Dynamics of methane and hydrogen sulphide in the water column and sediment of the Namibian shelf Volker Brüchert 1, Bronwen Currie 2, Kay-Christian Emeis 3, Rudolf Endler 4, Thomas Leipe 4, Kathleen R. Peard 2, Thomas Vogt 5 1 Max-Planck Institute for Marine Microbiology and Research Center Ocean Margins, Bremen 2 Ministry of Fisheries and Marine Resources, Namibia 3 Institute of Biogeochemistry and Marine Chemistry, University of Hamburg 4 Institute for Baltic Sea Research, Warnemünde 5 Geoscience Department University of Bremen The diatomaceous mud belt off central Namibia Coastal upwelling high primary productivity Porosity > 90% Diatom-rich Organic-C: > 12 % dry wt Accumulation rates: 50 – 1000 g/m2/a Distribution of diatomaceous mud, free gas, and sediment craters Areal estimates: Diatomaceous mud: 17900 km2 Gas-filled sediments: 1357 km2 Sea floor with pockmarks and sediment craters: 380 km2 Emeis et al., 2004 Water column oxygen profiles and bottom water images Dissolved oxygen (ml/l) 2 4 0 6 0 0 20 20 40 60 80 100 120 GPS: 26 °25.1S 014° 55.1E No free gas, low hydrogen sulphide Pressure (dBar) Pressure (dbar) 0 Dissolved oxygen (ml/l) 2 4 6 40 60 80 100 GPS: 23 °04.8S 014°16.2E Shallow gas: Bacterial mats of Beggiatoa and Thiomargarita Hydrogen sulphide profile in the water column Concentration (mM) 0 0 Depth (m) 20 50 100 150 200 250 300 350 Sulphide µM Oxygen µM Oxygen 40 60 80 Seawater 100 H2S Methane Sediment Seismo acoustics • Parametric sediment echosounder Parasound – Paradigma (Frequency: 2-5 kHz) • Parametric sediment echosounder SES96 (Frequency: 4-12 kHz ) • Linear sediment echosounder SEL96 (Frequency: 5-20 kHz) • Sparker seismics Outer shelf: Prograding mud and truncated coastal sands Central shelf: Disappearance of horizontal beds and appearance of gas blankings SEL96-Echogram: Transition from gas-free mud → partially gas-filled → crater structures → gas-saturated < 660m > Depth range 75 – 95 m (1m – contour lines) Ship direction 180° 14°20‘E, 22°51‘S Efficient anaerobic oxidation of methane by sulfate in areas where the depth of free gas is greater than than one meter Sulphate (mM) Depth (cm) 0 10 Sulphide (mM) 20 30 0 0 0 50 50 100 100 150 150 200 200 250 250 300 300 350 350 400 400 450 450 500 500 0 500 1000 1500 5000 10000 15000 20000 2000 3 CH4 (nmol/cm ) Emeis, Brüchert et al. (2004) Evidence for gas escape from the sediment Bubbles tracked by echosounder Meteor M 57-3 Pore water methane, sulphate, and sulphide in sediment crater 181 Multicore 181 gravity core Methane (mM) Methane (mM) 0 1 2 3 4 5 6 7 8 9 10 2000 4000 1 6000 10 100 1000 10000 0 Methane 100 Sulphide Depth (cm) Depth (cm) 0 200 300 400 Methane 500 Sulfate 600 0 5 10 15 Hydrogen sulphide (mM) 20 0 10 20 Sulphate (mM) 30 Rising mud islands and coast-wide fish kills Lobster kills Turquoise, elemental sulfurcontaining surface water MODIS satellite imagery: turquoise discolourations often coincide with reports of hydrogen sulphide smell; measurements indicate sulphur concentrations up to 30 mmoles/L. September 03, 2003, www.noaa.gov Temporal variability 4 6 0 1 2 3 4 5 6 Periods of whole-water column depletion Depth (m) 8 10 12 14 16 18 Dissolved oxygen (ml/l) 20 12 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536 -2 Coincident hydrogen sulphide mmol m day -1 10 8 6 4 Diffusive sulfide flux 2 and 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 2 6 8 10 12 14 May 2004 March 2004 December 2003 July 2003 August 2003 September 2003 March 2003 January 2003 October 2002 November 2002 July 2002 May 2002 March 2002 December 2001 October 2001 August 2001 16 May 2001 June 2001 Depth (cm) methane pulses in the sediment 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 Methane (nmol cm-3) Publications • Brüchert V., Jørgensen B.B., Neumann K., Riechmann D., Schlösser M., and Schulz H. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochimica et Cosmochimica Acta, 2003; 67: 4505-4518. • Brüchert V., Lass U., Endler R., Dübecke A., Julies E., Leipe T., and Zitzmann S. An integrated assessment of shelf anoxia and water column hydrogen sulphide in the Benguela coastal upwelling system off Namibia, In Past and Present Marine Water Column Anoxia, L.N. Neretin, B.B. Jorgensen, and J.W. Murray, eds.: Kluwer; in press. Emeis K.-C., Brüchert V., Currie B., Endler R., Ferdelman T.G., Kiessling A., Leipe T., Noli-Peard K., Struck U., and Vogt T. Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Continental Shelf Research, 2004; 24: 627-642. • Weeks S.J., Currie B., Bakun A., and Peard K.R. Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on SeaWIFS satellite imagery. Deep-Sea Research, 2004; 51: 153-172.
© Copyright 2026 Paperzz