Mean and Fluctuating Quantities Ocean Surface u 3D Turbulence u <u u ' u' Current Meter Mean Flow Fluctuating Flow One Dimensional Measurement u' < average ' Fluctuating Note: ' >=0 u u time Three Types of Averages Ensemble ( x, t) j average over ensemble members j Time T 1 dt ( x , t ) average over time for period T T 0 Space L 1 dx ( x , t ) average over space of length L (1D) L0 1 3 d x ( x, t ) average over space of Volume V (3D) V Ergodic Hypothesis: Replace ensemble average by either a space or time average Concept of Correlation Function Auto Correlation Function R '( x2 ) '( x1 ) 1 D space R '(t2 ) '(t1 ) 1 D time R '( x2 ) '( x1 ) 3 D space R '( x2 , t2 ) '( x1 , t1 ) 3 D space,time Cross Correlation Function R ij u 'i ( x2 )u ' j ( x1 ) R ij u 'i (t2 )u ' j (t1 ) R ij u 'i ( x2 )u ' j ( x1 ) 1 D space 1 D time 3 D space R ij u 'i ( x2 , t2 )u ' j ( x1 , t1 ) 3 D space,time Concept of Spatial Homogeneity and Temporal Stationarity ' < average ' Fluctuating Note: ' >=0 Time or Space ( ') Variance of ( ) 2 2 Independent of space and time Correlation Function R Space: R(x2 x1 ) '( x2 ) '( x1 ) R(x), x x2 x1 Time: R(t 2 t1 ) '(t2 ) '(t1 ) R(t), t t 2 t1 Homogeneous/Stationary I D Correlation Function R '( x2 , t ) '( x1 , t ) R(x2 x1 ) R(x) x x2 x1 R '( x , t2 ) '( x, t 1 ) R(t 2 t1 ) R(t) t t2 t1 ) Note: R(x) = R( x) Proof : R(x) ' x1 x) ' x1 ) Let x'= x1 +x then R(x) ' x ') ' x ' x1 ) ' x ' x) ' x ') R( x) Similarly for R(t) 't2 ) 't1 ) R( t) Note : R(0) ' x, t ) ' x, t ) ( ') 2 Velocity Cross Correlation Function R uv u '( x2 , t )v'( x1 , t ) R uv ( x) R uv ( x) but R uv R vu ( x) Can you show this? Auto Covariance Function '( x1 ) '( x1 x) ( x) 2 ( ') '(t1 ) '(t1 ) ( ) 2 ( ') '(t1 ) '(t1 ) ( ) 2 ( ') 1 , x 0 Time or Space Axis 1 = d ( )= d ( ) 2 - 0 Temporal Intergal Scale 1 = dx ( x) = dx ( x) 2 - 0 Spatial Intergal Scale Concept of Structure Function [u '(t ) u '(t )]2 S( ) 1 2 2 (u ') S( ) Microscale I Integral scale S( ) 0 at 0 S( ) 1 at I Taylor’s Microscale Temporal case S( ) 1 2 2 3 but 0 | 0 | O ( ) 0 2 2 2 2 2 1 0 | 0 1 2 2 2 where thus 2 1 2 | 0 2 2 2 S( ) 2 for Spatial case S(x) 1 x S(x) x2 2 for x where 2 1 2 x |x 0 2 2 x How to Calculate Correlation Functions from Data R ( x ) '( x1 ) '( x1 x ) Use Ergodic hypothesis 1 R( x) L 1 R ( ) T L | x| 2 dx1 '( x1 ) '( x1 x) Space series L | x| 2 T | | 2 T | 2 dt '(t ) (t ) x, L,T Time Series Concept of Spectrum Temporal Spectrum '( Two Sided Spectrum ( One Sided Spectrum 1 '( 2 d R( exp(i ) '( '( R ( u '(t )u '(t ) d '( exp(i ) 0 0 d 2 ' cos( ) d ) cos( ) where ) 2 ' ) Note:R (0 u '2 d ) & 0 1 '( 2 1 d R( cos( ) d R( cos( ) 0 Spatial Spectra 1 '(k 2 R( x dxR ( x exp( ikx) 0 1 (k 2 dk '(k exp(ikx) dk (k cos(kx) Terminology angular frquency ( typical units of rad/sec) 2 T = period ( typical units of secs) = 1 cyc f = cyclical frequency = (units of Hz ) T 2 sec k wavenumber ( typical units of rad/m) = wavelength ( typical units of meters) = k = cyclical wavenumber = 1 2 k k cyc (units of ) 2 m Normalized Correlation Function and Spectra R( x) R( x) x0 2 R (0) ( ') (0) 1 ( ) 0 1 = dx ( x ) = dx ( x ) 2 - 0 Integral Scale = Area under curve You can show that: 0 = 2 ( ') x 3D + Time Spectra R(x , ) u '( x ', t )u '( x ' x , t ) = d 3kd k , exp[i (k x )] 4 k , 1 (2 d 3 xd R(x , ) exp[i (k x )] 1D Sepctra: R(x) R(x , ) | y 0, z 0, 0 u '( x ', y ', z ', t )u '( x ' x, y ', z ', t ) R( ) R(x , ) |x 0, y 0, z 0 u '( x ', y ', z ', t )u '( x ', y ', z ', t ) 2 d 3k 4 k , 0 k1 2 dk2 dk3 d 4 k , 0 Gradient Spectra u '(t ) u '(t ) u '(t ) u '(t ) R( ) t but R( ) R( ) at 0 R( ) | 0 0 R ( ) u (t ) u (t ) 0 t u '(t ) u '(t ) Rg ( Spectra of gradient of u t t u '(t ) 2u '(t ) u '(t ) u '(t ) 2 t t t 2u '(t ) 0 (by stationarity) u '(t ) 2 2 R ( 1 but ' g ( d Rg ( expi ) & 2 Rg ( d ' g ( expi ) 2 but Rg ( R ( 'g ( 2 '( g ( 2 ( d 2 '( expi ) Spatial Spectra k ' k Fourier Transform of R(x) 1 ' k dx R(x) exp[i (kx)] (2 k 2 ' k R(x) dk ' k cos(kx)] 0 Gradient Spectra g k 2R 2 ' ' 2 | ' | ( ) |x 0 x 0 x 0 x 2 x 2 x Using R(x) dk k cos(kx)] 0 ' 2 ( ) |x 0 = dk g k = dk k 2 k x 0 0 g k k 2 k Use of the Log-Log plot Example: k Ak p Linear Plot Log-Log Plot p=-2 100 10 2 ln( k ) k o 2 ( C) rad / m o p=-2 p=2 20 10 2 ( C) ln( ) rad / m p=2 101 100 101 0 1 2 20 k 10 101 100 101 ln(k ) 10 2 Spectra R(0) ( ') 2 dk k (k) 0 ( ') Area under curve 2 k 1 Interpret k as eddy of size k Gradient Spectra g (k) = ' 2 ( ) |x 0 = dk k 2 k x 0 ' 2 ( ) |x 0 x k 2 (k) k Area under curve ( u '2 is the area under Consider Model Correlation Function R u ' e 2 e 2 02 2 02 ( ) 2 0 u' 2 e 2 02 4 ( From we create a simulation of u ' and u' u ' t u ' t e 2 02 0 2 Minutes ( ) 2( ) Calculation of Spectra Spectra = Decomposition of Variance into contributions by sines/cosines f L Fourier Series 2 mx f ( x) am exp( ) f ( x L) L m0 1 am T L 2 2 mx L dtf ( x) exp( L ) 2 exp(i ) cos( ) i sin( ) Lim (T )Fourier Series Fourier Transform i 2 mx f ( x) LIM am exp( ) dkg (k exp(ikx) L L m 0 2 where am kg (k k L 1 g (k LIM L 2 2 m( ) k L L 2 i 2 mx 1 L dxf ( x) exp( L ) 2 2 Concept of Delta Function 1 (x)= 2 f ( x) dk exp(ikx) dx ' f ( x ') (x-x') dxf ( x) exp(ikx) f ( x) 1 Note: g (k Lim L 2 L 2 dx{ dk ' g (k ' exp(ikx)}exp(ik ' x) L 2 dk ' g (k ' (k ' k ) (k ' k ) = Lim L (k ' k ) L 1 L (k ' k ) 2 L 2 dx exp[i(k ' k ) x] L 2 L sin[(k ' k ) ] 2 (k ' k ) 2 ( ) 2 L sin(k ) 2 L (k ) k 2 ( ) 2 Calculation of Spectra of u’ x L 1. Choose Sampling x (digitizing) 2. Calculate the DFT (Discrete Fourier Transform) of sections of u’ k ) k * k k 2 1 n where k & k * k i k i * k L n i 1 3. Estimate Spectra by 1 2 3 n The Uncertainty Principle Q = Fourier Transform of q 1 Q= 2 dx exp(ikx)q If q=exp{(-x/x) 2 } with k 2 x Q= 1 exp(-k/k ) 2 k xk 2 ! x x x k k k Developing the Concept of an Eddy u=Uexp(ik 0 x) exp{(-x/x) 2 } = k exp[-{(k-k 0 )/k}2 ] 4 Example k 0 1 Real(u) x x x exp(ik 0 x)=cos(k 0 x)+isin(k 0 x) k rad m 2 x k k k The Eddy k k0 u=Uexp(ik 0 x) exp{(-x/x) 2 } Q= x 2 k0 k exp{-[( k - k0 ) / k ]2 ]} 4 x k k0 1 k k k0 k0 k0 k0 k k0 k0 k0 k0 k0 Q k k kQ k0 k0 k0 k0 k 1 kQ k0 k0 k0 k0
© Copyright 2025 Paperzz