl)3 48 77 BINAP 48 - DPPF 48 - (rac)-BPPFA 48 - FcPPh2 48 - (rac)-PPFA 24 89 (rac)-PPF-OMe 5 93 J. Marcoux, S. Wagaw, S. L. Buchwald, J. Org. Chem. 1997, 1568. Coupling of Aryl Triflates Buchwald: 2 mol% Pd(OAc)2 BINAP or Tol-BINAP OTf + HNRR' R NaOtBu Toluene 80oC NRR' R Hartwig: 1-5 mol% Pd(OAc)2 3-10 mol% BINAP or DPPF OTf R + HNRR' 1.5 equiv. NaOtBu Toluene 85oC NRR' R Both systems use electron rich and electron poor aryl triflates with primary and secondary amines (cyclic and acyclic) J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 1997, 1264. J. Louie, M. S. Driver, B. C. Hamann, J. F. Hartwig J. Org. Chem. 1997, 1268. Intermolecular Markovnikov Hydroamination of vinylarenes with alkylamines NRR' 5 mol% Pd(O2CCF3)2 10 mol% DPPF HNRR' + 20 mol% CF3SO3H R o R Dioxane, 120 C, 24 h Via: HNRR' (DPPF)Pd OTf Bn Amines: HN O HN NR HN HN n = 1,2 Me Products formed in 43-79 % yield M. Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc. 2003, 14286. n-hexyl HN Me Synthesis of Enamines and Imines R1 Pd(OAc)2/BINAP or Pd2(dba)3/BINAP Br R2 + N H R2 t NaO Bu R3 R1 N Toluene R3 Examples: O N N N 96 % 96 % 75 % O N O O O N N N Bn 95 % BnO 86 % C7H15 96 % 96 % M. Fernández, F. Aznar, C. Valdés, J. Barluenga, Chem. Eur. J. 2004, 494. Scope and Limitations of the Pd/BINAP-Catalyzed Amination of Aryl Bromides Catalytic Amination of Aryl Bromides Using NaO-t-Bu as the Base. Note: When the weak base Cs2CO3 is employed, a much wider variety of functional groups are tolerated. John P. Wolfe, Stephen L. Buchwald. J. Org. Chem. 2000, 65, 1144-1157 Application In The Synthesis Cl Cl N O N NO O N NH Pd2(dba)3, BINAP O Br N N N NaOBu-t, 81% OTBS Cl Cl N N NO O O O N N N N N OTBS Tanoury, G. J. Senanayake. Tetrahedron Lett. 1998, 39, 6845 Selective Cross-Coupling Using BINAP Pd2(dba)3 N Cl N N BINAP + H2N NH N NH NaOBu-t F F Selectivity 35:1 Yield: 85% Hong. Y. Tetrahedron Lett. 1998, 39, 3121 NH Stephen L. Buchwald. J. Am. Chem. Soc. 2003, 125, 6653-6655 Jacqueline E. Milne, Stephen L. Buchwald. J. Am. Chem. Soc. 2004, 126, 13028-13032 Catalyst Activation Mechanism Eric R. Strieter, Stephen L. Buchwald. Angew. Chem. Int. Ed. 2006, 45, 925 –928 O X R +HN 2 H N Pd2dba3, Ligand R' K3PO4, t-BuOH R R' O Stephen L. Buchwald. J. Am. Chem. Soc. 2007, 129, 13001-13007 A New Class of Air- and Moisture- stable Pd Precatalysts They are particularly useful in cases where a highly active Pd complex is required to promote a difficult cross-coupling reaction or where functional group instability requires the use of low temperatures. Mark R. Biscoe, Brett P. Fors, Stephen L. Buchwald. J. Am. Chem. Soc. 2008, 130, 6686–6687 Chemoselective Cross-coupling Reactions Debabrata Maiti and Stephen L. Buchwald. J. Am. Chem. Soc. 2009, 131, 17423–17429 Stephen L. Buchwald. J. Am. Chem. Soc. 2009, 131, 16720–16734 Application In Suzuki-Miyaura Reaction Reduce the loading of catalyst ! Kelvin Billingsley , Stephen L. Buchwald. J. Am. Chem. Soc. 2007, 129, 3358 3366 N O O O O O O TDA Brett P. Fors, Stephen L. Buchwald. J. Am. Chem. Soc. 2009, 131, 12898–12899 Cross-coupling Reaction With Ammonia Difficulties Suffered: First, the dative ancillary ligands can be displaced by ammonia to form a catalytically unreactive complex. Second, reductive elimination from an Ar-Pd-NH2 complex has never been observed, perhaps because complexes of the parent amido group often adopt stable bridging structures. Third, if reductive elimination did form the arylamine, this product would likely be more reactive than ammonia and would further react to form the diarylamine. Qilong Shen and John F. Hartwig. J. Am. Chem. Soc. 2006, 128, 10028-10029 (i) many kinds of transition metals are deactivated by ammonia to give stable amine complexes and (ii) when a reaction forms a primary amine, this product is more reactive than ammonia and causes problematic overreactions. It is noteworthy that the use of aqueous ammonia is essential and that ammonia gas did not react at all ! . Takashi Nagano and Shu Kobayashi. J. Am. Chem. Soc. 2009, 131, 4200–4201 Palladium-Catalyzed Asymmetric Dearomatization of Naphthalene Derivatives Stephen L. Buchwald. J. Am. Chem. Soc. 2009, 131, 6676–6677 Conclusion First-generation catalyst: Pd/P(o-tolyl)3 Second-generation catalyst: Pd/aromatic phosphines PPh2 PPh2 Fe PdCl2 Ph2P P Ph2 BINAP DPPF Third-generation catalyst: Pd/Hindered alkylphosphines i-Pr PCy2 i-Pr 1. One kind of the Buchwald-Hartwig cross-coupling reaction substrates must be aryl halides and aliphatic halides have not been reported. 2. It will be paid more attention to its use in asymmetric synthesis.
© Copyright 2025 Paperzz