Mean and Fluctuating Quantities
Ocean Surface
u
3D Turbulence
u <u u '
u'
Current Meter
Mean Flow
Fluctuating Flow
One Dimensional Measurement
u'
< average
' Fluctuating
Note: ' >=0
u
u
time
Three Types of Averages
Ensemble
( x, t)
j
average over ensemble members j
Time
T
1
dt ( x , t ) average over time for period T
T 0
Space
L
1
dx ( x , t ) average over space of length L (1D)
L0
1
3
d
x ( x, t ) average over space of Volume V (3D)
V
Ergodic Hypothesis: Replace ensemble average by either a space or time average
Concept of Correlation Function
Auto Correlation Function
R '( x2 ) '( x1 ) 1 D space
R '(t2 ) '(t1 )
1 D time
R '( x2 ) '( x1 )
3 D space
R '( x2 , t2 ) '( x1 , t1 )
3 D space,time
Cross Correlation Function
R ij u 'i ( x2 )u ' j ( x1 )
R ij u 'i (t2 )u ' j (t1 )
R ij u 'i ( x2 )u ' j ( x1 )
1 D space
1 D time
3 D space
R ij u 'i ( x2 , t2 )u ' j ( x1 , t1 )
3 D space,time
Concept of Spatial Homogeneity and Temporal Stationarity
'
< average
' Fluctuating
Note: ' >=0
Time or Space
( ') Variance of ( )
2
2
Independent of space and time
Correlation Function R
Space: R(x2 x1 ) '( x2 ) '( x1 ) R(x), x x2 x1
Time: R(t 2 t1 ) '(t2 ) '(t1 ) R(t), t t 2 t1
Homogeneous/Stationary I D Correlation Function
R '( x2 , t ) '( x1 , t ) R(x2 x1 ) R(x)
x x2 x1
R '( x , t2 ) '( x, t 1 ) R(t 2 t1 ) R(t)
t t2 t1 )
Note: R(x) = R( x)
Proof : R(x) ' x1 x) ' x1 )
Let x'= x1 +x then
R(x) ' x ') ' x ' x1 ) ' x ' x) ' x ') R( x)
Similarly for R(t) 't2 ) 't1 ) R( t)
Note : R(0) ' x, t ) ' x, t ) ( ') 2
Velocity Cross Correlation Function
R uv u '( x2 , t )v'( x1 , t ) R uv ( x) R uv ( x)
but R uv R vu ( x)
Can you show this?
Auto Covariance Function
'( x1 ) '( x1 x)
( x)
2
( ')
'(t1 ) '(t1 )
( )
2
( ')
'(t1 ) '(t1 )
( )
2
( ')
1
,
x
0
Time or Space Axis
1
= d ( )= d ( )
2 -
0
Temporal Intergal Scale
1
= dx ( x) = dx ( x)
2 -
0
Spatial Intergal Scale
Concept of Structure Function
[u '(t ) u '(t )]2
S( )
1
2
2 (u ')
S( )
Microscale
I
Integral scale
S( ) 0 at 0
S( ) 1 at I
Taylor’s Microscale
Temporal case
S( ) 1
2 2
3
but 0
| 0
|
O
(
)
0
2
2
2 2
2
1 0
| 0 1 2
2 2
where
thus
2
1 2
| 0
2
2
2
S( ) 2 for
Spatial case
S(x) 1 x
S(x)
x2
2
for x where
2
1 2
x |x 0
2
2 x
How to Calculate Correlation Functions from Data
R ( x ) '( x1 ) '( x1 x )
Use Ergodic hypothesis
1
R( x)
L
1
R ( )
T
L
| x|
2
dx1 '( x1 ) '( x1 x)
Space series
L
| x|
2
T
| |
2
T
|
2
dt '(t ) (t )
x,
L,T
Time Series
Concept of Spectrum
Temporal Spectrum
'( Two Sided Spectrum
( One Sided Spectrum
1
'(
2
d R( exp(i ) '( '(
R ( u '(t )u '(t )
d '( exp(i )
0
0
d 2 ' cos( ) d ) cos( )
where ) 2 ' )
Note:R (0 u '2 d ) &
0
1
'(
2
1
d R( cos( ) d R( cos( )
0
Spatial Spectra
1
'(k
2
R( x
dxR ( x exp( ikx)
0
1
(k
2
dk '(k exp(ikx) dk (k cos(kx)
Terminology
angular frquency ( typical units of rad/sec)
2
T = period ( typical units of secs) =
1
cyc
f = cyclical frequency =
(units of
Hz )
T 2
sec
k wavenumber ( typical units of rad/m)
= wavelength ( typical units of meters) =
k = cyclical wavenumber =
1
2
k
k
cyc
(units of
)
2
m
Normalized Correlation Function and Spectra
R( x)
R( x)
x0
2
R (0) ( ')
(0) 1
( ) 0
1
= dx ( x ) = dx ( x )
2 -
0
Integral Scale = Area under curve
You can show that:
0
=
2
( ')
x
3D + Time Spectra
R(x , ) u '( x ', t )u '( x ' x , t )
= d 3kd k , exp[i (k x )]
4 k ,
1
(2
d 3 xd R(x , ) exp[i (k x )]
1D Sepctra:
R(x) R(x , ) | y 0, z 0, 0 u '( x ', y ', z ', t )u '( x ' x, y ', z ', t )
R( ) R(x , ) |x 0, y 0, z 0 u '( x ', y ', z ', t )u '( x ', y ', z ', t )
2 d 3k 4 k ,
0
k1 2 dk2 dk3 d 4 k ,
0
Gradient Spectra
u '(t ) u '(t ) u '(t ) u '(t )
R( )
t
but R( ) R( ) at 0
R( ) | 0 0
R ( )
u (t )
u (t ) 0
t
u '(t ) u '(t )
Rg (
Spectra of gradient of u
t
t
u '(t )
2u '(t )
u '(t )
u '(t )
2
t
t
t
2u '(t )
0 (by stationarity) u '(t )
2
2
R (
1
but ' g (
d Rg ( expi ) &
2
Rg (
d '
g
( expi )
2
but Rg (
R (
'g ( 2 '(
g ( 2 (
d 2 '( expi )
Spatial Spectra k
' k Fourier Transform of R(x)
1
' k
dx R(x) exp[i (kx)]
(2
k 2 ' k
R(x) dk ' k cos(kx)]
0
Gradient Spectra g k
2R
2 '
' 2
|
'
|
(
) |x 0
x 0
x 0
x 2
x 2
x
Using R(x) dk k cos(kx)]
0
' 2
(
) |x 0 = dk g k = dk k 2 k
x
0
0
g k k 2 k
Use of the Log-Log plot
Example: k Ak p
Linear Plot
Log-Log Plot
p=-2
100
10 2
ln( k )
k
o
2
( C)
rad / m
o
p=-2
p=2
20
10
2
( C)
ln(
)
rad / m
p=2
101
100
101
0
1 2
20
k
10
101 100
101
ln(k )
10 2
Spectra
R(0) ( ') 2 dk k
(k)
0
( ') Area under curve
2
k
1
Interpret k as eddy of size k
Gradient Spectra
g (k) =
' 2
(
) |x 0 = dk k 2 k
x
0
' 2
(
) |x 0
x
k 2 (k)
k
Area under curve
(
u '2
is the area under
Consider Model Correlation Function
R u ' e
2
e
2 02
2 02
( ) 2 0
u'
2
e
2 02
4
(
From we create a simulation of u ' and
u'
u '
t
u '
t
e
2 02
0 2 Minutes
( )
2( )
Calculation of Spectra
Spectra = Decomposition of Variance into contributions by sines/cosines
f
L
Fourier Series
2 mx
f ( x) am exp(
) f ( x L)
L
m0
1
am
T
L
2
2 mx
L dtf ( x) exp( L )
2
exp(i ) cos( ) i sin( )
Lim (T )Fourier Series Fourier Transform
i 2 mx
f ( x) LIM am exp(
) dkg (k exp(ikx)
L
L m 0
2
where am kg (k k
L
1
g (k LIM
L 2
2
m( ) k
L
L
2
i 2 mx
1
L dxf ( x) exp( L ) 2
2
Concept of Delta Function
1
(x)=
2
f ( x)
dk exp(ikx)
dx ' f ( x ') (x-x')
dxf ( x) exp(ikx)
f ( x)
1
Note: g (k Lim
L 2
L
2
dx{ dk ' g (k ' exp(ikx)}exp(ik ' x)
L
2
dk ' g (k ' (k ' k )
(k ' k ) = Lim L (k ' k )
L
1
L (k ' k )
2
L
2
dx exp[i(k ' k ) x]
L
2
L
sin[(k ' k ) ]
2
(k ' k )
2 (
)
2
L
sin(k )
2
L (k )
k
2 ( )
2
Calculation of Spectra of u’
x
L
1. Choose Sampling x (digitizing)
2. Calculate the DFT (Discrete Fourier Transform) of sections of u’
k ) k * k k
2
1 n
where k
& k * k i k i * k
L
n i 1
3. Estimate Spectra by
1
2
3
n
The Uncertainty Principle
Q = Fourier Transform of q
1
Q=
2
dx exp(ikx)q
If q=exp{(-x/x) 2 }
with k
2
x
Q=
1
exp(-k/k ) 2
k
xk 2 !
x
x
x
k
k
k
Developing the Concept of an Eddy
u=Uexp(ik 0 x) exp{(-x/x) 2 }
=
k
exp[-{(k-k 0 )/k}2 ]
4
Example k 0 1
Real(u)
x
x
x
exp(ik 0 x)=cos(k 0 x)+isin(k 0 x)
k
rad
m
2
x
k
k
k
The Eddy
k k0
u=Uexp(ik 0 x) exp{(-x/x) 2 }
Q=
x
2
k0
k
exp{-[( k - k0 ) / k ]2 ]}
4
x
k
k0 1
k k
k0
k0
k0
k0
k k0
k0
k0
k0
k0
Q
k k
kQ
k0
k0
k0
k0
k 1
kQ
k0
k0
k0
k0
© Copyright 2026 Paperzz